热点科技

标题: hifi基础知识——读完此贴你瞬间成为一等一的高手 [打印本页]

作者: zgmfx10akira    时间: 2012-4-30 15:40
标题: hifi基础知识——读完此贴你瞬间成为一等一的高手
本帖最后由 zgmfx10akira 于 2012-5-1 00:14 编辑

CD   
索尼和飞利浦公司联手研制的一种数字音乐光盘,有12cm直径和8cm直径两种规格,以前者最为常见,它能提供74分钟的高质量音乐。

CD-ROM   
用于存储电脑数据的只读型CD。

VCD   
采用MPEG-1压缩编码技术的影音光盘,其图像清晰度和VHS录像带差不多。

超级VCD  
VCD的改进产品,采用MPEG-2编码,图像清晰度得到了提高。

DVD
一种外型类似CD的新一代超大容量光盘,它将广泛应用于高质量的影音节目记录和用作电脑的海量存储设备。

MD
索尼公司研制的迷你可录音乐光盘,外型象电脑用3.5英寸软盘,但采用光学信号拾取系统,类似CD。MD使用高效的压缩技术来达到与CD相同的记录时间,音质则接近CD。

D/A转换器
数码音响产品(例如CD、DVD) 中将数字音频信号转换为模拟音频信号的装置。D/A转换器可以做成独立的机器,以配合CD转盘使用,此时常常称为解码器。

CD转盘
将CD机的机械传动部分独立出来的机器。

超取样
取样频率数倍于CD制式的标准取样频率44.1kHz,其目的是便于D/A转换之后数码噪声的滤除,改善CD机的高频相位失真。早期的CD机使用2倍频或4倍频取样,近期的机器已经达到8倍或者更高。

HDCD
High Definition Compact Disc(高解析度CD)的缩写——一种改善CD音质的编码系统,兼容传统的CD,但需要在带HDCD解码的CD机上重放或外接一台HDCD解码器才能获得改善的效果。

比特(bit)
二进制数码信号的最小组成单位,它总是取0或1两种状态之一。

比特流
飞利浦公司的一种将CD数码信号转换成模拟音乐信号的技术。

杜比B,C,S
美国杜比公司研制的系列磁带降噪系统,用于降低磁带录音产生的“嘶嘶声”,扩展动态范围。B型降噪系统能降噪10dB,C型增加到20dB,S型则可达24dB。

杜比HX Pro
不是降噪系统,而是一种改善磁带高频记录失真的技术,通常也称为“上动态余量扩展”。

杜比环绕声(Dolby Surround)
一种将后方效果声道编码至立体声信道中的声音。重放时需要一台解码器将环绕声信号从编码的声音中分离出来。

杜比定向逻辑
(Dolby Pro-Logic)
在杜比环绕声的基础上增加了一个前方中置声道,以便将影片中的对白锁定到屏幕上。

杜比数字(Dolby Digital)
也称为AC-3,杜比实验室发布的新一代家庭影院环绕声系统。其数字化的伴音中包含左前置、中置、右前置、左环绕、右环绕5个声道的信号,它们均是独立的全频带信号。此外还有一路单独的超低音效果声道,俗称0.1声道。所有这些声道合起来就是所谓的5.1声道。

AV功放
专门为家庭影院用途而设计的放大器,一般都具备4 个以上的声道数以及环绕声解码功能。

定向逻辑环绕声放大器
带杜比定向逻辑解码功能的AV功放。

杜比数字放大器
也称为AC-3放大器,一种带杜比数字解码功能的AV功放。

接收机
带有收音功能的放大器。

THX
美国卢卡斯影业公司制定的一种环绕声标准,它对杜比定向逻辑环绕系统进行了改进,使环绕声效果得到进一步的增强。THX标准对重放器材例如影音源、放大器、音箱甚至连接线材都有一套比较严格而具体的要求,达到这一标准并经卢卡斯认证通过的产品,才授予THX标志。

THX 5.1
基于杜比数字系统的THX。

DTS
分离通道家庭影院数码环绕声系统(Discrete-channel home cinema digital sound system),它也采用独立的5.1声道, 效果达到甚至优于杜比数字环绕声系统,是杜比数码环绕声强劲的竞争对手。

SRS
美国SRS公司的一种用两只音箱产生环绕声效果的系统。

分频器
音箱内的一种电路装置,用以将输入的音乐信号分离成高音、中音、低音等不同部分,然后分别送入相应的高、中、低音喇叭单元中重放。

双放大器分音(Biamping)
音箱的每一只喇叭单元由一个独立的放大器通道来进行驱动的一种连接方式。一对两分频的的音箱需要使用两台立体声功放和两对喇叭线。见“双线分音”。

双线分音(Biwiring)
用两套喇叭线分别传送音乐信号的高、低音部分的一种接线方式。双线分音需要使用具备两对接线端子的专门设计的音箱。

放大器
前置放大器和功率放大器的统称。

功率放大器
简称功放,用于增强信号功率以驱动音箱发声的一种电子装置。不带信号源选择、音量控制等附属功能的功率放大器称为后级。

前置放大器
功放之前的预放大和控制部分,用于增强信号的电压幅度,提供输入信号选择,音调调整和音量控制等功能。前置放大器也称为前级。

后级
见“功率放大器”。

前级
见“前置放大器”。

合并式放大器
将前置放大和功率放大两部分集中在一个机箱内的放大器。

胆机
电子管放大器的另一种说法。

额定功率
对功放来说,额定功率一般指能够连续输出的有效值(RMS)功率;对音箱来说,额定功率通称指音箱能够长期承受这一数值的功率而不致损坏,这不意味着一定需要这么大功率的功放才推得动,音箱的驱动难易主要由其灵敏度和阻抗特性来决定。也不意味着不能配输出功率大于音箱额定功率的功放。正如开汽车一样,驾驶300公里时速的跑车不等于就会发生车祸,你可以不开那么快。同样,只要音量不盲目加大,大功率功放一样可以配小功率音箱。

峰值音乐输出功率(PMPO)
以音乐信号瞬间能达到的峰值电压来计算的输出功率,其商业意义大于实际作用。PMPO功率可以比国际公认的有效值额定输出功率(RMS)高出3至4倍,例如早期的手提式收录机每声道RMS功率仅4、5瓦,但采用PMPO来标示,数值一下就可以增大到20W左右。

单端放大
功放的输出级由一只放大元件(或多只元件但并联成一组)完成对信号正负两个半周的放大。单端放大机器只能采取甲类工作状态。

推挽放大
功放的输出级有两个“臂”(两组放大元件),一个“臂”的电流增加时,另一个“臂”的电流则减小,二者的状态轮流转换。对负载而言,好象是一个“臂”在推,一个“臂”在拉,共同完成电流输出任务。尽管甲类放大器可以采用推挽式放大,但更常见的是用推挽放大构成乙类或甲乙类放大器。


功率放大器**放管的导电方式,有甲类(A类)、乙类(B类)和甲乙类(AB类)之分。

甲类
又称为A类,在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)的一类放大器。甲类放大器工作时会产生高热,效率很低,但固有的优点是不存在交越失真。单端放大器都是甲类工作方式,推挽放大器可以是甲类,也可以是乙类或甲乙类。

乙类
又称为B类,正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。乙类放大器的优点是效率高,缺点是会产生交越失真。

甲乙类
又称AB类,界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。

失真
设备的输出不能完全复现其输入,产生了波形的畸变或者信号成分的增减。

谐波失真
由于放大器不够理想,输出的信号除了包含放大了的输入成分之外,还新添了一些原信号的2倍、3倍、4倍……甚至更高倍的频率成分(谐波), 致使输出波形走样。这种因谐波引起的失真叫做谐波失真。

交越失真
乙类放大器特有的一种失真。这种失真产生的机理是因信号的正负半周分别由不同的两组器件进行放大,正负两边的波形不能平滑地衔接。

音染
音乐自然中性的对立面,即声音染上了节目本身没有的一些特性,例如对着一个罐子讲话得到的那种声音就是典型的音染。音染表明重放的信号中多出了(或者是减少了)某些成分,这显然是一种失真。

声压
表示声音强弱的物理量。

声压级
以分贝数表示的声压。

灵敏度
对放大器来说,灵敏度一般指达到额定输出功率或电压时输入端所加信号的电压大小,因此也称为输入灵敏度;对音箱来说,灵敏度是指给音箱施加1W的输入功率,在喇叭正前方1米远处能产生多少分贝的声压值。

电平
电子系统中对电压、电流、功率等物理量强弱的通称。电平一般以分贝(dB)为单位来表示。即事先取定一个电压或电流数作为参考值(0dB),用待表示的量与参考值之比取对数,再乘以20作为电平的分贝数(功率的电平值改乘10)。

分贝(dB)
电平和声压级的单位。

阻尼系数
负载阻抗与放大器输出阻抗之比。使用负反馈的晶体管放大器输出阻抗极低,仅零点几欧姆甚至更小,所以阻尼系数可达数十到数百。

反馈
也称为回授,一种将输出信号的一部分或全部回送到放大器的输入端以改变电路放大倍数的技术。

负反馈
导致放大倍数减小的反馈。负反馈虽然使放大倍数蒙受损失,但能够有效地拓宽频响,减小失真,因此应用极为广泛。

正反馈
使放大倍数增大的反馈。正反馈的作用与负反馈刚好相反,因此使用时应当小心谨慎。

动态范围
信号最强的部分与最微弱部分之间的电平差。对器材来说,动态范围表示这件器材对强弱信号的兼顾处理能力。

频率响应    简称频响,衡量一件器材对高、中、低各频段信号均匀再现的能力。对器材频响的要求有两方面,一是范围尽量宽,即能够重播的频率下限尽量低,上限尽量高;二是频率范围内各点的响应尽量平坦,避免出现过大的波动。

瞬态响应
器材对音乐中突发信号的跟随能力。瞬态响应好的器材应当是信号一来就立即响应,信号一停就嘎然而止,决不拖泥带水。

信噪比(S/N)
又称为讯噪比,信号的有用成份与杂音的强弱对比,常常用分贝数表示。设备的信噪比越高表明它产生的杂音越少。

正弦波
频率成分最为单一的一种信号,因这种信号的波形是数学上的正弦曲线而得名。任何复杂信号——例如音乐信号,都可以看成由许许多多频率不同、大小不等的正弦波复合而成。

波长
声波在一个周期内的行程。波长在数值上等于声速(344米/秒)除以频率。

屏蔽
在电子装置或导线的外面覆盖易于传导电磁波的材料,以防止外来电磁杂波对有用信号产生干扰的技术。

阻抗匹配  
一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出阻抗5-10倍以上,就可认为阻抗匹配良好;对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音箱,而晶体管放大器则无此限制,可以接任何阻抗的音箱。

煲机  新器材使用之前的加电预热过程,以便让器材的声音进入稳定的状态。

ADD
指CD唱片按模拟方式录音,按数字方式进行编辑和制作母带。

AC(Alternating Current)
交流电,指电流方向会作周期性改变的市电供电电源,英美多用60Hz,我国则采用50Hz的。

有源分频网络(Active Crossover)
指可将声频信号的频率组成分量(低音、中音及高音)在放大之前便进行分组而分别加到各自的扬声器系统去的一种有源电子网络。虽然有源分频网络多半均内装于超低音音箱之类的音箱之中,用以推动低音喇叭,但在多路系统中,也可单独使用有源分频网络。

ATRAC
指自适应变换声学编码。系一种由日本索尼公司在其推出的MD磁光盘录音机中所采用的低比特率数据压缩编码技术。

发烧友(Audiophile)
指对音响技术特别偏爱的那些人。

带宽(Bandwidth)
指一段频率范围,对于音频录音说来,带宽乃指声系统或录音装置所能包容的乐队演出或独唱演员演唱的频率响应范围;而对家庭声音重放装置说来,带宽则指系统重放时能“听到”的频率范围,通常在20Hz或30Hz到15kHz或20kHz的范围内。

双极式音箱(Bipolar Loudspeaker)
指发声单元分别指向音箱前方和后方且同相馈送信号的那种音箱装置。由于推动的信号为同相位的,故声信号不会有反相位的抵消,侧向的声辐射也不会有急剧地衰减。双极式音箱通常需摆放在离前墙较远处,以便让其后向指向的声波能有适当的反射。

连接电缆(Cables)
指讯号线或喇叭线,通常用导线的含铜量的纯度来表示导线的好坏,如6N便表示此导线的含铜量已达百分之99.99997。性能好的喇叭线多由多芯线组成,也有用单根或几根口径粗的铜线的。在有方向性的喇叭线上更标以箭头,指示从功放到音箱的接线方向,有些讯号线上也标有箭头,用于指示从信号源到功放的接线方向。

DAB(Digital Audio Broadcasting)
指数字音频广播。不论是调频(FM)还是调幅(AM)广播,皆为数字立体声,英国BBC电台正在某些地区试播,我国近年来也在广东、北京等地开始试播。DAB需用专门的接收机(收音机)来收听。

DAC(数模变换器,也称解码器)
指将接通/断开的脉冲信号变换为模拟声信号的数模(D/A)变换器。在CD唱机内均已装有DAC,但外装的DAC可让CD唱机或其它数字播放机音质升级。

DAT(数字音频磁带机)
Digital Audio Tape的缩写。指主要用于专业录音的一种数字录音装置,采用了同录像机(VCR)相似的旋转磁头。

数据压缩(Data Reduction)
指设法减少存储音乐所需要的数据量的一种技术。日本索尼公司在其MD磁光盘录音机中即采用了ATRAC压缩编码技术,而荷兰飞利浦公司则在其开发的DCC数字盒式磁带机中采用了类似的PASC(精确自适应子带编码)技术。此二种方法皆系采用数据压缩的方法来设法去掉那些人耳所听不到的数据。

DCC(Digital Compact Cassette)
由荷兰飞利浦公司开发的一种家庭用数字盒式磁带录音机,音质听起来已跟CD唱机的接近,但使用上不甚方便。由于与索尼公司的MD相互竞争而以失败告终,目前已逐渐在市场上消失。

DDD
指CD唱片的录音、编辑和母带制作均采用了数字处理的方式。

dB(分贝)
测量声压变化的单位,当有1dB的变化时,便能听出来差别,而在有+10dB的增加时,声音的响度将会加倍。

数码输出(Digital Output)
指可用外附的DAC来进行存贮或处理的数字信号输出,可以是电信号输出也可以是光学(光纤)输出。

偶极式音箱(Dipolar Loudspeaker)
跟双极式音箱在构造上相同,但前向及后向喇叭反相馈以信号,因此其声辐射图形呈倒“8"字形。多用作环绕声音箱。THX推荐环绕声音箱选用偶极式。

失真(Distortion)
指不需要的信号或是由设备所添加的对信号所产生的那些改变。

DVD
指用作家庭娱乐用的一种视频光盘。DVD碟片需用DVD播放机来播放。声像将在配有相应硬件的**电的荧屏或配装有DVD-ROM的台式计算机的监视器上显示。

DVD-ROM
指与CD-ROM相类似,但比CD-ROM更好的只读光盘,专供电脑使用,DVD-ROM可以有不同的存贮容量,单面单层的4.7GB和双层双面的17GB。

DVD-Audio
DVD音频唱片,目前为1.0版本,以24bit/192kHz为标准。目前尚另有一些按DVD-Video(DVD-视频)制作的音乐DVD碟,但与DVD-Audio不是一码事。

DVD-R
DVD家族中的一员,为可一次写入多次读出数据的DVD,DVD-R可以是单层的(3.95GB),也可以是双层的(7.9GB)。

DVD-RW
由日本索尼公司和荷兰飞利浦公司及美国HP公司联合推出的一种存贮容量为3GB的可擦除和可重写的DVD光盘,与DVD-RAM类似。目前尚在研制容量达12GB,从而可录入5小时电视节目的DVD-RW。

DVD-RAM
供计算机专用的一种可擦除可重写的DVD光盘,规定的存贮容量为2.6GB(单层)和5.2GB(双层)。

Divx
由美国Circuit City公司推出的一种租赁DVD碟片的特殊方式,一次性付款后,可连续观看48小时并可不退回,但再看得另行付费。

静电扬声器(Electrostatic Speaker)
指用高电压产生的电场力去推动薄而轻的振膜从而发声的那类扬声器。

颤动(Fluffer)
指录音磁带或唱片因转速有快速的变化而使音调产生起伏的现象,多由运转不灵所引起。

频率(Frequency)
通常将频率高的声音称为高音,将频率低的称为低音,可听的声频范围在16Hz到20kHz之间。

前端(Front End)
多指声频系统中的信号源,如LP密纹慢转唱机或CD唱机,有时也指调谐器(收音头)中处理从无线接收到的信号的前级。

赫兹(Herz)
频率的单位,1赫兹表示信号每秒有一次周期性的变化。

家庭影院(Home Theater System)
家庭影院装置系一种性能优异的视听器材的组合,它用来在家里营造出类似于在影剧院中观看演出时的那种声画感受。虽然目前大多数的影视器材,尤其是电视机的画质还不完全理想,但在投入一定数额的财力后,却可在音频方面获得甚为良好的音响效果。

MD机(Minidisc)
日本索尼公司推出的一种可录音74分钟,形状与计算机软盘相似,而尺寸为64mm的磁光盘机,MD磁光盘有预录型和可录型两类。

独立单声道功放(monobloc)
指完全独立的单声道功率放大器,因此,双声道立体声系统得用二台这种单独的功放。其好处是通道间完全没有交连之类干拢。

动圈式(MC)唱头
这种唱头将相对于固定磁铁作运动,以产生信号,不过输出比动磁(MM)式唱头的低些。

动磁式(MM)唱头
指相对于固定线圈作运动以产生信号的小型磁铁式唱头。

丽音(Nicam)
指音质与CD相当的一种电视伴音播送程式。

欧姆(Ohm)
对电流所产生的阻力的计量单位,音箱的阻抗值便是用欧姆来测量的。通常,音箱的阻抗越低,便越难于推动。

过取样(Oversampling)
用于DAC系统,当将取样频率升高时,转换电路的工作便更易于进行,且辅助电路也更易于滤去那些不需要的信号。

无源(Passive)
指那些不会将信号予以放大且引入的失真也极小的电路或器件。

唱头放大器(Phono amplifier)
由于LP唱机的唱头输出的信号电平要比CD唱机和磁带录音机的输出为低,因此,需要加一级专门的多半带有频率均衡的前级放大器,即唱头放大器。过去许多前置放大器或合并式功放中皆专门设有这样的放大器,但因LP逐渐退出市场,目前的放大器中已少备有这样的输入级。

量化(Quantization)
指数字声频信号中,用来表现各种不同幅度电平可能值的那些数字。

取样率(Sampling rate)
指数字录音机或播放机对信号取样的快慢程度,象CD唱机、DCC数字录音机和MD磁光盘机的取样率便选定为44.1kHz,即每秒44100个取样,而DAT数字录音机的取样率则选为48kHz或44.1kHz,DAB数字音频广播则采用32kHz的取样率。取样率决定了数字系统所能记录的最高频率,因此,目前正在研究高取样率的方式。如日本先锋公司正在开展的将取样率提高到96kHz的系统。另外,DVD-Audio也采用了96kHz的高取样率。

屏蔽(Shielding)
指为使导线或设备能与干扰隔开而采取的一些措施。

超低音音箱(Subwoofer)
指用于重放那些深沉的而由普通小型音箱所无法予以重放出来的低频段的特制音箱。

唱臂(Tonearm)
为唱机的一部分,其上装有唱头。

瞬态(Transient)
指乐曲(特别是打击乐)中那些短暂而有爆发性的声音,通常,这些声音是难于准确重放出来的。

三线分音(推动)(Triamping/Triwiring)
指与双线分音(biwiring)及双功放推动(biamping)相类似的一种功放与音箱的连接方式,不过此时需使用三对喇叭线/或三台功放,而且仅适用于三分频并带相应输入端子的音箱。

抖晃(Wow)
指录音机或录音座转速的缓慢变化所导致产生的不稳定的畸形声音。
AAD
指录音及后期制作皆为模拟(A)方式,而只有制片使用数字(D)方式的CD唱片制作。

A/B试听比较(A/B comparison)
指对两种不同的音乐重放方式进行的反复试听比较。

绝对极性(absolute polarity)
在用绝对极性正确的音响系统播放绝对极性正确的录音制品时,音箱所产生的正向声压便会和原始声音的正向声压一致。绝对极性不对时,便会有180°的相位差。对于有些乐器,有些人是能听出绝对极性的正确与否的。

电源净化器(AC line-conditioner)
指专门用来滤去交流供电电源中的噪声和防止音响器材受到电压峰值和浪涌损害的一种音响辅助器材。有些电源净化器甚至还可用来防止闪电的损伤。其实,电源净化器便是一种特别设计和制作的滤波器。

吸声材料(acoustic absorbed)
指任何一种能够吸收声波的材料,比如地毯、窗帘以及盖以厚实布套的家俱等等。

声扩散器(acoustic diffuser)
指任何能够扩散声波的材料或器件。

声反馈(acoustic feedback)
音箱发出的声音会使LP唱盘、话筒等拾音设备产生振动,此振动又被变换为电信号,并再次由音箱重放出来。在这种反馈过程中,振动因自身的反馈而会越来越加强。会场中的扩音设备因音量过大而发出的啸叫,便是这种声反馈。

吸声板(acoustic panel absorber)
指利用隔板作用来吸收从低频到中频的一种吸声器材。当有声波射到吸声板上时,吸声板便会振动,从而将声能变换为板中小部分的热能。

声学(acoustics)
指专门研究声音的一门科学。也用于指听音场所对声音的吸收反射特性,如“这间听音室的声学特性良好”。

交流同步电机(AC synchronous)
指转速由所加交流电的频率确定的那类电动机。大多用于皮带传动的电唱盘中。

AC-3
杜比数字(DD)5.1声道数字环绕声格式原先的叫法。

有源分频网络(active crossover)
指可将声频信号中的低频、中频和高频在放大之前便加以分割而分别加到各自的发音单元去的一种有源电子电路。虽然有源分频网络多用于超低音音箱中,但在多声道系统中,也可单独使用有源分频网络。

有源超低音音箱(active subwoofer)
指专门用于重放低频、并由内置功率放大器来驱动的那类音箱。

ADD
指CD唱片按模拟方式录音(A),而编辑和制片则均采用数字(D)方式。

模拟/数字变换器(ADC)
将模拟信号变换为数字信号的电路。

邻台选择性(adjacent-channel selectivity)
指接收调谐器能够选择所欲收听的电台并抑止邻近电台干扰的能力。

隔台选择(alternate-channel selectivity)
指接收调谐器能够抑止与所欲接收的电台相隔为二个台的其它电台的干扰的能力。

AES/EBU数字接口(AES/EBU interface)
一种传送数字音频信号的专业接口,AES/EBU信号线为使用XLR插头的平衡传输线。此外,也在某些消费电子产品中使用。是根据美国AES(声频工程协会)和EBU(欧洲广播联盟)来命名的。

逼人感(aggressive)
用于表示象要把音乐给抛投到聆听者面前的那种前推型演出的声学术语。

空气感(air)
用于表示高音的开阔,或是声场中在乐器之间有空间间隔的声学术语。此时,高频响应可延伸到15kHz-20kHz。反义词有“灰暗(dull)”和“厚重(thick)”。

气悬式唱臂(air-bearing tonearm)
指LP电唱盘的唱臂系用空气垫来支撑的一种唱臂。

气悬式电唱盘(air-bearing turntable)
指唱盘系由空气垫来托起的那种唱盘。

环绕感(ambience)
也称包围感。指电影伴音所产生的那种有一定规模和空间的包围感。通常是由环绕音箱来营造的。

安培(ampere)
电流的计量单位,用A表示。

解析(analytical)
指音响器材能巨细无遗的再现录音制品中的每一细节,但却用的是错误的方式,此种解析方式极缺乏音乐味。

模拟(analog)
指模拟信号的电压变化是对声波的一种模拟,也即电压会随原有声学波形而连续的变化。与在二进位中用0和1来表示的音频或视频信号的数字信号相对。

图像变形(anamorphic)
指影片或视频的宽屏幕图像在水平方向上用透镜或数字处理的方法加以“压窄”,以便能适应于标准的4∶3的幅形比。重放时,则通过“反压窄”将图像原有的幅形比予以恢复。图像变形的格式可在不牺牲分辨率的情况下,提供正确的幅形比。

消声(anechoic)
字面上讲便是“无回波”的意思。

消声室(anechoic chamber)
指一间没有反射的房间。在消声室的墙壁上均铺设得有吸声性能良好的吸声材料。因此,室内便不会有声波的反射。消声室是专门用来测试音箱、喇叭单元等。

清晰(articulate)
指表示音响器材能够清晰的分辨音调的声学术语。

防滑调整(anti-state adjustment)
指加装在唱臂上用于调整加在唱臂上的力,从而抵消唱臂会自然内侧滑动的倾向。

幅形比(aspect ratio)
也称宽高比,即显示荧屏上画面的宽度与高度的比值。标准电视的幅形比为4∶3(1.33∶1),而宽屏幕的电视以及HDTV高清晰度电视的幅形比则为16∶9(1.78∶1)。

ATRAC
指自适应变换声学编码(adaptive transform acoustic coding),系日本索尼公司在其推出的MD磁光盘机中采用的一种低比特率数据压缩编码技术。

音响爱好者(audiophile)
俗称“音响迷”或“发烧友”,指对重放音乐的音质极为看重的一些人。。

音响狂(audiophile nervosa)
指那些总在不停地捣鼓音响器材而不大能尽情去欣赏音乐一味只对音响痴迷的人。

A/V
为Audio(音响)与Video(视频)的缩写,指兼有视听特性的那些影音产品。

A/V输入(A/V input)
指既设置得有音频又设置有视频插座的A/V功放接收机或A/V前置放大器的输入端。

A/V回路(A/V loop)
指所用A/V功放接收机和A/V前置放大器上安装的那些A/V输入与A/V输出对,系用于跟既能录音又能播放音频和视频信号的A/V器材连接的。比如,一台录像机便能跟A/V功放接收机或A/V前置放大器的A/V回路连接。

A/V前置放大器(A/V preamplifier)
也称“A/V控制器”,是用来控制音量,选择节目源和完成环绕声解码功放的一种音响器材。

A/V前置放大器/调谐器(A/V preamplifier/turner)
指在同一机箱内装有AM(调幅)或FM(调频)接收调谐器的A/V前置放大器。

A/V功放接收机(A/V receiver)
为家庭影院系统的心脏部分。负责接收由节目源送来的信号,选择需要观看和聆听的信号,控制重放的音量,完成环绕声解码,收听电台节目,并将选定的信号予以放大,以便能推动家庭影院的成套音箱。也称为“环绕声接收机”。

方位角(azimuth)
在磁带录音机中指录放磁头和磁带行进方向之间的夹角,理想时应为90°;在LP电唱盘中则指针臂同唱片表面之间的角度。

障板(baffle)
指在上边装有一些发音单元的音箱的前面板。

平衡(balance)
指在音频频谱的高段和低段之间在相对响度上所存在的客观关系;也指双声道立体声左声道和右声道之间的信号的相同(平衡)。

平衡连接(balanced connection)
指音响器材间的一种连接方式,在单根电缆中有3根导线,一根用来传送音频信号,另一根用于传送极性相反的音频信号,而另一根则为地线。

香蕉插座(banana jack)
指装于音箱和功率放大器上用于和音箱线的香蕉插头连接的一种小型圆状插座。

香蕉插头(banana plug)
普遍装于音箱线两端的供插入香蕉插座的一种插头。

带宽(band width)
指音响装置能够处理或通过的一段频率范围。比方说,杜比环绕声的环绕声道的带宽便是100Hz-7kHz。环绕声道只通过频率在100Hz(低音)和7kHz(高音的低段)之间的频率。人耳能听到的频率范围为20Hz-20kHz。在谈到电气或声学器材的带宽时,往往指-3dB之间的频率范围。

低音(bass)
指在音频低段的声音,通常低于500Hz(另一说则指低于160Hz)。

低频延伸(bass extension)
指音响器材所能重放的最低频率。系用于测定在重放低音时音响系统或音箱所能下潜到什么程度的尺度。比方说,小型超低音音箱的低频延伸可以到40Hz,而大型超低音音箱则下潜到16Hz。

低音管理(bass management)
指A/V功放接收机或A/V前置放大器中的综合控制电路,系用于确定应该给相应的音箱送去多少低频信号。

倒相式音箱(bass reflex)
也称倒相式开孔箱,系在音箱面板上开有倒相孔(槽)的一类音箱。由于开有孔,箱内的声音便可以辐射到外面来。倒相式音箱比密闭式音箱的低频延伸要好些,但低音往往不那么结实紧凑。比较“无限障板”(infinite baffle)

双路功放推动(bi-amping)
指用两台功率放大器去推动同一音箱的一种特殊连接方式,系用一台功率放大器去推动低音单元;另用一台功率放大器去推动中音和高音单元。

大屏幕(big screen)
指直观式彩电或背投式投影电视中的大屏幕。通常,屏幕的对角线尺寸大都在40英寸以上。

特制立体声录音(binaural recording)
指有意将录音话筒装在仿真人头的耳通道内的一种特殊录音方式。由于仿真人头的物理结构,在录音中将包含有一些特别的空间信息。当用耳机去听这类录音制品时,便会产生不同于真实情况但又甚为奇妙的三维空间感。

接线柱(binding post)
指装于功率放大器和音箱上专供与音箱线连接的接线端子。

双极式音箱(bipolar speaker)
指向前和向后等同时辐射声波的一类音箱。和偶极式音箱不同,双极式音箱向前和向后辐射的声波是同相的。

双极晶体管(bipolar transistor)
指在音频电路中使用得非常普遍的一种晶体管。双极则源于电流系在两种半导体材料中流过的关系。双极晶体管根据工作电压的极性而可分为NPN型或PNP型。

比特(bit)
二进制数字的基本单位。通常取0或1两种状态之一。比特数越多,表达摸拟信号就越为精确,对音频信号的还原也越好。

比特率(bit rate)
指数字音频或数字视频信号每秒所存贮或传送的比特数。例如,CD光盘每一声道的比特率为705600kbs,而杜比数字(DD)的5.1声道的比特率则为384kbs。高些的比特率往往意味着可以获得更好些的音质。

双线分音(bi-wiring)
指对每一支音箱皆用二组音箱线去连接的一种接线方式。用一组(一对)音箱线去跟音箱中的低音单元输入连接;而另一组音箱线则跟音箱的高音单元连接。只有那些专门设有两对输入端子的音箱才能按双线分音连接。

发飘(blanketed)
指高音不足,尤似在音箱前边悬挂了张毛毯之类吸声材料而将声音给吸得空虚了。

黑电平(baack level)
指在经过一定校准的显示装置上,没有一行光亮输出的视频信号电平。

乏力(bleached)
用于表示那些特别注重器乐高次谐波而不大注意低次谐波和基频的那类音响器材的发声特性的声学术语。苍白的声音听来会显得过于明亮,单薄而缺乏温暖感。

空气感(bloom)
用于表示在乐器的声像四周有空气环绕的声学术语。

轰隆声(bloomy)
指在125Hz左右的低音过重,特别是在相当宽的一段频率范围内。系由于对低频或低频谐振的阻尼不够所引起。

冒牌货(boutique brand)
指那些表面上看似乎是high-end的音响,但实际上却只是虚有其表而机箱内皆装以劣质元器件的伪劣产品。

渲染(bloated)
指250Hz一带的低音中段过强。对低频以及低频的谐振阻尼不够。参看“过粗”(tubby)。

含混(blurred)
指瞬态响应差,立体声声像模糊,凝聚欠佳。

闷声(boxy)
指听到的音乐像从封闭的箱子中发出来的而有些共鸣。有时则指在250-500Hz一段有些过强。

煲机(break-in)
指新买回的音响器材得通电一段时间后才会让重放的音质变好。

桥接(bridging)
指为增加输出功率而将功率放大器和音箱作一种特别的连接。桥接便是将双声道的立体声放大器改接为单路的功率放大器。由其中一路放大器去负责放大波形的正半周,而由另一路去放大波形的负半周,音箱则像两路放大器通道之间的“桥”。桥接时需要用二台同样的双声道立体声放大器。

明亮(bright)
指突出4kHz-8kHz的高频段,此时谐波相对强于基波。明亮本身并没什么问题,现场演奏的音乐会皆有明亮的声音,问题是明亮得掌握好分寸,过于明亮(甚至啸叫)便让人讨厌。

辉度(brightness)
对于视频则专指视频显示器画面上所产生的光量。

辉亮信号(brightness signal)
用"Y"表示,视频信号的辉亮信号包含所有的显示信息,彩色视频信号则为亮度和色度信号的综合。

尖剌(brittle)
用于表示使得乐器的音色听来刺耳的中频或高频的声特性的声学术语。

缓冲(buffer)
指用于将音响或电路级加以隔开的电路。前置放大器便是音源和功率放大器之间的缓冲,因为前置放大器为音源减轻了推动功率放大器的负担。

直通试听法(bypass test)
为一种对音响器材进行试听的方法。此时将被测试的音响器材或是接入或是不接入信号的行程中,从而可对其声特性作出评判。

校正(calibration)
指为使音响或A/V影视器材的工作能够正常而进行的精确调整。在音响系统中,校正包括调定各个声道的电平;而在视频装置中,校正便是调好色彩、亮度、色度、对比度及其它参数。

针臂(cantilever)
指由LP电唱盘的唱头端伸出并在其上边装有唱针的细管。

容抗(capacitive reactance)
指电容器所呈现的阻止低频通过但却让高频得以通过的一种特性。容抗使电容器成为一种和频率有依从关系的阻抗。正是利用电容器的容抗才将电容器接在高音单元上,让高音通过而不让低音通过。

电容器(capacitor)
一种存贮电荷的电子元器件。在功率放大器中的存贮电容器系用于存贮能量;而在直流供电电源中的滤波电容器,则是用来滤去交流成分的;在放大器电路中的耦合电容器则是用来通过交流的音频信号和隔断直流的。

俘获比(capture ratio)
为接收调谐器的技术指标。指在调谐器锁定一个信号较强的电台而抑止一个信号弱些的电台之前,所需的两个电台信号强度之差的分贝值。俘获比越低,调谐器的性能便越好。

唱头消磁器(cartridge demagnetizer)
指专门用于消除唱头内的金属部分的杂散磁场的一种器材。

CAV LD激光影碟(CAV laserdisc)
指按恒角速度(CAV)录制的LD影碟。不论激光拾取器在什么位置上读取信号,影碟将始终以恒速旋转。也称为“标准格式”的LD影碟。其每面可以录30分钟的节目。参看“恒线速” (CLV)。

CD激光唱片(compact disc)
指由日本索尼公司和荷兰飞利浦公司联合研制成的一种直径12cm(个别为8cm)可录74分钟音乐的光盘。

CD-R可录光盘
(CD Recordable)
指可以录入数字音频的光盘。CD-R为一次录入的光盘。录入后便无法抹掉。

CD-ROM只读型光盘
指用于存储计算机数据的一种只读型光盘。

CD-RW可录可抹光盘(CD-Rewritable)
一种可录入可抹掉而反复重录的CD光盘。但现有大多数的CD唱机却是无法用于播放CD-RW光盘的。

中心通道(center channel)
在多声道的音响系统中,摆放在观看室的中间,并位于左右前置音箱当中的中置音箱便是用于重放中心通道中的信息的。在中心通道中几乎皆为影片中的对白。

中心通道模式(center-channel mode)
指A/V功放接收机和A/V前置放大器的中心通道的工作设置方式。

中置音箱(center-channel speaker)
指家庭影院系统中装于视频监视器的顶部,下面或后面的一种音箱。是用于重放中心通道送来的人声对白之类信息以及其它同荧屏上的动作有关的一些声音。

消费电子产品大展(CES)
指每年一度于年初在美国拉斯维加斯举办的国际消费电子产品大展。

通道平衡(channel balance)
指音响系统中或个别音响器材中左和右声道的相对电平或音量。也用于表示杜比编码信号中左和右信号的相对差值。为了获得最好的杜比解码效果,有些A/V功放接收机和A/V前置放大器还可以对通道平衡进行调整。

通道隔离(channel separation)
系用于衡量一个声道跟其它声道之间的隔离程度的尺度。在家庭影院系统中,当通道隔离不够时,一个声道中的声音便会“串入”另一个声道。比较典型的例子便是杜比环绕声中,前置主声道中的声音会“串入”环绕声道。声道隔离好时,声像定位便会更为准确。

胸音(chesty)
指音箱的一种声染色,就像歌唱家因胸腔过大而放声洪量的那种声音。系由于在125~250Hz一段的低频响应上有凸起所引起的。

色度(chrominance或chroma)
指视频信号的彩色部分。色度信号中包含有色彩和色调信息,但却没有亮度信息。

噗嗤声(chufing)
指倒相式音箱在以高电平重放低音时所发出的那种噗嗤声。原因是此时有大量的空气在音箱开孔处通过。

甲类放大(class-A)
也称A类放大。为放大器的一种工作状态。此时晶体管或电子管放大器将会对整个的音频信号进行放大。

乙类放大(class-B)
也称B类放大。为放大器的一种工作状态。此时一路晶体管或电子管放大器将会放大音频信号的正半部分,而另一路晶体管或电子管放大器则放大信号的负半部分。

甲乙类放大(class AB)
也称为AB类放大。放大器的一种工作状态。此时放大器的输出级在输出功率为低电平时便按甲类放大状态,而在输出功率为高电平时便转换为乙类放大。

丁类放大(class D)
也称D类放大或数字式放大器。系利用极高频率的转换开关电路来放大音频信号的。具有效率高,体积小的优点。许多功率高达1000W的这类数字式放大器,体积只不过像盒VHS录像带那么大。这类放大器不适宜于用作宽频带的放大器,但在有源超低音音箱中却有较多的应用。

限幅(clipping)
当要求放大器输出超过其所允许的输出功率时,便会使输出的音频波形的顶部和底部变得平坦。就像将峰值给削平了似的。限幅会引入大量的失真。让人在音乐的峰值时听到有嘎吱嘎吱的响声。

封闭(close-in)
指声音的不够开阔,不大柔和和缺少空气感及细节。多因在频率高于10kHz时有了衰减的缘故。

CLV LD激光影碟(CLV laserdisc)
指按恒定线速度录制的LD激光影碟。取决于激光拾取器在碟片上的读取位置,LD碟片的转速将会改变。当激光拾取器在碟片外沿读取时,LD影碟的转速相当对较慢;当拾取器沿碟片内径读取时,转速便会加快。因之,从激光拾取器看来,线速度系保持不变的。也称为“延长播放”影碟,因为碟片的单面便可存贮1个小时的视频节目。

同轴电缆(coaxial Cable)
指一种内部的导体被隔离层的编织体所包围的一种电缆。

同轴数字输出(coaxial digital output)
指在CD机、DVD机等数字录音源设备上安装的用于输出数字音频的RCA插座。可以用同轴数字信号线来跟其它音响器材连接。

同轴发音单元(coaxial driver)
指将一个发音单元(通常为高音单元)装在另一发音单元(通常为中音单元)内部的那类扬声器。

编码正交频分复用(COFDM)
原文为 coded orthogonal frequency division multiplex,系一种信道编码和调制的方法。在欧洲,主要用于DTV数字电视和DAB数字音频广播。用于将相邻的每部分信号尽可能的分离开来,并分别在可多达1536个离散的频率上传送,因而可减少传输差错和多径传波之类干扰。

相参性(coherence)
指对音乐能够有一总体感觉而不是由许多单独部分所组成的那种感受。

声染色(coloration)
指在音响系统中,由某一音响器材所引起的声音的改变。有声染色的音箱便不能精确地重放出加给音箱的声信号。比如,有声染色的音箱可能会重放出过多的低音,而在高音方面则有所欠缺。

梳状滤波(comb filtering)
指在频率响应上出现的一系列相间的深深的峰值和谷值的现象。通常,当直达声和经听音室内音箱两侧的侧墙所反射而稍许有些延迟的反射声合加在一起时,便会产生这种梳状滤波。

共模抑止(common-mode rejection)
当将平衡信号加到差分放大器时,便只将平衡信号之间的相位差给放大了。任何两个相位共同的噪声(共模噪声)皆被差分放大器所抑止.

  音响知识完全手册
音箱是将电信号还原成声音信号的一种装置,还原真实性将作为评价音箱性能的重要标准。有源音箱就是带有功率放大器(即功放)的音箱系统。把功率放大器和扬声器发声系统做成一体,可直接与一般的音源(如随身听、CD机、影碟机、录像机等)搭配,构成一套完整的音响组合。有了有源音箱,就无需另购功率放大器,不再为合理选配功放、音箱而发愁,操作简便,其极高的性能价格比,为工薪阶层所普遍接受。
按照发声原理及内部结构不同,音箱可分为倒相式、密闭式、平板式、号角式、迷宫式等几种类型,其中最主要的形式是密闭式和倒相式。密闭式音箱就是在封闭的箱体上装上扬声器,效率比较低;而倒相式音箱与它的不同之处就是在前面或后面板上装有圆形的倒相孔。它是按照赫姆霍兹共振器的原理工作的,优点是灵敏度高、能承受的功率较大和动态范围广。因为扬声器后背的声波还要从导相孔放出,所以其效率也高于密闭箱。而且同一只扬声器装在合适的倒相箱中会比装在同体积的密闭箱中所得到的低频声压要高出3dB,也就是有益于低频部分的表现,所以这也是倒相箱得以广泛流行的重要原因。
2、功率

音箱音质的好坏和功率没有直接的关系。功率决定的是音箱所能发出的最大声强,感觉上就是音箱发出的声音能有多大的震撼力。根据国际标准,功率有两种标注方法:额定功率(RMS:正弦波均方根)与瞬间峰值功率(PMPO功率)。前者是指在额定范围内驱动一个8Ω扬声器规定了波形持续模拟信号,在有一定间隔并重复一定次数后,扬声器不发生任何损坏的最大电功率;后者是指扬声器短时间所能承受的最大功率。美国联邦贸易委员会于1974年规定了功率的定标标准:以两个声道驱动一个8Ω扬声器负载,在20~20000Hz范围内谐波失真小于1%时测得的有效瓦数,即为放大器的输出功率,其标示功率就是额定输出功率。通常商家为了迎合消费者心理,标出的是瞬间(峰值)功率,一般是额定功率的8倍左右。 试想同是采用PHILIPS的TDA1521功放芯片(最大的额定功率30W,THD=10%时),而某些产品上标称360W,甚至480WP.M.P.O.,这可能吗?有意义吗?所以在选购多媒体音箱时要以额定功率为准。音箱的功率由功率放大器芯片的功率和电源变压器的功率两者主要决定,考虑到其他一些因素,可以算出如果变压器的额定功率是100W的话,它实际能顺利带动的功放芯片的功率要在45W以下,所以通过算音箱变压器与功放的功率关系也可以验证音箱的实际额定功率是否能达到标称值。音箱的功率不是越大越好,适用就是最好的,对于普通家庭用户的20平米左右的房间来说,真正意义上的60W功率(指音箱的有效输出功率30W×2)是足够的了,但功放的储备功率越大越好,最好为实际输出功率的2倍以上。比如音箱输出为30W,则功放的能力最好大于60W,对于HiFi系统,驱动音箱的功放功率都很大。  

3、频率范围与频率响应

前者是指音响系统能够重放的最低有效回放频率与最高有效回放频率之间的范围;后者是指将一个以恒电压输出的音频信号与系统相连接时,音箱产生的声压随频率的变化而发生增大或衰减、相位随频率而发生变化的现象,这种声压和相位与频率的相关联的变化关系(变化量)称为频率响应,单位分贝(Db)。

音响系统的频率特性常用分贝刻度的纵坐标表示功率和用对数刻度的横坐标表示频率的频率响应曲线来描述。当声音功率比正常功率低3dB时,这个功率点称为频率响应的高频截止点和低频截止点。高频截止点与低频截止点之间的频率,即为该设备的频率响应;声压与相位滞后随频率变化的曲线分别叫作“幅频特性”和“相频特性”,合称“频率特性”。这是考察音箱性能优劣的一个重要指标,它与音箱的性能和价位有着直接的关系,其分贝值越小说明音箱的频响曲线越平坦、失真越小、性能越高。如:一音箱频响为60Hz~18kHz +/- 3dB。这两个概念有时并不区分,就叫作频响。

从理论上讲,20~20000Hz的频率响应足够了。低于20Hz的声音,虽听不到但人的其它感觉器官却能觉察,也就是能感觉到所谓的低音力度,因此为了完美地播放各种乐器和语言信号,放大器要实现高保真目标,才能将音调的各次谐波均重放出来。所以应将放大器的频带扩展,下限延伸到20Hz以下,上限应提高到20000Hz以上。对于信号源(收音头、录音座和激光唱机等)频率响应的表示方法有所不同。例如欧洲广播联盟规定的调频立体声广播的频率响应为40~15000Hz时十/—2dB,国际电工委员会对录音座规定的频率响应最低指标:40~12500Hz时十/—2.5十/—4.5dB(普通带),实际能达到的指标都明显高于此数值。CD机的频率响应上限为20000Hz,低频端可做到很低,只有几个赫兹,这是CD机放音质量好的原因之一。

但是,构成声音的谐波成分是非常复杂的,并非频率范围越宽声音就好听,不过这对于中低档的多媒体音箱来讲还是基本正确的。在标注频率响应中我们通常都会看到有“系统频响”和“放大器频响”这两个名词,要知道“系统频响”总是要比“放大器频响”的范围小,所以只标注“放大器频响”则没有任何意义,这只是用来蒙骗一些不知情的消费者的。现在的音箱厂家对系统频响普遍标注的范围过大,高频部分差的还不是很多,但在低音端标注的极为不真实,国外的名牌HiFi(高保真)音箱也不过标注4、50Hz左右,而国内两三百的木质普通音箱居然也敢标注这个数据,真是让人笑掉大牙了!所以敬告大家低频段声音一定要耳听为真,不要轻易相信宣传单上的数值。多媒体音箱中的音乐是以播放MP3或CD的音乐、歌曲、游戏的音效、背景音乐以及影片中的人声与环境音效为主的,这些声音是以中高音为多,所以在挑选多媒体音箱时应该更看中它在中高频段声音的表现能力,而不是低频段。若真的追求影院效果,那么一只够劲的低音炮绝对能够满足你的需求。

4、响度

声音的强弱称为强度,它由气压迅速变化的振幅(声压)大小决定。但人耳对强度的主观感觉与客观的实际强度并不一致,人们把对于强弱的主观感觉称为响度,其计量单位也为分贝(Db),它是根据1000Hz的声音在不同强度下的声压比值,取其常用对数值的 l/10而定的。取对数值的原因是由于强度与响度的增加不是成正比关系,而是真数与对数的关系!例如声音强度大到10倍时,听起来才响了一级(10dB),强度大到100倍时听起来才响了两级(20dB)。对于1000Hz的声音信号,人耳能感觉到的最低声压为2×10E-5Pa,把这一声压级定为0dB,当声压超过130dB时人耳将无法忍受,故人耳听觉的动态范围为0~130dB。

人对强度相等、频率不同声音感觉是不同的;声压级越高,人的听觉频率特性越平直;声压级越低,人的听觉频率范围越小;频率 f<16~20Hz以及 f>18~20KHz的声音,不论声级多高,人耳都是听不到的。故人耳的听觉频率为20Hz~20KHz,这个频带叫音频或声频;不论声压高低,人耳对3KHz~5KHz频率的声音最为敏感。

大多数人对信号声级突变3dB以下时是感觉不出来的,因此对音响系统常以3dB作为允许的频率响应曲线变化范围。

5、失真度

有谐波失真、互调失真和瞬态失真之分。谐波失真是指声音回放中增加了原信号没有的高次谐波成分而导致的失真;互调失真影响到的主要是声音的音调方面;瞬态失真是因为扬声器具有一定的惯性质量存在,盆体的震动无法跟上瞬间变化的电信号的震动而导致的原信号与回放音色之间存在的差异。它在音箱与扬声器系统中则是更为重要的,直接影响到音质音色的还原程度的,所以这项指标与音箱的品质密切相关。这项常以百分数表示,数值越小表示失真度越小。普通多媒体音箱的失真度以小于0.5%为宜,而通常低音炮的失真度普遍较大,小于5%就可以接受了。

6、音箱的灵敏度(单位Db)

音箱的灵敏度每差3dB,输出的声压就相差一倍,一般以87 Db为中灵敏度,84 Db以下为低灵敏度,90 Db以上为高灵敏度。灵敏度的提高是以增加失真度为代价的,所以作为高保真音箱来讲,要保证音色的还原程度与再现能力就必须降低一些对灵敏度的要求。但不能反过来说,灵敏度高的音箱音质一定不好而低灵敏度的音箱一定就好。灵敏度低的音箱功放难以推动(要求功放的贮备功率较大)。所以灵敏度虽然是音箱的一个指标,但是它与音箱的音质音色无关。

7、阻抗

它是指扬声器输入信号的电压与电流的比值。音箱的输入阻抗一般分为高阻抗和低阻抗两类,高于16Ω的是高阻抗,低于8Ω的是低阻抗,音箱的标准阻抗是8Ω。在功放与输出功率相同的情况下,低阻抗的音箱可以获得较大的输出功率,但是阻抗太低了又会造成欠阻尼和低音劣化等现象。所以这项指标虽然与音箱的性能无关,但最好还是不要购买低阻抗的音箱,推荐值是标准的8Ω。耳机的阻抗一般是高阻抗的——32Ω很常见。功放的阻抗一般可标为等值阻抗,比如4Ω下130W的输出,大概相当于等值的80W的输出。有一个容易与之混淆的名词叫做“阻尼系数”,这是指扬声器阻抗除以放大器源的内阻,范围大约是25~1000。扬声器纸盆在电信号已经消失后还要振荡多次才能完全停止摆动,而线圈发出的电压产生电流和磁场可以阻止这种寄生运动,这就是阻尼。电流的幅度也就是阻尼的效果取决于此电流流经放大器输出级的内阻,这一电阻要远低于扬声器的额定阻抗,典型值为0.1Ω,但由于扬声器音圈的串联电阻和分频网络的串联电阻的存在,阻尼系数难以做到50。

8、信噪比

是指音箱回放的正常声音信号与无信号时噪声信号(功率)的比值。也用 Db表示。例如,某磁带录音座的信噪比为50dB,即输出信号功率比噪音功率大50dB。信噪比数值越高,噪音越小。国际电工委员会对信噪比的最低要求是前置放大器大于等于63dB,后级放大器大于等于86dB,合并式放大器大于等于63dB。合并式放大器信噪比的最佳值应大于90dB;收音头:调频立体声之50dB,实际上以达到70dB以上为佳;磁带录音座之56dB(普通带),但经杜比降噪后信噪比有很大提高。如经杜比 B降噪后的信噪比可达65dB,经杜比 C降噪后其信噪比可达72dB(以上均指普通带);CD机的信噪比可达90dB以上,高档的更可达l10dB以上。信噪比低时,小信号输入时噪音严重,整个音域的声音明显感觉是混浊不清,所以信噪比低于80dB的音箱不建议购买!而低音炮70 Db的低音炮同样原因不建议购买。

9、扬声器材质

低档塑料音箱因其箱体单薄、无法克服谐振,无音质可言(笨笨熊注:也不尽然,设计好的塑料音箱要远远好于劣质的木质音箱);木制音箱降低了箱体谐振所造成的音染,音质普遍好于塑料音箱。通常多媒体音箱都是双单元二分频设计,一个较小的扬声器负责中高音的输出,而另一个较大的扬声器负责中低音的输出。挑选音箱应考虑这两个喇叭的材质:多媒体有源音箱的高音单元现以软球顶为主(此外还有用于模拟音源的钛膜球顶等),它与数字音源相配合能减少高频信号的生硬感,给人以温柔、光滑、细腻的感觉。多媒体音箱现以质量较好的丝膜和成本较低的PV膜等软球顶的居多。低音单元它决定了音箱的声音的特点,选择起来相对重要一些,最常见的有以下几种:纸盆,又有敷胶纸盆、纸基羊毛盆、紧压制盆等几种,纸盆音色自然、廉价、较好的刚性、材质较轻灵敏度高,缺点是防潮性差、制造时一致性难以控制,但顶级HiFi系统中用纸盆制造的比比皆是,因为声音输出非常平均,还原性好;防弹布,有较宽的频响与较低的失真,是酷爱强劲低音者之首选,缺点是成本高、制作工艺复杂、灵敏度不高轻音乐效果不甚佳;羊毛编织盆,质地较软,它对柔和音乐与轻音乐的表现十分优异,但是低音效果不佳,缺乏力度与震撼力;PP(聚丙烯)盆,它广泛流行于高档音箱中,一致性好失真低,各方面表现都可圈可点。此外还有像纤维类振膜和复合材料振膜等由于价格高昂极少应用于普及型音箱中,就不谈了。扬声器尺寸自然是越大越好,大口径的低音扬声器能在低频部分有更好的表现,这是在选购之中可以挑选的。用高性能的扬声器制造的音箱意味着有更低的瞬态失真和更好的音质。普通多媒体音箱低音扬声器的喇叭多为3~5英寸之间。用高性能的扬声器制造的音箱也意味着有更低的瞬态失真和更好的音质。

10、音箱的结构与特点

音箱从结构形式上分,可以分为书架式和落地式,前者体积小巧、层次清晰、定位准确,但功率有限,低频段的延伸与量感不足,适于欣赏以高保真音乐为主的音乐爱好者,也是我们多媒体发烧友的首选;后者体积较大、承受功率也较大,低频的量感与弹性较强,善于表现滂沱的气势与强大的震撼力,但做得不好层次感与定位方面会略有欠缺。对于不同音乐的爱好者来讲,这也是在选购以前应该了解的重要内容。由于PC用家很少有具备放置大型落地箱的条件,所以小巧的桌面书架式音箱应该是多媒体有源音箱的首选。总的来说:只要功放模块设计合理,箱体越大,喇叭越大,声音越中听。

11、可扩展性

这是指音箱是否支持多声道同时输入,是否有接无源环绕音箱的输出接口,是否有USB输入功能等。低音炮能外接环绕音箱的个数也是衡量扩展性能的标准之一。普通多媒体音箱的接口主要有模拟接口和USB接口两种,其它如光纤接口还有创新专用的数字接口等不是非常多见,因此不多作介绍。

12、音效技术
硬件3D音效技术现在较为常见的有SRS、APX、 Spatializer 3D、 Q-SOUND、 Virtaul Dolby和 Ymersion等几种,它们虽各自实现的方法不同,但都能使人感觉到明显的三维声场效果,其中又以前三种更为常见。它们所应用的都是扩展立体声(Extended Stereo)理论,这是通过电路对声音信号进行附加处理,使听者感到声像方位扩展到了两音箱的外侧,以此进行声像扩展,使人有空间感和立体感,产生更为宽阔的立体声效果。此外还有两种音效增强技术:有源机电伺服技术(本质上利用了赫姆霍兹共振原理)、BBE高清晰高原音重放系统技术和“相位传真”技术,对改善音质也有一定效果。对于多媒体音箱来说,SRS和BBE两种技术比较容易实现效果很好,能有效提高音箱的表现能力。

13、音调
指具有一特定且通常是稳定音高的信号,通俗的讲是声音听来调子高低的程度。它主要取决于频率,还与声音强度有关。频率高的声音人耳的反应是音调高而频率低的声音人耳的反应是音调低。音调随频率(Hz)的变化基本上呈对数关系。不同的乐器演奏同样频率的音符,音色虽然不同,但它们的音调是相同的,也就是演奏声音的基频是相同的。

14、音色
对声音音质的感觉,也是一种声音区别于另一种声音的特征品质。不同的乐器在发同一音调时,它们的色可以迎然不同。这是由于它们的基频频率虽相同,但谐波成分相差甚大。故音色不但取决于基频,而且与基频成整倍数的谐波密切有关,这就使每种乐器和每个人有不同的音色。

15、动态范围
声音中最强与最弱的比值,用 Db表示。例如一个乐队的动态范围为90dB,这意味着最弱部分的功率比最响部分的低90dB。动态范围是功率之比,与声音的绝对水平无关。如前所述,人耳的动态范围从0到130dB。自然界各种声音的动态范围的变化也是很大的。一般语言信号大约只有20~45dB,有些交响乐的动态范围可达30~130dB或更高。但由于一些因素的限制,音响系统的动态范围很少能达到乐队的动态范围。录音装置的内在噪音决定了可能录制的最弱音,而系统的最大信号容量(失真水平)限制了最强的音。一般把声音信号的动态范围定为100dB,故音响设备的动态范围能做到100dB,就很好了。

16、总谐波失真(THD)
指音频信号源通过功率放大器时,由于非线性元件所引起的输出信号比输入信号多出的额外谐波成分。谐波失真是由于系统不是完全线性造成的,我们用新增加总谐波成份的均方根与原来信号有效值的百分比来表示。例如,一个放大器在输出10V的1000Hz时又加上 Lv的2000Hz,这时就有10%的二次谐波失真。所有附加谐波电平之和称为总谐波失真。一般说来,1000Hz频率处的总谐波失真最小,因此不少产品均以该频率的失真作为它的指标。但总谐波失真与频率有关,因此美国联邦贸易委员会于1974年规定,总谐波失真必须在20~20000Hz的全音频范围内测出,而且放大器的最大功率必须在负载为8欧扬声器、总谐波失真小于1%条件下测定。国际电工委员会规定的总谐波失真的最低要求为:前级放大器为0.5%,合并放大器小于等于0.7%,但实际上都可做到0.1%以下:FM立体声调谐器小于等于1.5%,实际上可做到0.5%以下;激光唱机更可做到0.01%以下。
由于测量失真度的现行方法是单一的正弦波,不能反映出放大器的全貌。实际的音乐信号是各种速率不同的复合波,其中包括速率转换、瞬态响应等动态指标。故高质量的放大器有时还注明互调失真、瞬态失真、瞬态互调失真等参数。(l)互调失真(IMD):将互调失真仪输出的125Hz与lkHz的简谐信号合成波,按4:1的幅值输入到被测量的放大器中,从额定负载上测出互调失真系数。
(2)瞬态失真(TIM):将方波信号输入到放大器后,其输出波形包络的保持能力来表达。如放大器的转换速率不够,则方波信号即会产生变形,而产生瞬态失真。主要反映在快速的音乐突变信号中,如打击乐器、钢琴、木琴等,如瞬态失真大,则清脆的乐音将变得含混不清。
(3)瞬态互调失真:将3.15kHz的方波信号与15kHz的正弦波信号按峰值振幅比4:1混合,经放大器后,新增加全部互调失真的产物有效值与原来正弦振幅的百分比。如放大器采用深度大回环负反馈,瞬态互调失真一般较大,具体反映出声音呆滞、生硬、无临场感;反之,则声音圆滑、细腻、自然。

17、立体声分离度
指双声道之间互相不干扰信号的能力、程度,也即隔离程度,通常用一条通道内的信号电平与泄漏到另一通道中去的电平之差表示。如果立体声分离度差,则立体感将被削弱。国际电工委员会规定的立体声分离度的最低指标, lKHz时大于等于40dB,实际以达到大干60dB为好;欧洲广播联盟规定的调频立体声广播的立体声分离度为>25dB,实际上能做到40dB以上。立体声通道平衡指的是左、右通道增益的差别,一般以左、右通道输出电平之间最大差值来表示。如果不平衡过大,立体声声像位置将产生偏离,该指标应小于1dB。

18、阻尼系数
是指放大器的额定负载(扬声器)阻抗与功率放大器实际阻抗的比值。阻尼系数大表示功率放大器的输出电阻小,阻尼系数是放大器在信号消失后控制扬声器锥体运动的能力。具有高阻尼系数的放大器,对于扬声器更象一个短路,在信号终止时能减小其振动。功率放大器的输出阻抗会直接影响扬声器系统的低频 Q值,从而影响系统的低频特性。扬声器系统的Q值不宜过高,一般在0.5~l范围内较好,功率放大器的输出阻抗是使低频 Q值上升的因素,所以一般希望功率放大器的输出阻抗小、阻尼系数大为好。阻尼系数一般在几十到几百之间,优质专业功率放大器的阻尼系数可高达200以上。

l9、等响度控制
其作用是低音量时提升高频和低频声。由于人耳对高频声、特别是低频声的听觉灵敏度差,要求在低音量时对高频和低频进行听觉补偿,即要求对低频有较大提升,对高频也有一定量的提升。换句话说,当音量减小时,信号中低频部分的减小较高频部分为少。等响度控制即满足此要求,等响度控制一般为8dB或10dB。

20、三维音场处理和环绕声
普通两只音箱为什么会使我们听到并不存在的好像是背后发出的声音呢?大家知道,立体电影就是眼睛产生的错觉而三维音场的产生离不开耳朵的错觉。种种硬件3D音效技术如SRS、虚拟杜比和软件3D技术如EAX、A3D等就是充分研究了人耳接受声响的原理后为降低成本而推出的新技术。本质上讲通过多音箱完成三维音场的效果比两只音箱虚拟出的声场好很多。所以环绕声应该以多音箱配置为主,它们的定位感和空间感强,下面我们来看看有哪几种真正的环绕声:

A 杜比定向逻辑(Dolby Pro-Logic)环绕声系统
4-2-4编码技术将左、中、 右和后侧四方面的音频信息经过编码记录在左右两个声道中; 放音时再通过解码器从左右声道中分解还原出原来这4个声道, 这4个声道通常称为:前置左声道、前置中间声道、前置右声道和后置环绕声道。 科学实验表明, 要获得身临其境的真实音响效果,必须在聆听者周围产生一个四面包围的声场环境,整个放声系统使用的声道数越多,聆听者的声场定位感就越强烈,身临其境的感受就越真实。根据目前一般家庭的视听环境,放声系统使用5个声道已能满足声场定位需要,因此,杜比定向逻辑环绕声系统大多使用5声道。从表面上看,5声道杜比定向逻辑环绕声功率放大器确实有5个功率输出端:前置左声道、中置声道、前置右声道、 环绕左声道(又称后置左声道)和环绕右声道(又称后置右声道),但杜比定向逻辑环绕声系统中解码器输出的环绕声信号其实是单声道的,5声道功率放大器中的左右两个环绕声道在功放内部是相互串联的

功放音箱搭配4要素

    功放与音箱配接四要素 功放与音箱配接讲究冷暖相宜、软硬适中,以实现整套器材还原音色呈中性,这仅是从艺术方面考虑。然而从技术方面考虑的要素有:   
一、功率匹配     
二、功率储备量匹配   
三、阻抗匹配     
四、阻尼系数的匹配   
如果我们在配接时认识到上述四点,可使所用器材的性能得到最大、最充分的发挥。     
功率匹配     为了达到高保真聆听的要求,额定功率应根据最佳聆听声压来确定。我们都有这样的感觉:音量小时、声音无力、单薄、动态出不来,无光泽、低频显著缺少、丰满度差,声音好像缩在里面出不来。音量合适时,声音自然、清晰、圆润、柔和丰满、有力、动态出得来。但音量过大时,声音生硬不柔和、毛糙、有扎耳根的感觉。因此重放声压级与声音质量有较大关系,规定听音区的声压级最好为80~85dB(A计权),我们可以从听音区到音箱的距离与音箱的特性灵敏度来计算音箱的额定功率与功放的额定功率。     
功率储备量匹配     
音箱:为了使其能承受节目信号中的猝发强脉冲的冲击而不至于损坏或失真。这里有一个经验值可参考:所选取的音箱标称额定功率应是经理论计算所得功率的三倍。     
功放:电子管功放和晶体管功放相比,所需的功率储备是不同的。这是因为:电子管功放的过荷曲线较平缓。对过荷的音乐信号巅峰,电子管功放并不明显产生削波现象,只是使颠峰的尖端变圆。这就是我们常说的柔性剪峰。而晶体管功放在过荷点后,非线性畸变迅速增加,对信号产生严重削波,它不是使颠峰变圆而是把它整齐割削平。有人用电阻、电感、电容组成的复合性阻抗模拟扬声器,对几种高品质的晶体管功放进行实际输出能力的测试。结果表明,在负载有相移的情况下,其中有一台标称100W的功放,在失真度1%时实际输出功率仅有5W!由此对于晶体管功放的储备量的选取:     
高保真功放:10倍     
民用高档功放:6~7倍     
民用中档功放:3~4倍     
而电子管功放则可以大大小于上述比值。     
     对于系统的平均声压级与最大声压级应留有多少余量,应视放送节目的内容、工作环境而定。这个冗余量最低10dB,对于现代的流行音乐、蹦迪等音乐,则需要留有20~25dB冗余量,这样就可使得音响系统安全,稳定地工作。     
阻抗匹配   
     它是指功放的额定输出阻抗,应与音箱的额定阻抗相一致。此时,功放处于最佳设计负载线状态,因此可以给出最大不失真功率,如果音箱的额定阻抗大于功放的额定输出阻抗,功放的实际输出功率将会小于额定输出功率。如果音箱的额定阻抗小于功放的额定输出阻抗,音响系统能工作,但功放有过载的危险,要求功放有完善的过流保护措施来解决,对电子管功放来讲阻抗匹配要求更严格。     
阻尼系数的匹配     
阻尼系数KD定义为:KD=功放额定输出阻抗(等于音箱额定阻抗)/功放输出内阻。 由于功放输出内阻实际上已成为音箱的电阻尼器件,KD值便决定了音箱所受的电阻尼量。KD值越大,电阻尼越重,当然功放的KD值并不是越大越好,KD值过大会使音箱电阻尼过重,以至使脉冲前沿建立时间增长,降低瞬态响应指标。因此在选取功放时不应片面追求大的KD值。作为家用高保真功放阻尼系数有一个经验值可供参考,最低要求:晶体管功放KD值大于或等于40,电子管功放KD值大于或等于6。       
      保证放音的稳态特性与瞬态特性良好的基本条件,应注意音箱的等效力学品质因素(Qm)与放大器阻尼系数(KD)的配合,这种配合需将音箱的馈线作音响系统整体的一部分来考虑。应使音箱的馈线等效电阻足够小,小到与音箱的额定阻抗相比可以忽略不计。其实音箱馈线的功率损失应小于0.5dB(约12%)即可达到这种配合。

功率放大器的回顾
     音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。回顾一下功率放大器的发展历程,对我们广大音响爱好者来说也许是一件饶有趣味的事情。
索引:
一、早期的晶体管功放
二、晶体管功放的发展和互调失真
三、功放输入级——差动与共射-共基
四、放大器的电源与甲类放大器
五、其他类型的放大器

一、早期的晶体管功放
   半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。
   早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的 OTL或OCL放大器不易寻到三个指标都满足要求的管于,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。“还是胆机规声”,这种看法的确事出有因。
二、晶体管功放的发展和互调失真
   随着半导体工艺的逐渐成熟,大电流、高耐压的晶体管品种日益增加,越来越多的功率放大器采用了无输出变压器的 OCL电路或 OTL电路(图一)。 最初的大功率 PNP管是锗管,而 NPN管是硅管,两者的特性差别非常显著,电路的 对称性很差,人们更多采用的是图二所示的准互补电路,通过小功率硅管 Q1与一只大功率的 NPN硅管 Q2复合,得到一只极性与PNP管类似的大功率管,降低了电路因对称性差而招至的失真。 到了六十年代末,大功率的 PNP硅管商品化的时候,互补对称电路才得到广泛的应用。元器件的进步使晶体管功率放大器的技术指标产生了质的飞跃,在主观音质评价方面,也改变了过去人们对晶体管功放的看法,无论是在厅堂扩音、电台节目制作还是家庭重放,晶体管功放都被大量地采用,首次在数量上以压倒性的优势超过了电子管功放。在商品化的晶体管扩音机中,相继出现了一些摧琛夺目的名机,如 JBL的 SA600, Marantz互补对称电路MOdel15等等。
   尽管电子管的拥护者仍大量存在,人们毕竟能够比较公正地看待晶体管放大器了,认为晶体管机频响宽阔,层次细腻,与电子管机比较起来有一种独特的舱力,而不是简单的谁取代谁的问题。
   瞬态互调失真的提出是认识上的一次飞跃七十年代,功率放大器的发展史中出现了一件最引人注目的事情,这就是瞬态互调失真 (Transient lntermodulation)及其测量方法的提出。1963年,芬兰 Helvar工厂的一名工程师在制作一台晶体管扩音机时,由于接线失误,使电路的负反馈量减少了,后来却意外地发现负反馈量减少后的音质非常好,客观技术指标较差,而更正错误以后的线路尽管技术指标提高了,音质反而比误接时明显下降。 这一现象引起了当时同一工厂的 Mr.Otala的重视,之后,他对此进行了悉心研究,于1970年首先发表丁关于晶体管功率放大器瞬态互调失真(TIM)的论文。至 1971年,Otala博士及其研究小组就 TIM失真理论发表的论文已经超过20篇,引起了电声界准互补电路人士的广泛反响。
   瞬态互调失真的大意是这样的:
   在直接耦合的晶体管放大电路中,为了得到很小的谐波失真度和宽阔平坦的频率响应,通常对整体电路施加深达40dB一60dB的负反馈,倘若在加负反馈前放大器的开环失真为10%,那么加上40dB的负反馈后,失真即可降低至0.1%,这是电子管功效难以做到的。 晶体管功放由于要施加40dB。60dB的负反馈,所以对一台增益要求为26dB的放大器,它的开环增益就要达到66、86dB。
如此高的增益之下引入深度负反馈,电路势必会产生自激振荡,因而需要进行相位补偿,一般是在推动级晶体管的集电极——基极之间接接一个小电容 C,破坏自激振荡的相位条件,形成所谓“滞后补偿”,
   当放大器输入端输入持续时间非常短的过渡性脉冲时,由于电容 C需要充电时间,所以推动管集电极电压要经过一段时间延迟方能达到最大值,见图四。显然,在电容 C充、放电期间,输出电压 V。将达不到应有的电压值,输入级也不可能得到应有的反馈电压 Vf,因而,在过渡脉冲通过输入级的瞬间,输入级将处于负.反馈失控状态,致使输入级严重过载,输出将严重削波(图三 a点),引起过渡脉冲瞬时失真(图五)。如果过渡脉冲波形上还叠加有正弦信号,输出端还会得到很多输入信号频谱不存在的互调频率成份,这就是 TIM失真。
   TIM失真和音乐信号也有密切关系,音量大、频率高的节目信号容易诱发 TIM失真。严重的 TIM失真反映在听感上类似高频交选失真,而较弱的 TIM失真给人以“金属声”的不快感觉,导致音质劣化。至今,音响界对于 TIM失真都还有争议,但这毕竟是人们认识的深化,它使后来放大器的设计思想发生了根本性的变化,即更加注重放大器的动态性能而不是仅仅满足于静态技术指标的提高。
三、功放输入级——差动与共射-共基
   对称和平衡是电路发展的方向对称和平衡也许是世上事物完美的标志之一。
音乐讲究各声部之间的乎衡与统一,美术以色彩搭配均衡、和谐为美,在服装设计中,常常采取看似不对称的设计,其实质也是为了取得视觉上的均衡。上面所说的都是艺术,对称和平衡给人一种安定、完美的感觉。有意思的是,在功率放大器中,对称和平衡也有类似的效果。
   最初采用对称设计的例子要算互补对称电路了,一上一下的两只异极性晶体管作推挽输出,不仅可以免除笨重的输出变压器,而且电路的偶次谐波失真在推挽的过程中被抵消了,保真度有了很大提高。稍后,人们从运算放大器的设计中得到启迪,将左右对称的差动式电路用于功率放木器的输入级,电路的稳定性和线性都得到改善,这时的电路结构如图六所示,这一结构直至今天都还有人采用。 如果以现代的眼光来审评,这一电路是显得过时了一点。电路的主要缺陷在于电压推动级,因为 Q1承担了提供电压增益的主要任务,必然是开环失真很大,频带狭窄。此图六 典型的 OCL放大器外,单管放大的过载能力也很差,这一系列的缺点是不利于电路的动态性能的。围绕着改进电压推动级的性能,人们相继提出了多种结构,共射——共基电路就是一个典型的例子。
   共射——共基电路又叫“猩尔曼”电路,它原先是高频电路中广为采用的结构,但用于音频电路中同样可以发挥出色的性能。首先是它的宽频响,由于共基放大管 Qs非常低的输入阻抗,使 Q,丧失了电压增益,弥勒效应的影响就非常微弱。 宽频响的推动级拉开了与输入级极点的距离,相位补偿变得很’容易,而且电容 C的容量可以大大减小,这对于改善 TIM失真是很有利的。 第二个优点是电路的高度线性:共基极电路的输出特性也可以清楚地显示出这一点,有人作过测试,共射一共基电路的失真度比单管共射电路要低一个数量级。
   依然是一种不平衡的设计,这一限制来源于输入级。如果把输入级变动一下,从互补推挽的 Q:和Qg的集电极输出信号,那么电压推动级就可以在图七的基础上再增加一组 NPN管构成的共射一共基电路,做到推挽输出,这时电路也就非常对称平衡了,几乎达到了完美的程度。
   当今许多最先进的功率放大器采用的也是这种电路结构。图八是另一种电压推动级的形式,其输入信号来自图六中的 Ql和 Qs,当然此时 Qz必须加上集电极负载电阻。电压推动级也采用对称的差动放大,这不仅可以改善输入级的平衡性,提高放大能力和共模抑制比,而且同样可以降低推动级的失真,因为差动式放大电路当输入在一定的范围内时具有线性的传输特性,有的电路还在 Qn、 Qz的发射极串人负反馈反阻,更加扩大了线性范围。 Q2和Qd构成镜像电流源,把 Q,的集电极电流转移到 Qz上,所以尽管是单端输出,电流推动能力却比原来增大了一倍。 PIONEER的M22K功率放大器就是采用的这种电路结构,取得了非常好的效果。对称和平衡不仅体现在电路的结构上,还表现于元器件的参数上。差动电路是集成运放中广泛采用的结构,其性能是建立在两只差分管 Hrs和 Vss精确匹配的基础之上。同样,推挽电路中,如果两只异极性的晶体管特性不一致时,对波形的两个半周就不能做到一视同仁地放大,这将增力D电路的失真度。
   随着节目源的变化,音乐中包含大量瞬变、高能量的成份,要完美地重现这些细节,就要求放大器具有良好的动态响应,对晶体管配对的要求就不仅是静态的 HrR和 VBE匹配,而且在动态时也要高度匹配,这无疑对元器件参数的平衡提出了更苛刻的要求。 幸运的是,半导体技术的进步为我们提供了这种可能,各种各样的差分对管、晶体管阵列陈出不穷,单个的晶体管一致性也得到较大提高。正是这些优质的元器件,让对称电路设计的优点得以充分体现,今天看到一台全无负反馈的电路也不会觉得惊讶,因为已经有足够好的开环性能了,又何必为了几个仪器上的数据去牺牲放大电路的动态响应呢?
四、放大器的电源与甲类放大器
   极端重视电源的现代放大器“放大器不过是电源的调制器”,这句话道出了放大的实质。
   既然如此,又有什么理由不引起对电源的高度重视呢。电源部份作为推动扬声器发声的源泉,再也不应象过去那样随便找个整流电源接上了事。对电源的要求有两个方面,即纹波噪声小,输出能力强。噪声小比较容易办到,只要加大滤波电容器的容量就可以,但是要做到输出能力强却不简单。
   首先要加大电源变压器的容量,这是过去一些放大器生产厂所不乐意的,因为加大电源变压器容量会使成本大量增加,整机的重量和体积也会加大;但现在听小喇叭的人越来越多,这些小喇叭大多效率很低,有些名牌音箱如 Celestion SI一6O0或 Ro3ers LS3/5a,十分大食难推,再加上现代节目信号中常常出现一些炮弹爆炸,锣鼓敲击的声音,对放大器是一个极为严峻的考验,同样两台100W的放大器,一台可能让你感觉到大炮地动山摇的震撼力,而另一台可能象是破鼓在“咐咐”作响。所以现代优质的功率放大器的电源储备量十分惊人,往往采用巨大的环形变压器,再配合容量达数万甚至数十万徽法的电容器,以提高电源的瞬时供应能力。 KRELI的功率放大器号称“功率发动机”,如 KSA一250功效,在8Ω时输出功率为250W/每声道,4Ω时为5O0W,2Ω时为1000W, lΩ时为2000W,而且任何状态下失真均小于0,1%,真是惊人 ! MarkLevi2zson的产品也是极端重视电源的典范。提高电源 的质量,不仅是量的加大,还有质的提高。滤波电容是一个关键,它除了起平滑滤波和储能的作用以外,还是音频信号的通路,因此优质放大器中常常采用专门为音响用途而生产的电容器,以求获得更好的音质。 KRELLKAS放大器中,电源部份竟然采用稳压电源供电,这台机器可以在纯甲类状态下输出400W的功率,为此,其电源部份也付出了采用60只大功率晶体管的代价。
   重视电源的一个副产物就是甲类放大器再度成为时尚(这并不是贬意)。甲类放大器一直因为耗电多,效率低而未能在大功率的放大器中得到应用,但它天然的优点是无交越失真,无开关失真,并且谐波分量中主要是偶次谐波,在听感上十分讨好听众,故而一些极度发烧的爱好者和厂家仍不惜代价地制作甲类放大器,电源储备量的提高更是为制作甲类放大器提供了有利的条件。
五、其他类型的放大器
   最好的功率放大器还没有出现人们对功率放大器的研究一刻也没有停止过,新的元器件、新的电路形式、新的理论不断出现,放大器的研究也针对这三个方面全面地铺开。不器件上, VMOS管的使用是八十年代以来的一个新动向。
VMOS管频响宽、线性好、无二次击穿以及电压推动等一系列优点吸引了越来越多的使用者,它的音色也与电子管很接近,投合了胆机迷的口味。 现在主要是缺乏品种众多的 P沟道互补管,这个问题相信很快就能解决。
   IGBT也是值得注意的一种新器件,它由 MOS管与双极晶体管复合构成,兼有 VMOS管的电压激励和双极晶体管压降低的优点,很有发展前途。电路的研究以日本的各家公司最为活跃,近年来,一些公司从全新的角度提出了一系列电路,如YAMAHA的 ALA, SONY的电流传输,Technics的 CLASS AA, DENON的双超线性,还有英国 Quad的电流倾注,都试图消除失真的产生,可是人们更欣赏的却是以精良元件和精湛工艺制作的不带这些附加措施的放大器。
   此外,对电路的客观技术指标与主观音质之间的精确关系还有待弄清,这需要有新的理论作为指导。国内外的学者们从不同的角度提出了全新的理论,有的认为人耳的动态听觉上限超过了20kHz,有的提出了计权失真度的概念,认为人耳对不同频率的失真具有不同的感知阂值,从10%到0.01%,并给出了实验得出的阂值曲线。在上述的观点指导下,必然要制作频带更宽,全频带失真都极低的功率放大器,而且节目源也有待改进,当然这些理论的正确性需要通过实践的检验。
   新的技术飞跃往往是新材料、新理论、新方法的出现之后产生的,音频放大器同样也不会例外。在科技日新月异的时代,我们有理由期待更完美的功率放大器的出现。

作者: zgmfx10akira    时间: 2012-4-30 15:41
功放与音箱的功率配置

    在专业扩声领域里,音响器材的配置是十分考究的,其**放与音箱的配置是最重要的,虽然,一些音箱生品使用说明中向用户推荐了所配功放的具体牌号或型号,但还是有局限性,因为用户经常面对诸多型号的功放,无从下手。

    功放与音箱的配置所涉及的方面很多,例如功放牌号、功率管类型的选择及低灵敏度音箱应配置哪种功放等。功放与音箱的具体配置,一般来说与设计人员的经验、爱好、听音习惯等因素有关,很难找到一个统一的标准。有时我们会遇到一些用户或设计人员为了节省开支常给音箱配置较小功率的功放,有些用户又为了所谓的"功率储备充足"给音箱配置很大功率的功放。显然,这样做都是不合适的。重要的是,这样配置会给设备造成损坏。在功放与音箱配置中,功放功率的确是关键,也就是说,功放功率的确定原则应该是统一的。

    大家都知道,在进行厅堂声学设计后,需要根据一系列计算确定音箱功率,然后再由音箱功率确定功放功率,但是究竟两者功率如何选配才能达到最佳匹配呢?

    首先,在人耳听域的20Hz~20kHz内,真正集中大量能量的音乐信号一般在中、低、频段,而高频段能量仅相当于中、低频段能量的1/10。所以,一般音箱高音损失的功率比低音喇叭低得多,以求高低音平衡;而功放好比一个电流调制器,它的输入音频信号的控制下,输出大小不同的电流给音箱,使之发生大小不同的声音,在一定阻抗条件下,要想让标称功率为200W的功放达到400W或几倍的输出其实很容易,只是功放的失真(THD)将会大大地增加,这种失真主要产生在中、低频信号中的高频谐波,其失真越大,高频谐波能量就越大,而这些高频失真信号都将随高频音乐信号一同进入高音头,这就是为什么小功率功放推大音箱会发生烧高音头的原因。而在不少人的概念里,只要功放功率大,就有可能烧音箱。虽然有些功放没有失真指示,但由于设备配置已经先天不足,失真有可能在使用中时有发生,这时失真指示已失去意义。况且,由于使用者的经验和素质的限制,功放的失真往往容易被忽略。

    其次,功放与音箱的功率配置与目标响度以及所使用场合也有一定的关系。在一定目标响度下,应该让音乐信号的动态在每件器材上都能得到充分的保证,如果功放功率太大,其增益设置很小时,响度已达到要求,但这时功放的增益就限制了信号的动态范围。所以,功放功率不能太大;否则,既然浪费开支,又会带来响度和音乐动态无法兼顾以及音箱负荷过重的麻烦。根据以往经验,一般语言、音乐扩音场所和大动态的迪厅等场所是有区别的。有一般扩音场所信号起伏小,不需要功放长时间或很快提供很大电流给音箱,所以功放功率应该比要求强劲有力的大动态扩音场所的功率要小;另外,所谓的"功率储备"也应该针对音箱而言,值得注意的是,功放的选定必须由音箱决定,不应该有"功率储备"的概念去配置功放。换句话说,在一定的目标响度下,音箱可以比设计值大一些,以备不同用途,而功放的功率应该严格由音箱决定,没有太大的灵活性。

    总之,功放与音箱功率配置的具体标准应该是:在一定阻抗条件下,功放功率应大于音箱功率,但不能太大。在一般应用场所功放的不失真率应是音箱额定功率的1.2-1.5倍左右;而在大动态场合则应该是1.5-2倍左右。参照这个标准进行配置,既然能保证功放放在最佳状态下工作,又能保证音箱的安全,即使对经验不足的操作人员,只要不是操作严重失误或前级周边设备调校不当,就能让音箱和功放工作在稳定状态。
 
话说音箱

    就目前Hi-Fi音响系统而言,扬声器系统----音箱在技术上仍是一个相当薄弱的环节。音箱作为一种尽可能忠实再现艺术作品的器材,其忠实再现应是第一位,但就目前的技术对忠实再现,还只能是个相对的定义,这也是不同牌号的音箱都有自己声音特点的原因。当今世界上的音箱,品种繁多,但性价比高的却并不太多。从总体上看,大部分美国音箱力度好,气势恢宏,适于重放流行音乐;大部分英国音箱柔和细腻,极富音乐感,适于重放古典音乐;丹麦、德国、法国等欧洲音箱,则介于前两者之间的占多数。

    小型音箱原是供流动录音时方便**之用而制造,随着居住环境趋于小型就逐渐流行起来。书架型(bookshelf)音箱,原系尺寸相当于杂志大小,容积在9升左右,放在书架上的小型扬声器系统,它们的高、低频单元辐射的声波浑然一体,辐射图形大致呈球面波,所以小型音箱的声辐射更接近理想的"点"声源,这就改善了立体声重放的定位感和声扬感,而且小型音箱瞬态反应好,体积小巧,摆位容易。可见小型音箱特别适宜在小居室作近距离聆听,播放动态不大的弦乐、人声和古典小品。但一般小型音箱的低频表现,与大型音箱是有差距的,特别是要求动态气势的场合,只要环境条件许可,不应考虑使用小型音箱。

    落地型(floorstander)音箱大多使用口径较大的扬声器单元,如165mm、200mm、250mm,在大房间里可发挥它低频浑厚、气势磅礴的特点,所以大型音箱富有真实的现场感。但它在小房间使用时,则将有问题,因为在聆听距离较近的情况下,标准声压的驱动功率就须减少,这样音箱的气势就出不来,反而有低音不足感,而离音箱过远时,房间内墙面、家具等反射造成的非直达声又较多而干扰直达声,反而影响音质。

    大口径低频扬声器的锥盆在复杂运动中,会产生高次谐波和对某些短促的声音产生瞬态失真,现代音箱为了克服这个不足,常以几个小尺寸的扬声器单元代替一个大口径的扬声器单元。

    一些高度在0.5m左右,介于小型和大型音箱之间的中型音箱,在国外称座架型(standmount),需放在适当的脚架上使用,它们的表现介于小型和大型音箱之间而兼有它们的长处,富有一定特色。

    有些低效率的昂贵书架型贵族音箱(以难推闻名),对功率放大器的要求很高,不仅要求输出功率足够大,还要求输出电流要足够大,并且阻尼特性好,否则其效果往往还不如一般音箱,这点是要有充分认识的,属于这类的音箱品牌有DYNAUDIO Acoustics(丹麦"丹拿")、MOREL、ATC、Lynnfield及Ensemble等。

    音箱不可能完美,难免会存在一些不足和缺陷,但如有低频不足、高频夸张、声场营造能力差、不该有的声染色等情况,那就属于明显缺点,高、中、低频的表现应以平衡的量感为准则,某频段的突出表现只是特性之一,不能作为评判的依据。此外,音箱在大声压级时不能产生声音含混,甚至低音拍边现象。总之,音箱大多具有个性,也就是说每种音箱都有某种特殊的音色,这在选择时是一定要加以注意的,因为不少音箱之间往往只存在个人爱好问题,而不是优劣之分,而且在商店的环境下,对音响器材的音乐性、声像定位和立体感的差别又很难听得出来。不同音箱的表现会有不同特质的美,可说各有所长,声音之美与其它艺术般,随着拥有者的美感认知而展现不同的美感。

  后级驱动能力与功率及电源供应关系

    晶体后级驱动喇叭的能力至少与以下几个因素有关:一、电源供应。二、输出功率。三、阻尼因子。四、抵抗反电动势的能力。或许,我们如果从喇叭这个方向来看后级,可能会使问题更清楚些。从喇叭的方面要怎么看呢?喇叭的驱动难易程度与一、阻抗曲线的走势。二、灵敏度。三、相位角的偏移情况。四、反电动势的强弱。

    先说阻抗曲线,在喇叭说明书中我们经常看到喇叭阻抗8欧姆或4欧姆的记载。其实这个8或4欧姆的数字只是概略性的数字而已,因为没有一支喇叭的阻抗曲线能够从20Hz到20KHz之间都维持在8欧姆的位置上,至少它会随着频率的变动而改变阻抗数值。有时会高到几十欧姆,有时会低到1欧姆。喇叭阻抗曲线的变化与后级有什么关系呢?不要忘了,后级的功率输出要由喇叭的负载阻抗来决定,假若一部后级宣称在8欧姆时有100瓦输出,那么在16欧姆时可能只剩下50瓦输出,在32欧姆下更只有25瓦输出。反之,它在4欧姆时输出可能会大到200瓦,2欧姆负载时更可能大到400瓦。

    当喇叭阻抗变高时,后级输出只是变小而已。然而,当喇叭阻抗变低时,后级输出就不仅是变大那么简单了。当后级输出变大时,我们首先会遇上的问题就是电源供应能够提供那么大的输出功率所需吗?如果不能,在4欧姆时就无法达到200瓦输出,更别提2欧姆时会有400瓦输出。假若电源供应有那么大的余裕,可以充足供应400瓦的功率所需,我们还要考虑另外一个问题:功率晶体能够承受那么大的电压或电流吗?通常,厂家不太可能会在100瓦的后级上面用上400瓦后级所需的功率晶体,因为这样一来,成本会大幅提高。

    喇叭的灵敏度表面上看起来很直接,90dB灵敏度可能比86dB灵敏度来得好推。问题是,灵敏度的测试只对整支喇叭所能发出的音压做测试,而非对每支单体所能发出的音压做单独测试。所以,当100瓦的功率同时输入到喇叭的高、中、低音单体时(假设喇叭为三音路),首先遇上分音器,分音器在吃掉一些功率之后,再把剩下的功率输送到三个单体上面。此时三个单体会因为本身效率的不同、阻抗曲线的不同而对输入的功率产生不同的反应。换句话说,高、中、低音单体所发出的音量会不一样大。通常,我们如果发现低频量感很少,就会说这对喇叭很难推,不管它在说明书上记载的效率有多高,它就是很难推。而这种难推的喇叭往往又伴随着另外一个问题:高音单体很好推。在低音单体难推、高音单体好推的情况之下,您能想象会发现什么现象吗?那就是很多人都曾经尝过的苦头:低频不够饱满、高频却刺耳。

    相位角的偏移其实就是喇叭容抗、感抗、阻抗趋前或落后的复杂变化。由于喇叭不仅与电子反应相关(被动分音器),也与机械反应(单体结构)相关,更与空气容积相关,它们相互之间会产生复杂的反应。这也就是说,后级无时不刻都在与复杂的喇叭容抗、阻抗、感抗搏斗,这也是喇叭难推的原因之一。

    最后说到反电动势,我们可以把喇叭单体总成,看成一个有线圈、有磁铁的发电机,当扩大机的电流输入,驱动振膜进行前后活塞运动时,喇叭单体会产生电流,这股电流会回输到后级扩大机里,我们称此现象为反电动势。反电动势越大,喇叭就越难推。晶体后级由于直接与喇叭耦合,比较易受反电动势影响。而真空管后级由于有输出变压器耦合喇叭,受反电动势的影响较小。

    写到这里,我们可以回头来看DR-3与DR-9的问题。从您所提供的数据中,我们可以知道DR-3与DR-9的电源供应能力在储存电能的电容上相差10,000μFD,不过DR-9的电源变压器稍大些,所以二者实际上的供电能力没差多少,我猜真正有差别的应该是功率晶体。所以,您可以这样认为:DR-3虽然只有纯A类25瓦,但是它的电源供应能力很足,在遇上难缠的喇叭时,能够比一般25瓦后级发挥更强的喇叭驱动力。反之,我们也可以这么看DR-9:在与DR-3相近的电源供应能力下,它虽然可以在8欧姆负载下输出100瓦,不过在4欧姆或2欧姆负载之下能否输出足够的200瓦或400瓦而不失真就有待观察了。

    或许这个例子可以告诉我们,光看说明书上的功率输出数字并不代表太多的意义,更重要的是后级实际驱动喇叭时的表现,这也就是我们常说的:要以耳朵验收的一个实证。

鉴赏音响的基本概念


    每种乐器都有其独特的频谱、音色,要想提高音乐欣赏的能力,一定要多做听力对比,即播放一首乐曲时,音箱系统放出的音色与实际乐器演奏的音色有哪些不同,偏离多少等。为了进行听力对比,首先应该了解一些电声学名词概念、人耳的听觉特性和音响设备的主要技术参数指标。


一、部分电声学名词解释

    1、纯音:它有两种含义:(1)指瞬时声压随时间作正弦变化的声波;(2)指具有明确单一音调的声音。
    2、基音:是指复合音中频率最低的成分。
    3、泛音:复合音中频率高于基音的成分,其频率可以是基音频率的整倍数,也可以不是。各种乐器用不同演奏方法能产生数量和强弱各不相同的泛音成分,即使基音相同也能具有不同的音色。
    4、声波:弹性媒质中传播的一种机械波,起源于发声体的振动。声波范围为20Hz-20KHz,频率高于20KHz的声波为超声波,频率低于20Hz的声波为次声波,超声波和次声波一般不能引起听觉,只有频率在两者之间的声波才能听到,我们把能够听到的声波称为音波或可听声。
    5、声场:指媒质中有声波存在的区域。不同的声源和环境可以形成不同的声场。
    6、响度:又称"音量",人耳对音量大小的一种感受。取决于声强、频率和波形。
    7、音色:又叫"音品",主要由其谐音的多寡及各谐音的相对振幅所决定。

二、人耳的听觉特性

    人耳对声音的方位、响度、音调及音色的敏感程度是不同的,存在较大的差异。
    1、方位感:人耳对声音传播方向及距离、定位的辨别能力非常强。人耳的这种听觉特性称之为"方位感"。
    2、响度感:对微小的声音,只要响度稍有增加人耳即可感觉到,但是当声音响度增加到某一值后,即使再有较大的增加,人耳的感觉却无明显的变化。通常把可听声按倍频关系分为3份来确定低、中、高音频段。即:低音频段20Hz-160Hz、中音频段160Hz-2500Hz、高音频段2500Hz-20KHz。
    3、音色感:是指人耳对音色所具有的一种特殊的听觉上的综合性感受。
    4、聚焦效应:人耳的听觉特性可以从众多的声音中聚焦到某一点上。如我们听交响乐时,把精力与听力集中到小提琴演奏出的声音上,其它乐器演奏的音乐声就会被大脑皮层抑制,使你听觉感受到的是单纯的小提琴演奏声。这种抑制能力因人而异,经常做听力锻炼的人抑制能力就强,我们把人耳的这种听觉特性称为"聚焦效应"。多做这方面的锻炼,可以提高人耳听觉对某一频谱的音色、品质、解析力及层次的鉴别能力。

三、影响音质、音色的主要技术指标

    1、频率范围(单位Hz):功率放大器在规定的失真度和额定输出功率条件下的工作频带宽度,即功率放大器的最低工作频率至最高工作频率之间的范围。
    2、频率响应(单位:分贝dB):功率放大器的输出增益随输入信号频率的变化而提升或衰减和相位滞后随输入信号频率而变的现象。这项指标是考核功率放大器品质优劣的最为重要的一项依据,该分贝值越小,说明功率放大器的频率响应曲线越平坦,失真越小,信号的还原度和再现能力越强。

    一套好的音响器材,除要把各种乐器的音韵再现外,还要把各种乐器演奏的位置、距离、场面再现出来。无论个人偏爱的是哪种色调或机型,如果播放出来的音色与原来乐器演奏的音色有听觉上的差异,就不能算是一台好设备。高保真音响(Hi-Fi)的真正含义是高还原度。如果你的音响设备不能还原出原有乐器的音色韵味,那麽就称不上高保真设备。当我们利用主观听觉判断某一音响设备时,要充分注意这一点,不要因个人的偏爱而影响正确的判断与鉴别能力的提高。

作者: zgmfx10akira    时间: 2012-4-30 15:41
搅出靓声的13大法则

    阁下如熟读音响杂志又或者玩hi-fi已经有一段日子,可能你都懂得绝大部份以下的改善靓声方法,但有时候非常简单的事也可能会遗忘了或忽略了,本篇旨在将一些简单容易的靓声法门与读者重温一下,好让你在有需要时翻阅帮助记忆及收温故知新之效,并且对於资历浅的读者更可以通过实际试验,从而获得更多的音响知识及宝贵经验。

    总括音响要玩得好,财力固然重要(笔者倒认为平有平玩,大可不必介怀财力之多寡),却不得不配合后者,那便是要懂得玩音响的一套学问,否则可能被它耍了。注意一些应该与不应该做的方面,最后还有调校声音的功夫,这点十分重要,每当购入一套全新的系统回家之后,都需要作初步的摆位后校声,待一切安顿下来,以后的日子仍不断要去作一些微调,以达到自己的要求。如是者,每换了新器材及转换过摆位之后都要视乎情况,再作一番调校。换言之,摆位的校声与玩音响实乃不可分割的事,除非你不懂得怎样去做又或者对这方面压根儿就毫不重视。说到底,多花点功夫及心思并不是苛求,而只是希望器材发挥应有水准的一种态度。

    靓声法则

    要改善一套系统的重播效果,除了换更贵更靓的器材之外,方法还有很多,甚至有些是不费分文却收效颇大的。

    1. 每隔半年全面清洗接点一次

    这个程序经常都会忘记,却是必要做的,该知道金属暴露於空气中不久,表层就会有

    氧化现象,失去光泽,变得暗哑。即使讯号线插头表面经过镀金处理后,已不易氧化,与机身插头又有紧密接触,但日子久了,仍然会有一定程度的氧化道致接触不良,所以最少也要隔一年清洁一次。只要用棉花沾上酒精涂抹接点便可以了,做完这重工夫之后,可以令接点回复最佳接触,声音也随之清晰、透明一点。

    2. 清洗CD机的镭射唱头

    大家应该都见过镭射唱头只是那么一小点的面积,也全靠化以镭射光读取CD碟上的
记号,因此唱头上只要粘附上极少的微尘都足以影响读取信号的精确度,虽然CD机大都有密封的机身,但别忘记在经常出碟入碟的过程中就有空隙让灰尘乘虚而入了,一段日子下来,唱头表面定然留有或多或少的灰尘,这时便要拧开机盖螺丝,打开机盖直接用棉花棒点上酒精清洗。市面上虽然有售各种清洗CD碟,但是你花了一面几十元,那些所谓洗CD碟可能只是靠一排刷去扫掉灰尘或者是利用绒面之类靠转动来除尘,效果可及不上直接用棉花棒辙底。当你那部久未洗头的CD机清洁完毕之后,再听时会令人有掀开一层纱的感觉,而高频回复旧日的清晰,细节也听多了。

    这个清洗唱头的步骤大概要一年做一次,就算是使用Pioneer的反转式唱盘系统(镭
射头向下而非向上)灰尘仍会被唱头所带的静电吸引而黏附其上,所以这工夫也还是不能省的。

    3. 用沙胶轻擦胆脚

    家中使用胆机的朋友可以去书局买一枝沙胶笔(因笔形沙胶较幼身,用起来灵活很多)
轻轻将每只胆的胆脚细擦一遍,再安放回胆座,经这样擦过的灯胆的确会靓声一点,各频段听落都有改善,而讯息量亦要多一些。这方法是多年前一位自焊胆机的师传傅所教,记得他还说过在手汗多时,不宜直接去磁胆身,以免留下手汗阻碍灯胆散热,最好在接触胆时,隔着毛巾之类便最佳。

    4. 置放器材要尽量避免机叠机

    基於环境问题而要将器材叠起来摆放原亦无可奈何,到有条件时,就应尽量将最主要
的CD讯源及扩音部份独立来摆放,究其遗害之处,主要是由谐震所致。当喇叭播放音乐时,震动空气令到器材跟随震动,两部机相叠便会互相传道谐震,令到音乐中的微细讯息模糊不清,并且干扰各频段的传送,造成一种声音的污染,又如其中一部是CD机,自身播放碟时马达连转又加剧了谐震幅度,影响就更巨。这所以要把器材独立置放在稳固机架之上。

    5. 分体供电与主机、单声道后级之间最好保持距离

    现今连不少中价前级都有一个盒仔大小的分体供电,简单地将火牛与主机分开为两部
份,好处自然是可将机内零件与火牛之间可能引起的干扰隔离。若然将分体供电器置放在前级旁边,那就有点失去意义了,赶快将它远离前级,如放在另一层的机架,即时便可听到整体的隔度有所提高,音像也会准确一些呢!单声道的后级亦然,有条件两年器材分开一点摆放保证有利无害。

    6. 注意喇叭线与器材的接驳

    裸线接驳当然是最好,但却容易氧化,落锡便可解决问题了。线芯粗时需借助叉仔或
香蕉插这两种常用的接驳媒介,可以的话,绝对是选用叉仔的,因其接触紧密不似蕉插般易於拉脱,此外不要贪图方便,在叉仔之上,再加香蕉插才连接喇叭或扩音器,多经一个插头声音显然差很多。定期检查叉仔与接头有否连接不牢固的现象。在挑选叉仔及蕉插时,留意含铜量高的一种会比较为软身一点,非用蕉插不可时,则应以插身鼓胀的为合,因接触面积会较大也。

    7. 废除CD机的可调音量输出

    不少单体CD机都设有可调音量输出端的,以便利用遥控器控制音量,如果你在用不
着这个可调输出的情况下,是大可以将它废掉的,甚至乎机身前面有耳机输出装置的,在不需要的情况下也可一并废除,这两组讯号输出是经由主讯号所分出来的,一经废除,只用一组固定音量输出时便不用分薄了讯号输出的能量,声音会较为实净,力感亦比前更佳。要废除这两组输出方法不算复杂,只要打开机盖,抽起机内有关的连接线便可以了。

    8. 合并机背后有接驳桥者亦属必换

    部份合并式扩音机可以独立作为前后级使用,在机身北后都有一条U字形的金属条连
接pre-out以及main in,虽然只是区区三机寸的长度,却一样可以视作前后级接线般,换条靓线肯定有所改善,不过市面上售卖的成品线多为一米长度,故可以买散装线来自己动手造一条最短的连接线,材料只需要四只RCA插连同一尺长讯号线开二,即半尺长度一条。由於距离短的关系,讯号线的外皮及负极部份都可以不要,只保留馀下正极的一细条,用锡焊在RCA插上便大功告成了,由於只动用到一尺线,那么买条一点的靓线亦所费无机,效果却可同由普通线换上靓声讯号线。

    9. 稳固电源线拖板

    目前售价的器材都必定使用五安培或十三安培的插头,在与拖板连接时,紧密程度高
很多,不会有用手碰它便轻易摇动的情况,反观仍旧用美式三脚或普通扁平两脚插的话,插上拖板不免有晃不牢固的情形出现,将之与拖板加强稳固是可以有助靓声的。方法是用幼绳或线将电源插头绑紧在拖板之上,再而可以在拖板之下用双面胶纸或绳连接一声大板或云去进一步加强其稳固性,声音自然获得改进,会令音像明确些,线条更幼细等。

    10.干扰越少,声音越靓

    室内的影音器材及电脑应避免与音响共用一组电源,却使要放在一起也应由别处加拖板来取电,其次让接线纠缠在一起也会令线与线之间互相吸收杂讯破坏音质。如欲进一步达到纯净的效果,可以使线材离开地面,只要用象棋或衣夹承起线身便可,但是可能令声音过於干净,要视乎情况而为,可视作校声的一种却并非必定适合。

    11.器材需要保熟保透

    不单止是器材,接线亦一样要保顺方能发挥尽致。建议大家可以买一只XLO的burn-
inCD,利用track8的保机讯号来保练这器材,该段讯号包含有极高至极低的频率,用来保机可谓事半功倍。每一件新器材或接线买回来都可以通过保练的程序,更快进入稳定靓声的状态,就算是已经使用了一段时间的器材亦可照保可也,只要未到烂熟阶段,相信仍然呆有所改善,特别是喇叭效果尤佳,连续保练十馀小时已然见功。
这样做在可保透器材之馀,其实亦有令全套系统的连接部份运行更畅顺的好处,情况有如通过这连绵不断的讯号而打通系统的任督二脉,生死玄关一般,会令声音变得顺滑了,高频的硬处、角位修饰了,听起来舒畅得多,歌者仿佛唱得更放更投入,而低频也从容了,这不单单是一张碟的功劳,而是各部份连接段落及器材都进入了更佳状态所致,这碟不过是从旁引道协助的角色而已。

    12.喇叭摆位

    在摆位后校声中是十分重要的一环,马虎不得,摆得不好难免令重播效果大打折扣。要如何在房间中找到最好声的摆入位置实在颇考功夫,不妨翻阅《发烧音响》九五年三月号喇叭摆位特辑,内容详尽,必可尽解阁下的疑虑。

    13.昏暗环境有助聆听效果

    关了类来听歌是一个习惯上的问题,可说与重播祉不上关系,只是在漆黑的环境之下,耳朵会特别灵敏,而且减低了视觉上的障碍,对音响画面重组以及乐器的位置感便会格外感觉清楚明确,气氛之佳与开亮灯时更相去颇远,害怕乌灯黑火盲摸摸的话,可以随手放一把电筒以作照明之用。

    其他靓声法

    上述种种之外,尚有如吸音、加钉脚、配线及附件等靓声招数。

    吸音

    在一般的家庭环境之内,家私杂物已经是上好的吸音材料,大可不必把吸音功夫搅得太繁复,大致上铺一张地毡已经有基本的加强吸音效果。加上地毡的好处是可以减少地板的反射声,避免混和正面传来的声音造成混浊,想知道自己的房间是否需要加上地毡,铺在地上测试声音有何变化便知晓了,效果与铺上地毡也差不多,那便不怕一旦地毡买回来后会用不着了。

    喇叭距离后墙太近时,也可以考虑加一幅挂毡以增加深、阔度,但要注意不可用太大块,否则可能连超高频也吸掉,除非你的组合正被高频过於光辉而困扰着,对於过份的高频还可以搓一粒Blue Tak,贴在喇叭的高音单元旁边,锋利的声音自会收敛一点。
另外,房间的玻璃及镜都会有较强的反射声音作用,需要用窗廉来遮挡以解决问题。要求高的朋友更不妨在墙角位及室内的声音反射点上多做些吸音功夫,但要注意吸音不可过份,适量的反射声是有助声音生猛活泼的。

    加钉脚

    市面上有木钉、金属钉、陶磁钉、水晶钉、钻石钉、混合钉等可供选择,只因每种物质的道谐震性能都有别,器材在接触不同物质时,又会带有该物质的声音特性,原因每种特质都有本身的独有谐震,反映在重播上用木便有木声,金属有金属声,玻璃有玻璃声,不论是承放器材的机架、钉脚又或用之於压住机身的物件都会将本身的声音传道给器材,一般而言,始终是靓木才的声音较受欢迎符合传真靓声的准则,它的谐震令重播声音更自铁饭碗悦耳,钉脚的制作大都以木为主,并配上铜、钢、水晶、钻石等较坚硬物质作为钉尖以达到更进一步效果。

    可以说钉脚的运用是较声必修的一课,运用得宜对音场、结像、空气感、线条感、深阔高度、动态、低频弹跳力等等都可以有莫大帮助,而当喇叭只入置在书回上时,钉脚同样派上用场。在此再重覆一次钉脚的原理是将器材会因为谐震减少了的缘故而令到声音起变化,只要你掌握谐震与重播声音的关系,就是提升了校声的功力了。

    配线

    一套靓声的组合之中,接线的重要已是不争的事实,我认为将之抬高到与器材看齐也不为过,到底系统中至少应用到几条不同的连线,它们个别都具有一定的影响力,全数加起来的改变力量可以很巨大,故配合得宜时自可收相得益彰之效,更甚者起死回生亦偶有所闻。在此想强调一下,每部器材的电源线也是必须要兼顾到的,即使是不能与机身分开的设计也可将之剪剩几寸线,再接驳上给电源线用的公插即可,只差几寸保证效果与原装插头差跑不大,想省钱用喇叭线来改装亦可以。

    附件

    世上音响附件越出越多,大有多不胜数之概,当中有些很有理论,也有些古灵精怪的,实际收效多少真的要试过方知真伪,待有机会时,再将一些有实效的音响附件记录下来集合成篇,好与读者分享。

    后记

    在校声的过程中最好记每一个改善程序的收效有多少,而遇上比前更差的情况出现便可能是施行不得其法,又或者这方法并不适合用於你现有的体系,例如是加钉脚、避震、使用队件等是需要运用得恰到好处,适可而止,否则便会过犹不及,希望读者在多作尝试之后,累积宝贵经验,到遇上问题时,便能懂得对症下药。

静电与锥盆的比较

    在音响市场上,长期以来都是以锥盆喇叭为主流,静电喇叭与其它平面喇叭可说只是支流而已。主流喇叭当然有它成为主流的原因,然而,静电喇叭也有它迷人的一面。而且,若要论起锥盆与静电喇叭的优缺点,静电喇叭的胜面还比较多。可惜,长期以来一般人对静电喇叭的根深蒂固观念阻碍了静电喇叭的流行。甚至,到目前为止许多人都还存有几十年前静电喇叭的缺点,而不知道目前的静电喇叭已经改良到完成度相当高的程度。或许,静电喇叭的声音特质仍不为大多数人了解;或许,大多数人仍习惯于锥盆喇叭所发出的声音。不论如何,我们在此要以比较客观的态度来比较静电喇叭与传统锥盆喇叭的优缺点:

    刚性、阻尼与质量三个问题

    先说锥盆喇叭。相对于静电喇叭,传统锥盆单元或凸盆单元有什么问题呢?就以锥盆与凸盆振膜本身来说(暂且不论磁铁总成等其它的问题),锥盆靠的是音圈连接到锥盆底部的推动力量来运动,由于推动的力量仅及底部小面积,所以整个锥盆在理论上必须完全刚性,否则锥盆会变形。此外,当锥盆高速振动时,盆身材料必须要有很好的阻尼作用,否则推动锥盆的能量会残留在盆身内,引起音乐讯号之外的失真振动。

    最后,我们都知道惯性定律,锥盆与音圈结合之后,是有相当质量的。当锥盆与音圈的质量越大时,惯性作用就越强,锥盆就无法随着音乐讯号的静止而同步静止;也无法随着音乐讯号的瞬间发出而激活。锥盆如此,凸盆也是如此,它们都必须面临盆身「刚性」、「阻尼」以及「质量」的问题。

    相对的,静电喇叭的振膜「几乎」没有这三个问题。静电振膜在运动时是全面被静电的吸附排斥作用所控制的,也就是振膜上每一处都有能量促使它前后运动。再来,静电振膜非常薄,所以静电产生的运动能量不会残留在振膜内部。也由于静电振膜非常轻(比空气还轻),所以它的惯性运动问题非常低。
音圈磁铁总成与分音器的问题

    以上所讨论的仅是静电振膜与锥盆振膜本身的问题而已,假若我们更进一步讨论到锥盆的音圈、音圈筒、悬边、固定锥盆位置的弹波、音圈承受大功率输入时所产生的变化、磁力的大小、磁隙里产生的磁力涡流等等时,那就更复杂了。例如音圈在大功率输入时会持续发热,当热度超过音圈承受范围时,音圈就会烧熔。此外,音圈越热,音圈运动的线性就越差,声音的动态范围就会受到压缩。毫无疑问,静电喇叭虽然也有另外的问题,但至少它没有以上这些问题。因为它只不过是一片绷紧的振膜在发声而已。当然,这片振膜可能会因为长时间使用而产生材料变化,不过我还没有看过这方面的相关资料。

    除此之外,被动分音器也是传统喇叭的大问题,分音器会产生相位失真、会吃功率、会音染、会造成频率响应不均衡。而纯静电喇叭由于是全音域设计,没有分音器,所以在这方面静电喇叭肯定大获全胜。当然,Martin Logan静电喇叭由于除了CLS之外,其余全都是静电/锥盆混血设计,所以还是会有分音器的问题。

    最后,静电喇叭没有箱体,也就没有因为箱体本身振动或设计不良而产生的负面影响。而传统锥盆喇叭不论采用何种箱体设计,总是免不了箱体所产生的「原罪」。在这方面,静电喇叭又是大获全胜。而Martin Logan由于必须有低音喇叭箱,因此对于喇叭箱的设计与低音单元的安置下了一番功夫。

    受限几个因素

    就以上的比较来看,静电喇叭无论如何都要远胜锥盆喇叭,但是为何目前市面上还是以锥盆喇叭为主流呢?从现实的状况来看,稍有思考能力的人不得不要怀疑,静电喇叭真有理论上那么好吗?其实,静电喇叭真的有那么好,只不过它受限于以下几个因素:第一、由于前后运动振幅有限制,所以无法再生锥盆喇叭那种强大的音压。第二、假若低频量感要足够,静电振膜的面积就要很大,庞然大物的静电喇叭在家庭实用价值上会受限,所以静电喇叭通常不会做得太大,它的低频量感也因此而受限。第三、静电喇叭本身就是一个集尘器,假若空气湿度高、灰尘又聚集太多,会让原本绝缘的振膜与金属网罩电极之间导通,通常我们称为「击穿」,此时就要更换振膜了。第四、有人怕会被静电喇叭的高压电死。

    Martin Logan的改良

    看到此处,再对照Martin Logan静电喇叭的作法,我想您会发出会心的微笑。原来,Martin Logan就是因为要改善低频量感,所以不得已才使用锥盆与静电振膜的混血设计。也因为采用了混血设计,所以它们的最大音压再生能力也适度的提高了。为了降低箱身对低频再生的影响,Martin Logan采用所谓Balanced Force Technology以及Force Forward Technology来降低低音单元与音箱互动之下所产声的问题。为了改善静电喇叭的集尘效应,从1993年起,Martin Logan就以交换式电源来提供高压给金属网罩电极,而且设计成有音乐讯号输入时才在金属网罩电极上产生高压,这样就让集尘效应降低了。

    此外,由于Martin Logan的静电喇叭并没有布网罩,所以用家可以直接用吸尘器来清洁金属网罩电极,不过要记得清洁以前,要先把电源插头拔掉约五、六小时之后,才开始清洁,这样效果才会好。关于最后一项触电问题,据Martin Logan宣称,其金属网罩电极上的静电高压尚不及家里电视机屏幕上静电压的十分之一,绝对不会电死人,安啦!事实上,当Martin Logan静电喇叭在唱歌时,您可以放心的去触摸外表的每一个部份,保证没有一点触电的感觉。老实说,假若静电喇叭会电死人的话,怎么可能通过安全检验呢?

    静电爱用者的共通特质

    到底静电喇叭有什么魅力,让某些人爱之入骨?相反的,也有许多人怎么听都不喜欢。根据我的观察与自己的经验,喜欢静电喇叭的人大多拥有二个相同的特质,一是他们大多很喜欢音乐,听音乐是他们每天不可或缺的事。第二个相同的特质是他们都懂得「舍」,舍什么呢?舍次要的音响表现而取主要的音乐表现。

    就我认识几位长期使用静电喇叭的人(包括李富桂在内),他们几乎都很少更换音响器材,不过他们都拥有相当多的音乐软件。对于他们来说,音响器材最重要的功能就是发出令他们感到「舒服」的声音,而非令他们感到「震撼」的音效。如果您去静电喇叭用家那里听音乐,就会发现他们很少播放冲击性强的音乐。一方面强烈的冲击性正是静电喇叭的弱处;另一方面这些用家本身就不是很喜欢这些强烈冲击性的音乐。或许,我们可以这么说:喜欢静电喇叭的用家们,其个性刚好与静电喇叭的优点相契合。而不喜欢静电喇叭的人显然无法满足于静电喇叭的那些优点。

    静电魅力在那里

    Martin Logan静电喇叭的魅力在那里?我打电话问曾经使用Martin LoganMonolith喇叭长达10年的李富桂。他说没有箱音、音质纯、音色准确、音场透明、速度反应快、细微细节多、能够敏锐的显出搭配器材的特性等就是静电喇叭的魅力所在。李富桂所说的这些优点很中肯,不过我还要再加上一项优点,那就是音场非常宽广深远,每件乐器的左右分离与前后层次也都很好。我又请教他,使用静电喇叭时,除了潮湿与灰尘之外,还要注意哪些事项?他以本身的经验告诉我,喇叭摆位要仔细,搭配器材比较困难,功率承受能力受限等是要特别注意的。

    注意三个地方

    为什么要注意喇叭摆位呢?因为静电喇叭是标准的Dipole双面反相发声,因此要特别注意是否有某些频段刚好被抵销或加倍。有些静电喇叭声音听起来很单薄,可能就是在中频段有声波抵销的问题。器材搭配为何会比较困难呢?李富桂说由于静电喇叭就像照妖镜,可以完全显露扩大机的声音特质。假若您使用的扩大机有严重音染,就会被静电喇叭暴露出来。此外,静电喇叭到底要用真空管推比较好?或者用晶体机来推比较好?我自己用真空管机推Quad 989时,搭配相当好。李富桂长期使用VTL 300真空管后级推静电喇叭,他也觉得很配。不过,您不要忘了Quad长期以来都以自家的晶体机推静电喇叭。我想,用晶体或真空管来推静电喇叭应该都不是问题,最重要的是音色搭配。

    功率承受能力很重要吗?古老的静电喇叭我不敢说,若是以最近才听过的Quad 989,以及Martin Logan静电喇叭来说,它们所发出的音压已经足够大部份人所需。比较要注意的是古典音乐中突如其来的大鼓或定音鼓的猛擂,流行音乐持续强烈的鼓声与Bass声反而都不是问题。

    硬调空间不适合

    除了以上三个李富桂所说要注意的问题之外,我自己还有一个发现,那就是硬调子空间并不适合使用静电喇叭。大部份的硬调空间会让静电喇叭产生「尖锐干瘦吵杂」的声音。假若您的静电喇叭发出这种声音,更换扩大机或线材是没有用的,这些动作顶多只会产生些微的改善效果,但却无力回天。唯一正确的作法就是改善空间调性,增加室内软质吸音物质,这样才能享受到李富桂所说没有箱音、音质纯、音色准确、音场透明、速度反应快、细微细节多、能够敏锐的显出搭配器材的优点。

关于音响的几个问题

    后级的任务是将前级输出的音频电压作功率放大,以期足够推动音箱。

    作为一款现代化后级,应注意的地方包括输出功率、失真度、频率响应、讯噪比、阻尼系数、转换速度及动态能力多项。

    以输出功率计,当然以最大不失真连续功率(RMS)标准来量度最为妥当。一般又会以8欧姆负载于1千赫处量度,这种方式可视为一个实际而保守的参数。失真方面,关乎瞬态互调失真及谐波失真。

    在此阻尼系数,如前级般讲究,这是决定功放控制单元能力的一项指标;而回转率也与前级的作用相同。动态范围是指后级于额定功率与削波(严重失真)功率之间的距离比值。过去不少电源设计院计较优的功放,于说明书上会列出动态范围达2至3dB之数。这种动态余度对于额定功率输出较低的后级而言,实用价值最大。

    后级功放的电路设计有多种,例如OTL、OCL及BTL。放大元件的应用又分电子管(胆)、晶体管(原子粒)Hybrid(胆混石)及集成电路。按工作方式又有甲类、乙类、甲乙类等,不一而足。

    可否列举一些能互换的常用电子管型号?

    电子管产地遍及全球,分别来自中国、前苏联,也有东欧及美国等地方。其功能分别用于电压放大,功率放大及宽频带电压的放大。

    电子管互换表
1.12AX7,6N2,5751,ECC83,4004
2.12AVFA,6N10,6189,ECC82,4003
3.6DJ8,6922,6N11,E88CC,ECC84 ,ECC88
4.6CA7,6550,69279,KT88,KT100,EL34
5.Bbq5,7189A,68-14,EL84,CV2975
6.6CGF,6N6
7.300B,4300B

    音响系统如何取得生动活泼的声音效果?

    音响系统要重播生动活泼的乐器及人声,功放,喇叭线与音箱的配合可被视为一个整体。

    音箱是整套系统唯一可发声的环节。当中低音单元的振膜,相较于中、高音质量最重,故惰性最大,前进后不容易瞬速静止,然后往相反方向移动。解决办法除了改良音箱整体设计外,不离使用一台具高阻尼系数(或称相配)的功放加以策动。

    要计算功放的阻尼系数,必需以本身输出阻抗值除以音箱的阻抗值(例如8欧姆)。比方说功放阻抗为0.05欧姆,即代表阻尼系数为160;4欧姆扬声器只剩下80。事实上,功放与音箱的阻抗值,跟随频率升降而改变,这还未将喇叭线的电阻值计算在内,故此阻尼系数更低。

    假设喇叭线有0.7欧姆电阻值,加上功放的0.05欧姆即成为0.75之数,当除以音箱8欧姆后,就只乘下大概11的阻尼系数。当音箱为4欧姆时更低至5左右,实际应用上与功放说明书上,列出的数值相去甚远。

    由些观之,音箱的单元惰性高(高Q值),功放与喇叭线的内阻必定要低,才能取得较佳的单元控制力,反之音盆轻,反应快,甚至乎整个音箱设计皆倾向于低Q值,便合适一般阻尼系数低于20的胆机。的而且确有些音箱要配合阻尼系数低至25的胆机,才发出美妙的声音来。

    至于阻尼系数应为若干才算最理想便没有"官方答案",很多情况下主观喜占了相当大的比重。但总的来说,音响系统声音活泼生动才能接近真实,令人听得起劲。

    可否说明正确的摩机论据与做法?

    摩机需根据理论去实践,并且对不同器材施以不同手段。

    (A)CD机:一般廉宜CD机多使用精确度较差的运算放大集成电路,而这部分正好是影响声音的关键所在。故需要为它们换用高速、低噪声与宽频的运放集成电路。频宽要达到3MHZ或以上,这是基于数码讯号流经数/模转换器后,音频讯号会产生大量超高频噪声,而低通滤波器的职责是滤去这些超高频噪声。倘若频率不够阔也不线性,音频范围(20KHZ以下)会回应这些非线性超高频而带来调制失真,声音生硬。

    规格容许的情况下,适当加大静态电流,让工作状态接近甲类,声音更甜美动听。同样地,在元件耐压允许下加大电压,改善低电压电源工作性能。分置独立供电部分予模拟电路,并采取多重绕组,分别为各部分供电,从而能减数/模电路之间的干扰,也可藉此增强电压。假若电源变压器是装设于印刷线路板上,就需要将它拆除,安装给远离数/模转换器的机壳底板上。

    将电源电解质电容器数值予以加大,且并联低数值金属聚丙烯电容器,令声音能量充滞,高频开扬模拟电路电源退交连电容器及输出交连电容器换用高质量品种。线路许可的话,倒不如直接废除输出交连电容作直接交连。声音会更干净音染更低。

    (B)前级:同样更换发烧级运算放大器改善供电系统。后者是提升电压,增强动态,将滤波电容器及环型变压器的容量加大,档次亦要很高,并且采用并联稳压或直流伺服稳压供电,另外,退交连电容器、交连电容器及电阻器等,也可选择补品,能改善讯噪比。分析力及音场重整。

    (C)后级:基于大电流与高电压工作,电源供应尤为重要。改用大型环型变压器及滤波电容器,同时并联一枚小电容器在后者两端,同时并联一枚小电容器在后者两端,这对于低频能量和控制力,即连高频分析力也甚有帮助。

    较廉价的功放,未级输出静态电流一般较低,故在散热器容许的条件下加大电流,将工作状态从乙类变为甲乙类。至于晶体管,可更换为音响专用的较大功率品种,但要注意耐压及配对等参数。

    总的来说,正确的改进线路优点甚多,换用规格较佳的元件也能改善效果,但要切记不同品种的运算放大器及元件类,均有自己的音色,故摩机若除了要留意器材本身的既定规范,容许某程度的"摩"之外,还要小心逐步聆听比较,未必需大量使用同一品牌的元件,是为大原则。最后,为器材动"大手术"所费不菲,当中值与不值人言人殊,宜酌量之。

漫谈电阻

    无论是哪一种音响器材,内部线路板上最常见的电子组件非电阻器莫属,今天我们就谈一谈什么是电阻器。在常温之下无论是液态或固态的物体,皆有一定的阻抗存在,这个阻抗便可称为电阻。电阻的大小和材料的结构、纯度与温度有很大的关系,良导体能通过的电流大所以电阻小,绝缘体能通过的电流小故电阻大,上述由欧姆定律I=V/R(电流=电压/电阻)可得知。当温度变化时阻抗的增加或减少,将视材料而有所不同,例如我们常听到的超导体实验,就是利用物质于温度变化时所做的阻抗实验(于极低温时成效较佳),阻抗愈低能量的损耗就愈少,也就愈符合环保与经济要求。一般而言,绝缘体的电阻随温度增加而减少,导体则恰好相反。

    电阻器的分类有很多种,如果依工作特性、结构、用途、功率消耗与误差百分比约着眼,可分为固定电阻器、可变电阻器、半可变电阻器与特殊用途电阻器等四种。无论是何种电阻器,皆是以导电材质制成的电子组件,运用最广的有固定与可调两种。常见的"固定电阻器"经组合包装后,其两端露出金属端子,以便焊接于线路板上,其主体上并以色环标示电阻值与误差值。"可变电阻器"则是于固定电阻器上加上一个可变动的部分,以调整其电阻值。可变电阻的阻抗标示方式不同于固定电阻,是以数值直接标示书写于电阻器上,像我们使用的音量旋钮便通常是可变电阻器。"半可变电阻"其实也可以视为可变电阻,二者主要的差别,在于可变电阻需经常调整其电阻值,因此制成可转动的旋钮型态﹔半可调电阻因不需经常改变其电阻值,或经调整后即不需改变,因此是以转轴带动滑片以调整电阻值,其转轴很短甚至无转轴,经常需要用起子才能转动。"特殊电阻"这一类的阻抗数值可受外界温度、光线、磁场、湿度、电压、电场、机械压力等因素影响而改变,例如市面上销售的室内小夜灯,就有一种是以光线的强弱来开启灯杀,这种夜灯便是运用光敏电阻,来控制灯杀的开关。

    接下来,我们将就上述四种电阻器逐一分期说明。

固定电阻器

"固定电阻器"可分为︰

金属类 - 线绕电阻器、金属披膜电阻器

碳素类 - 碳膜电阻器、碳膜固态电阻器

半导体类 - 光敏电阻、热敏电阻、气敏电阻、变阻器

特殊电阻类 - 航天电阻

    固定电阻器的外观尺寸与披覆颜色,随各家厂商而有所不同,常见的披覆颜色有棕色、蓝色、土黄色等。固定电阻器的数值大多是以色码来表示数值,通常电阻器上印有四个色环,每一个色环颜色皆代表不同的数值(如附表),第一个色环代表第一位数,第二个色环代表第二位数,第三个色环代表第三位数,称为倍数或者是乘数,第四个色环代表电阻器可能的误差值。

    举例而言,某电阻的色环颜色为第一色环"棕"、第二色环"黑"、第三色环"红"、第四色环"金"。按照下列色环对照表可得知,"棕"代表1、"黑"代表0、"红"代表10的二次方、"金"代表误差正负5%,因此这个电阻器的电阻值为10╳10二次方Ω正负5%=1000Ω正负5%,即为1KΩ正负5%。

金属类电阻

    金属类电阻共分线绕电阻与金属被膜电阻二种,其中线绕电阻是以很细的金属导线绕在圆形或扁形的绝缘体上,绝缘体通常为白瓷管,再以合成树脂、珐琅等材料将绝缘体密封。线绕电阻分为功率型、低功率型以及精密型等三类,最主要的作用为降低电阻或分压线路中之电阻,或者是电源之泄放电阻。

    金属被膜电阻在特性上比线绕电阻改良许多,尤其是在高频的运用上,虽然金属被膜电阻不像线绕电阻一样能忍受大功率,但是因为它的体积小,阻值可制作得很大,因此常运用于小体积的精密电器产品上,如计算器、电视游乐器等。金属被膜电阻可分为下列三种︰合金被膜电阻、氧化金属被膜电阻与其它金属膜。合金被膜电阻的有效被膜厚度愈薄,其电阻系数也就愈大,实际上合金被膜电阻并不是纯电阻,而是带有一点半导体性质,所以在相同的背景温度与消耗功率下,阻值愈高者其稳定度也就愈差。另外氧化金属被膜电阻的特点是在高温底下亦相当稳定,使用时电流杂音小、高频特性尚可,但会产生高温因此需注意周围的零件配置。

碳素类电阻

    碳膜电阻可算是运用最久与最广的电阻,它的稳定度佳、价格便宜,所以使用得非常广泛。常用的碳膜电阻分为高温分解式碳膜电阻,与沉积式碳硼膜电阻二种。高温分解式碳膜电阻制作方式是从碳水化合物中提炼出瓦斯,再将瓦斯熏在瓷管表面,并置于1000度-1200度的高温中使其分解,如此瓷管将会有一层碳的结晶物附着其上,而形成一层电阻膜。另外,沉积式碳硼膜电阻制作方式与高温分解式碳膜电阻大致相同,不过在碳沉积时加入三氯化硼,将少量的硼与碳一起沉积而成,由于以上二种电阻皆是以沉积方式制成,因此也可称之为沉积式碳膜电阻器。

    碳膜电阻的最大特点是价格便宜,而且稳定度高,所以运用得相当广泛。但其最大的缺点为耐湿性较差,因为碳遇到湿气即会氧化,若其氧化后再加上负载,则电阻会因湿度的升高而发生断路,因此必须以铸壳或陶瓷外壳加以保护。

    碳素固态电阻不是以碳膜附着于绝缘体上,而是将碳素压成棒装的固体,再加上绝缘披覆与引线而成。由于引线与绝缘涂层可由模具一次做成,因此这种电阻相当适合大量制造,且价格相当低廉。碳素固态电阻的质量很轻,结构紧密,且具有相当广泛的阻值范围,使用得相当普遍。此种电阻可分为绝缘型与非绝缘型,在电子设备中通常使用绝缘型电阻。碳素固态电阻对高频的特性相当良好,因为在高频时其有效电阻反而下降,与一般电阻器频率增加电阻值即随之增加的特性恰好相反。

水泥电阻

    水泥电阻最主要运用于大功率电路中,其结构是将线绕电阻器的结构放入长方形瓷框中再用耐热水泥充填后密封,外型像是一个白色长方型水泥块。它的特点是不怕机械力量的震动影响、耐震、耐热、耐湿、散热性良好。

漫谈失真

    失真是一个令人害怕讨厌的词语, 大概是由于它的负面意义吧。一直以来,在电声产品上,失真都是一个重要的指针。但对发烧友来说,失真的真正意义在哪?当一个讯号经过传输,或经过放大,理论上来说要保持和原讯号完完全全不变是不可能的,故此,从技术的角度看,人们总希望它的失真度越小越好。可是近年大部份资深发烧友都会同意,在听感上来说,失真度这指标却不能有效地反映器材的好声程度。如方才说过,既然讯号经过传输或放大不能保持和原讯号完完全全一样,其间一定出现一些变化,这变化是什么呢?大体不外乎"加多"和"减少"。"减少"这概念较容易明白,就是原讯号在传输或放大过程中遗失了一些东西。至于"加多"就有较复杂的内容了,简单来说,就是在传输或放大过程中,衍生出一些既源于原讯号又有别于原讯号的东西。由于这些都是原来没有的,故也只能是失真的部份内容。

    在听感上,这类衍生物有时竟会有神奇的作用,譬如说,一些新增的谐波,明显起了像味精的作用,喜欢的人会觉得加了声音更音乐化。又如话筒效应(microphonic)又提供了一些发烧友用作调音的一种有效手段。甚至乎相移(Phase Shift),这个一听起来都不像好东西的,也可以巧妙地被利用来美化音色。在录音过程中加进激励效果使低音冲激力更大更结实,就是运用了相移这东西。于是有一派以最后听音为取舍的,大叫失真无伤大雅,因为如果把失真换成"美化物",或"味精",相信人们对之的抗拒会大为减少,而另一派主要是工程师,却大声说:"数字胜于雄辩"(numbers don't lie)。这样的争论,旷日持久,究竟谁是谁非? 这里,我们先不用发烧友这概念,因为一般人可能会倾向于认为发烧友是一些走火入魔的怪人,上面的争论会对什么人有最大的影响呢?答案是喜欢音响的人,这也就是英文的Audiophile,音响爱好者了。

    至于谁是音响爱好者,这本身已有很大争议。我想这应该涵盖一切喜欢音响技术和听音乐的人,而不应把它局限于拥有价值连城的Hi End器材的一小撮。相信大部份读者发展音响的爱好,往往都是由喜欢听音乐开始,而最先接触或使用的都会是一些普及的器材。我还记得在小三的时候跟?邻家的大孩子一起自己弄矿石收音机,那时候从晶体耳塞传来的音乐,至今难忘,当然晶体耳塞根本不能提供什么低频,可是它的中频瞬变,与及高音的表现,都不是一般晶体管收音机的小扬声器所能比拟。虽然后来才知道AM广播的高频只有7 KHz,连谐波也不会高到10 KHz,但当年的简单矿石收音机却开始了我往后漫长的发烧历程。还记得多年前到香港电台听他们第4台的每月音乐会,在不太大的一个录音间里听钢琴独奏。当时的感受非常美好,音色通透自然。于是心?想,如何在钢琴前放两支胆咪,第三支挂高以收取堂音,在混音之前经胆器材调校…想得很远。但当回到现场的乐音中,我很快明白,要重现当时的效果,要重拾当时聆听者的感受,恐怕人类还要作很大的努力。说回先前的争论,以发烧友为主的一派,大可称之为主观主义者(subjectivist),他们坚持现今对失真的了解和运用还很有限,故失真的测量并不是故事的全部。至于以工程师为主的一派可称为客观主义者(objectivist),他们坚持以科学手段去测量和区分器材的优劣。现实可能确是由矛盾组成,综观各种失真的被发现,被测量,以至人们找出对策,诸如总谐波失真,当改善它之后,原来带来了TIM瞬态互调失真;又譬如CD的jitter,被发现和对付,还只是很近年的事。至于两派谁对,我想两者各有各对,因为他们争论的不是同一样东西。发烧友其实不自觉在听感上找寻自己的喜好,而工程师却力图客观地找出衡量器材的标准。故此争论的答案是客观测量标准并不能决定主观的个人喜好。

    有人喜欢无源前级,有人反对,一下子大家都升级到什么音乐感等抽象名词上争论,其实这只是两种个人喜好的争论,是两种不同的主观立场。

    说实在一点,他们争论的,其实不是音乐回放的表现,而是两种前级本身的特有音色。究竟讯号经过这两者,有多少"加多",有多少"减少",工程师插到其中,又能否排难解纷,抑或是会使浑水更浑。这一切,由读者自己下答案好了。

难解的两难和矛盾

振膜质量

    先前提到,要降低系统共振频率最简单的就是增加振膜质量;当然,这是很容易做到的。但是,为了高频响应和发声效率,这样又算不上是好方法。那幺,我们不要硬碰硬,让单体在低频时「看到」较重的音盆,而在高频时就只看到较轻的音盆。
听起来有点诡异?

    这是全音域单体的设计中非常巧妙的一招,也就是「机械性」分频。实际操作时的情况是,低音时,整个音盆一起动作,渐往高频时,利用盆分裂特性使得音盆较重且声阻较大的外围「来不及」跟着一起动。此时,真正随着音圈动的只剩下较内圈部分,相对上这个「局部」区域的音盆比起整个面积当然就轻得多了。所以,这样一来,随着频率的不同,音盆「实际有效」的运动质量就不同。如此,高频到低频的响应就可以同时达到。

    刚刚提到的「盆分裂」,说来轻描淡写,但稍微想想就可以体会到其中的重重困难。如何在某个频率以上使得一部分的振膜「来不及」跟着音圈动就很难控制了,再者,要让这些部分「既然跟不上就干脆别动」也不简单,因为,最怕的是跟不上音圈的驱动而自己乱动,徒然增加音染。而且要注意的是,单体实际在播放音乐时其中包含的频率很广,且时时刻刻在变。所以一旦这样的盆分裂不在控制之内就可以想见其失真之恐怖!

驱动力

    先前有提到,若要让高频延伸,势必要有很强的驱动力来使音盆的加速度达到高频的需要。而驱动力的来源有二:音圈及磁力系统。把音圈的圈数绕多些就能产生较大的磁力,以便和磁力系统相互作用而产生较大的驱动力,但圈数多就意味着电感量的提高和质量的增加,这二者又都不利于高频,所以此路不通,音圈的设计仍要取一妥协。在此,「小而美」显然比「大而不当」要好得多。
 
    再来,我们只好增加磁力了。虽然先前提过,强大的磁路系统会造成很强的阻尼而使得自由共振频率不易降低,但是为了要达到高频发声所需的振膜加速度,磁力的强度还是要比一般单体强上许多,才有办法将「不轻」的音盆(注4)推出那种级数的加速度值,否则就和一般的中音单体没多大分别了。至于阻尼过度的问题,只好由放松机械性阻尼来做补偿了。

系统整合问题

    不就只有一只单体,何来的「系统」整合?
这里的系统整合指二方面:一是音域平衡的微调,二是装箱调谐的设计。此二者常相互牵动彼此。
理论上,一个理想的全音域单体应该是在装箱后或固定在适当的障板上就可以直接连上后级,没有任何阻隔的发出天籁。但想想先前提过的种种进退两难的窘境,在设计者绞尽脑汁、呕心沥血,好不容易做出一只能够全音域发声的单体后,你还希望它能「全面性」毫无妥协的发出你想要的一切?请记住,在各种的进退两难中,绝大多数的出路便是「妥协」。

    若你对Stereophile熟悉的话,应该对他们刊出的各种器材测试图谱有些印象。一般来说,扩大机的频率响应图在20Hz─20KHz之间几乎就像是尺画的一样平直,若是管机,顶多在频域二端有些微的滚降;而喇叭的频率响应图谱就崎岖得多,用坏掉的锯子来画还比它规则些。若再看衰减瀑布图和离轴响应,那就更糟糕了,各种奇形怪状的高山深谷遍布全频段。

    为什幺喇叭的频率响应没办法作到像扩大机一样的平直?因为喇叭是机械性动作的组件,一动起来各个部分的能量传递、释放和储存会非常复杂,且相互关联。如此,免不了会存在许多的能量堆积或相互抵消的状况 ─ 能量堆积处形成共振峰;相互抵消处形成凹陷,这幺一来崎岖的频率响应就不足为奇了。

    较佳的情况是崎岖的形态较缓和且均匀,如此可避免集中在一个特定的范围而形成明显的音染。若起伏很大或集中在一处就不妙了,强烈的音染不但扭曲了音域平衡,其共振峰处的能量不但较强,而且久久不散(常可在瀑布图上看出),所以会严重掩盖其本身和临近频段的解析力和微动态表现,就算用高Q值陷波器来加以衰减还是无法解决不干净的残余共振。

    另外,单体的阻尼状况也常会表现在频率响应曲线的走势上。若高端上扬,则是中低音域的阻尼相对上有些过度,听感上便是紧瘦结实,稍偏明亮;若是反过来低端上扬,则是中低音域的阻尼相对上有些不足,听感上就较为肥胖宽松而昏暗。

    说了这幺多喇叭单体的「黑暗面」,不外是要提醒大家,就算历年来各「传奇」的全音域单体各自在不同的领域理皆有其「超级制作」之处,但在无可避免的众多妥协之下,免不了有其取舍,而很难做得面面具到。就连乐器的制作都要投注极大的心力,才能获得音色的完美和全音域响度的平均,更何况是喇叭单体这个「二线」的模仿者。

    所以,一个全音域单体,虽可以做到全音域发声,但不见得一定平直。常见的问题有:中音部分(有些是中高,有些是中低)有宽而缓的凸出,造成听感上某种程度的音染;还有部分是高端有缓和的滚降,造成听感上较为昏暗;当然还有过度阻尼造成的低端滚降,听感上自然是又瘦又紧,低音没有量感。

    若是频率响应有些微的凸出,而这个音染又令人无法忍受,只好用一个陷波器来将这个凸出压平。若症状不严重,这个方式多半能有令人满意的结果。别瞧不起这样的组合,虽然这样一来后级到单体之间有了一些「阻碍」,但这算只是频率响应的修整,比起多路分音的喇叭中频率响应复杂的交迭和扭曲的相位,这还是单纯多多。而且,这类陷波器线路其实在许多喇叭的分音器上都可以找到,所以也不算什幺见不得人的东西。

    若是高端滚降,则多半是因为相对上磁力系统不够力所致,或者是音盆太大,用上「机械分频」的技俩还是拖累太重,如早年的12吋甚至15吋的全音域单体或多或少有这样的问题。此时,除了加个高音单体,别无他法。你会说,唉,这算是哪门子的全音域!别急着下定论,若妥善处理,将高音单体的响应从16─18KHz处(或甚至更高),以每八度-6dB的斜率缓缓切入,还是能够得到很好的结果,因为分频衔接处已避开了人耳敏感的音域,且一阶分音能保持相位一致,所以还是保有全音域的「大部分」好处。

    (若你手上刚好有Altec 412C,又嫌它们没高音,请赶紧通知我,我很有兴趣购买。等我弄出好声,你就别想再买回去)

    最后一种情况就是低音部分的滚降,这类全音域单体具有较强的阻尼,低音的听感常紧缩而短促,好处是细节清晰。此时若能使用适当的装箱调谐或甚至用号角负载来提升低音部分的声阻而提高效率,整体响应便很理想。若制作得当,这样的组合能提供最佳的全音域发声表现。

    既然提到了装箱调谐,我们就顺势谈下去。一般市售的喇叭,90%以上都是密闭音箱或开口调谐(一般俗称『低音反射式』)。只要是箱型喇叭便大致脱不了这二种设计及其衍生物,只有少数例外。

    对于全音域单体来说,应该要使其低音域发声时的振幅愈小愈好。因为振幅愈大,不仅低音本身的失真大增,同时中高音更大受影响。想象一下大振幅全音域发声时会是怎样的情形:中高音的小幅度快速运动「骑」在大幅度慢速的低音运动上,中高音的振动时而向你靠近;时而离你远去,可想而知会带来很高的互调失真和都卜勒失真。虽说任何单体都会面临类似的问题,但全音域单体的工作频域远大于其它单体,所以这种情况会更明显而应极力避免或减少。

    在刚刚提到的二种主流装箱方式中,开口调谐应是较适合全音域单体的,因为这种方式可在系统共振频率附近(一般是30─50Hz,视设计情况而异)大幅减少音盆的冲程。如此便一举三得:失真降低、承受功率较高、发声效率也高。因为这个缘故,绝大部分的全音域单体都可以用这种装箱方式得到大致上不差的效果。

    另外,有些纯粹主义者认为,这幺好的单体装在箱子里会被箱体共振所玷污,所以不用箱子,直接装在开放式障板上。某些本身低音部分就足够的单体便适于如此使用,可以获得最无染纯净的声音,如WE/Altec 755C。据称,其中音瞬时快若闪电,比之静电喇叭毫不逊色,又有更佳的动态表现。但这个方式有一些缺点,首先当然是占地太大,因为系统的低音延伸取决于障板面积,为取得适当的低频响应,小则需要1公尺见方,大则没有上限,要将墙壁挖二个洞来装也可;再来是效率和承受功率都会较低,低频响应也会较弱;最后是双面发声会使得空间因素更形复杂难解,而二片大门板矗立眼前实在也不容易被大多数人接受。

    最后,便是最复杂的号角负载方式了。关于号角的种种,我们择期再详谈,现在只能大略的介绍一下。简单的说,号角就是一个呈喇叭状展开的管道,宽的这边称为「号角开口」,窄的那边称为「喉部」。号角的形状会造成喉部的声阻大于开口,使得位在喉部附近的单体振膜和空气分子间有很大的压力,也就是说这之间的能量可以的耦合得很好,因此发声效率很高。

    使用背载折迭号角的型式,在适当的制作下,中低音到低音部分的效率会有效的提升,刚好和之前提到的阻尼过度的单体能有几近完美的配合。

频率补偿不当会造成什么后果?

    在频率响应的某一频段出现峰谷时,特别在3~5kHz和200~300Hz,将引起音质的明显变化。在频率响应曲线低频段和中低频段出现+5dB以上峰值时,会使音色混浊,甚至出现特定频率的"嗡"声,中高频段出现峰时将有"金属声",峰值出现在高频段时将有"咝"声。频率响应曲线出现谷时,要在-10dB才会有音质变化。

    低频段对声音强度影响极大,如超过+5dB声音变得混浊不清,严重时出现"嗡"声。200~500Hz中低频段决定声音力度,如超过+5~10dB声音变得模糊,清晰度下降,下跌-6~10dB声音缺乏力度而显单薄,音色硬而窄。1~3kHz中高频段对明亮度、清晰度和临场感有重要作用,此频段超过+3~5dB会使声音变硬,超过+5~10dB会出现金属声,下跌-3~5dB会使音色失去明亮感,下跌-5~10dB声音发闷不清晰。5kHz以上频段是声音特色的反映,如高频6~7kHz超过+6dB,声音变得尖锐刺耳,语言中齿音严重,下跌-10dB以上音色明显变暗。

均衡器可对频率响应进行补偿,使某段频率加重或减弱,但若使用不当,会造成音质变坏,如

混浊--500Hz以下频率提升过度;

闷、不亮--2000Hz以上频率衰减过多,或2000Hz以下频率提升过多;

毛刺--5000Hz以上频率提升过度;

单薄--500Hz以下频率衰减过多;

缺乏临场感--1000~4000Hz频段衰减过多;

干、硬--1000~3500Hz频段提升过度
 
前级的功能

    一般而言,光从一部器材的面板,是很维判定它是一部前级,还是一部综合扩大机。或许我们可以这样说:前级扩大机其实就是一部将综合扩大机的控制功能独立出来的器材。抛去放大功能不说,我们以被动式前级为例,来说明一部前级所应有的基本控制功能。

    前级的最基本功能有两个,音量控制,以及讯源切换。一般而言,讯源器材如CD唱盘,电台调谐器以及卡式录音机等,它们的输出电压都是固定的。当它们输入后级时,音量的大小也就跟著固定。此时,必须增设一个电阻可变的电位器,来控制音量的大不到我们觉得适当的地方,这就是前级最重要的功能。

    听音响的人不一定只选择一种讯源,除了CD之外,他们有时可能还会想要不得听听电台哈拉一下,有时也会想要放放自己录制的卡式录音带。甚至会想将家中的电视、LD或DVD-Video等视听系统的音响做连接。较年轻的读者,可能还会玩玩MD、或是电视游乐器。当您连接这么多种讯源在您的音响系统时,总不成每次要换讯源时,都要重新连接器材吧!此时,讯源切换的这个功能就显得很重要了。

    其他附属控制功能

    音量控制、讯源选择可说是前级必备的功能,其他如高低音控制、左右声道平衡、录音选择、静音功能,就算是比较次要的了。高低音控制目前只有在比较平价、或者极高价的机种上才找得到,因为这个部份如果要做到精确、不影响音质,需要花费很大的代价。音质的纯净度在Hi-End音响上可说是寸土必争、设计师可能花费很大的代价才能在这方面取得一点点的增进,当然不会允许一个非必要的功能抵消之前耗费的心血,除非他可以不计代价让这个装置安全不会影响到原有的声音。至於平价机种音质纯净性的要求就没有那么高,而且所搭配的器材比 较容易出现音域不平衡的情况,此时一个高低音控制装置,反而可以方便使用者很快的声音调整到一个较为平衡的程度。以一点音质污染,换取整套音响的平衡,这是相当值得的。

    左右声道平衡控制,是针对当您使用音响的空间可能左右不对称时,所设计的功能。和前面的高低音控制一样,这通常也是个备而不用的功能。一个在音响做了重大投资的音响迷,通常不会将音响摆在一个左右不对称的环境中。不过假如您摆音响的空间有重大缺陷,无法以摆位来解决的话,建议您最好不觉为是使用这个功能将两支喇叭的声音调整至平衡。

    录音控制也是一般音响迷较不常使用的功能,但假如您有一部卡式录音座,或是MD、DAT这类可以从事对拷工作的录音设备的话,这个功能可以方便您拷贝录音工作的进行。前级在录音控制上,通常有两个功能,一是录音讯源及录音器材的选择(您可能有不只一种的录音器材),另一则是在录音时**喇叭是否开声的切换装置。

    静音功能虽然不会时常使用到,不过几乎每一部前级都还是会具备这项功能。这项功能在您要拔插讯号线,或者是忽然要音响保持安静时就有用了。其实在切换讯养成先开启静音功能的习惯,以免音量忽然增加,损毁您的器材及喇叭。

    既然称作扩大机当然具有放大功能

    前级"扩大机",既然称作扩大机,当然具有放大功能。不过这只存在於主动式的前级扩大机上,被动式的前级则是完全没有任何放大功能的。前级扩大机的放大功能主要分三种一高电平放大、唱头放大以及耳机放大。而现在市面上大多数的前级扩大机几乎都只保留了高压平放大功能,找有少数的机种拥有耳机放大及唱头放大。

    以前LP时代,唱头所拾取的讯号相当微弱,所以必须将这个信号增强,所以必须将这个信号增强,才足以驱动后级扩大机。不过因为目前仍在聆听LP音响迷相当有限,所以目前新一代的前级几乎都已经删除这个功能,而Phono这个输入档也只具备一般的高电平放大功能,要听LP唱片,您还得再多添购一部唱头放大器(也就是所谓的前前级)才行。由於放大的倍数不同,所以使用时请记得切勿将高电平输出的器材连接到前级唱头放大这一档,以免因输入过荷造成器材损毁。

    至於高电平放大,其实只是将讯源输入讯号的电压稍微增强,所以理认上当您使用的讯源器材输出很大的时候,前级根本是可以省略的,这也是为什么有一阵子被动式前级流行起来的原因。

    由於讯号在前级扩大机放大这后,已经足够驱动耳机的发声单元了,所以有些厂商就直接使用前级扩大机的放大线路,加一个耳机插孔,使它也有耳机扩大机的功能。不过并非所拥有耳机插孔的前级,都采用耳机放大线路与前级放大线路共用的做法。大部分廉价机种的耳机放大其实都只使用一只OP构成,而某些Hi-End厂商如SonicFrontiers,则是将一个完整的耳机放大线路放进前级,等於是奉送您一部耳机扩大机,而且这个部份电源和整部前级共用,所以效果还有可能比原来独立的几种出色呢!

如何令导线插头声音更佳?

    相信没有发烧友未曾用过RCA莲花插头。一般廉价的在铁或铜金属上镀上一层镍,而较贵价的介质有金或银。市面最贵价的莲花插头,动辄数百元。镀银插头导电性能最强,故声音分析较强,最差是镍锡,镀镍其次。反之镀金的优胜度只是防侵蚀能力较佳,镀电性能还不及铜。像镀银插遇着空气污染严重、潮湿或经常以手指接触,很快便发黑和腐蚀。

    假若镀银插头表面起变化,只要被发现得早,可试用沙胶(擦自来水笔笔迹的那种)擦拭。若腐蚀严重,这办法便失效了。所有插头以放大镜观察,其表现多数凹凸不平,故此与插座相接时,几乎可肯是零零星的点接解,而不是大面积的"面"接触;再加上污渍、氧化、油滋等等,势必形成更大的电阻。故市面上有出售一些油性的插头清洁剂,有喷雾装,有涂抹式,也有纸巾式的,据闻能抹去污垢,也能将导致不平滑的表现凹位"填平",让接触点增加,阻力降低,效果较好。

    倘若一时间找不到这些清洁接点的补品,最经济有效的方法是尝试旋转、退出及再插上插头,皆有清洁接触点的效果、像一些平衡插及Y型喇叭线接端,当然不能拿来转动。事实上,即使RCA插头,"公"部分的直径大细,迄今仍未有国际公认标准,故此间或有遇上插入时出现松与紧现象,紧一点的即代表接触面较多,导电能力较强。


如何延长电子管放大器的寿命?


    自70年代电子管放大器复出重登音响舞台以来,已占有一定市场,但目前的电子管音响产品中,电子管引起的故障包括欧美电子管在内,并不少见,使人产生一种电子管寿命短的看法,然而这却往往并非电子管本身的问题,而是电路设计存在缺陷和使用上的问题。须知品质良好的电子管,还得有正确设计的电路,充分的散热,周到的避震。

    在使用上,电子管要有良好的通风散热,温度的过热必然缩短电子管寿命,所以要尽可能使电子管保持较低的温度。电子管怕振动,所以采取防震措施尽量避免振动也是很重要的。若做到这两点,电子管的使用寿命至少可提高一倍。为此,电子管设备的周围要有适当的空间,尤其是它的上方,以便有良好的对流通风,可能的话可用风扇帮助散热。

    电子管阴极在尚未达到要求温度即加上高压电源时,它的阴极将受到损害,同样会缩短电子管寿命。所以电子管设备若有预热装置的话,一定要使用,例如先开灯丝低压电源预热,后开高压电源。假如没有预热装置,那你不要急着将输入信号接入,可将音量关到最小,待先开机20~30分钟进行温机再使用。如果使用旁热式整流管供给整机高压,那正好提供了简单又有效的高压延时。另外,在正常使用时,不要频繁开关电源。

    当然,如果对电子管电路进行正确的设计,避免错误运用,就能使电子管不致"英年早逝",电子管使用数以千计的聆听时数应是正常的。电路设计中最常见的错误有电子管灯丝与阴极间的电位差过高、电子管屏极或帘栅极电压运用至最大值、电子管灯丝电压过低或过高、电子管安装位置不当造成电极过热及高压电源没有延时装置等.
作者: zgmfx10akira    时间: 2012-4-30 15:42
声音要耐听,试试软性避震
    为何要写这一篇用家报导呢?原因之一是蔡法官家中的音响总花费并不高,但却拥有相当耐听的音响性。原因之二是蔡法官家中的聆听环境,与绝大多数音响迷的环境相同,由于居家空间有限,无法特别腾出空间作为音响室,因此如何与客厅共享,却又保持好声,是众音响迷想知道的热门话题。原因之三是,读者看多了音响论坛的报导,对于器材的搭配以及空间原理早已了若指掌。但,一旦把器材扛回家摆设定位之后,如何动手操刀调整音响,却又往往摸不着头绪。于是想得到的、买得到的调音道具,也不管对声音是好是坏全数用上,效果加加减减之后是否又回到原点?

    这些情形普遍存在你我之中,调整音响虽然方法万种,但适合自己使用的却仅有一种,您无法像切换旋钮一样,动手转转就可以瞬间改变垫在器材下方的垫材。该使用哪种材质?这种材质是否对声音有正面的益处?都需要靠长期的聆听经验以及敏锐的判断力逐步调整。最近,我的音响系统大换血,面对完全不同组合的音响器材,对于"调整"有了诸多心得。在调整自己音响的期间,刘仁阳顾问带我到多位音响迷家中,看看别人是如何调整音响的,一方面让我参考;另一方面了解不同环境与不同器材所呈现各种声音的走向。这次报导的蔡法官,就是其中刘顾问与我前往拜访的音响迷之一,特别报导出来以饷读者。

    音响就摆在狭长的客厅中

    蔡法官是刘顾问的朋友,住在较安静的台北巷内,因此听不到吵杂的道路噪音,偶尔还可以听到麻雀聒噪的自娱声。由于是一般公寓住宅,因此音响空间必须与客厅共享,很可惜的是,客厅的空间并不理想,在长约五米、宽约三米的狭长形开放空间里,实在很难替喇叭找到理想的摆设定点。客厅的一端是落地窗,为了考虑行走动线,大部分的音响迷只好牺牲摆位,屈就将喇叭摆在长边(五米那一边)的矮柜上或矮柜两旁。然而喇叭摆位密切影响着声音的音场及定位,将两支喇叭拉得太开,中央则几乎没有定位与形体感可言,音场也势必形成扁平状,如此一来连神仙也难医。

    环境虽然恶劣,但仍然要有尽量不妥协的发烧精神。蔡法官协调家人生活动线,将喇叭摆在短边的落地窗前,进出也许不太方便,但却保留了最基本的声音特性。至少,音场听起来不会再"无边无际"完全摸不着边、摸不着形。

    尽量使用声底厚实的器材

    从图中看来,其实两支喇叭摆设的位置很靠近,如果能够再向外拉开约一公尺,音场特性绝对可以提升不少,不过这不太可能办到,除非家人不看电视,不需要客厅作息。蔡法官使用哪些音响器材呢?清一色是我熟悉的器材,他们的共同特色就是"厚声底"。

    CD转盘是已经停产的Proceed PDT Ⅱ,这一部造型有异于常的CD转盘,竟然是目前买得到的CD转盘中,售价最便宜、声底又最厚实饱满的CD转盘。只可惜停产已久,前一阵子卡门公司也已完全出清存货,我的那一部PDT Ⅱ还是倒数第五部。

    D/A转换器是 Vimak DS1800,前级是Audio Research LS-2真空管前级,后级是Audio Research Classic 60真空管后级,喇叭则是少见的Dahoquest DQ-30,所有的线材皆为Power Source,如此的搭配全是为了求取更饱满厚实的声音。

    蔡法官使用的器材都是一时之选,这当然是仔细打听之后的结果。有趣的是全套器材中除了线材以外,其余皆已停产,已经过气的器材听起来声音会不会也过气了呢?答案是不会,而且恐怕比许多使用全新器材的系统要好听许多,至少,这里的中高频非常柔顺、轻松发声的特点也足以迷倒一群人,尤其是低频段,既有弹性又沉得下去。

    空间配合调整的方法

    既然是刘顾问的朋友,去过刘顾问的家中听过音响,自然会学个一招二式回家套用一番,您见到的到处使用"绿布",就是最大的特点。先来看看环境的调整,再来研究器材的调整。

    从大图中看来,两侧墙的摆设并不对称,地板上除了摆一块厚地毯外,就是少许的扩散板。左边(见图一)的第一反射点刚好是电视机的位置,光滑电视萤光幕容易反射,因此使用纯棉厚绿布盖住萤光幕,以减少直接的反射。而电视机后方的摆设物,则也干脆盖上厚绿布,以降低第一反射面的影响。客厅的右边呢?(见图二)这是铺上杀绵坐垫的藤椅,杀绵的反射有限,对声音的影响也有限,在座位上方则摆三个扩散板,并且加盖大绿布,这样左右侧墙就对称了。

    我们再来看看器材的摆设。Proceed PDT Ⅱ转盘就不必多说了,音响论坛的主笔们放弃使用其它更高价的CD转盘,当然是有原因的,反正这部转盘市面上已经买不到全新品,没啥好说了。由于空间有限,容许摆设器材的空间并不多,Proceed PDT Ⅱ摆在矮柜上,不过它并不是直接摆在矮柜上的。请注意图三与图四,蔡法官放弃一般使用摆锥的方式,改垫"软性物质"。从图五看来,在Proceed PDT Ⅱ的位置上,先摆四个"奇宝神垫",这是类似于发杀材质的避震垫,与小孩在地板上玩耍的组合式地板是类似的材质。奇宝神垫之上摆一块见方的厚花梨木垫。音响界很流行高硬度的檀木与花梨木,究竟是因为取其高硬度或是高价格,还是纯粹为了声音的表现则不得而知。反正自己试试看各种材质,根据经验判断,垫"木头",对声音是有好处的。木头之上则又是一层厚绿布,最后在器材上方,再盖上一层绿布。这两点我曾经在家中实验,Proceed PDT Ⅱ转盘下方垫上好几层折起来的绿布,确实可以让声音更温厚一些,而器材上盖绿布,不用我多说,来过我家中听过的朋友都知道"略有正面的效果",不过请注意散热问题。

    前级就摆在数类转换器之上,将器材叠起来虽然不太卫生,而且会影响到声音的表现,不过目前尚未购入新的音响架,因此只好暂时这样使用。蔡法官想更换木质的音响架,虽然造型不错,价格可不便宜。

    Audio Research LS-2采用真空管放大,我曾经在音响论坛上征求一部Audio Research LS-2前级,一位读者表示愿意出让以便升级,约好时间到家中试听,听完之后却说:"Audio Research LS-2不错啊,不卖了!"当场我哑口无言。有几个方法可以让LS-2的声音更温暖厚实:其一是松开机箱上盖的螺丝,让螺丝轻轻含着,或者干脆取下螺丝,让上盖轻轻盖在机箱上即可。如果手上有绿布,也可以将绿布圆卷起来,垫在前级下方,而上盖与机箱间也用布做缓冲。主笔黄鸿钧与郭世鼎的Audio Research LS-5 Ⅱ,就是依法炮制的,难看归难看,好听就好了。也可以尝试增加LS-2内部的电流,让声音听起来更具有雄纠纠气昂昂的气势,如果您手上有LS-2想改改看,请来信给我,我再告诉您要改哪里。

    Audio Research Classic 60也是一部很好的真空管后级,只可惜输出功率不大,而且停产已久,读者若预算不足想买到好声的真空管后级,就请多多寻找了。Classic 60下方的垫材与Proceed PDT Ⅱ相仿,反正一招用到底就对了。

    将布塞在空隙中

    绿布除了可以拿来垫器材、盖器材以外,还可以拿来做什么?"塞"器材!

    现代化的器材往往讲求高分辨率,从讯源到喇叭,每样产品讲求高分辨率的结果,往往让声音头重脚轻,高频虽然漂亮量感却过多,一开大音量低频就不见了!如何压抑高频量感却又不影响延伸,是目前音响迷最急切需要练就的"基本调音功夫"。喇叭高频过多时如何处理?蔡法官再度把绿布当作万灵丹,推测布是软性的、布是纯棉天然的,布也可以吸收高频,因此要压抑高频量感,布当然是最佳材质。

    DQ-30喇叭的造型特殊,其实这个造型是延伸至Quad ESL静电喇叭的圆弧形造型,在现代设计的喇叭当中也可称上一绝。DQ-30的中高音与平面喇叭一样,采用开放式设计,藉由双面发声的特点,增加音场的宽广度以及堂音。虽然蔡法官目前的搭配皆属厚声底的器材,但大音量下为求高、中、低频的整体平衡度,仍然需要稍稍降低高频的量感。实验之后发现将布盖在高、中音单体上有正面帮助,于是在不影响单体发声的情况下,喇叭的狭缝、间隙,全部塞上了布(请见图五)。这个方法确实有效,事后使用B & W 801的画家杨德俊,也使用绿布整个包住B & W 801的高、中音单体,我听过之后也发觉,声音变得更温暖了。您有高频过多的困扰吗?自己想办法处理吧!

    线材也是调整声音的好道具

    过去有人认为,器材应该保持中性、线材也应保持中性,这样音响就可以保持原味了。这个概念不错,问题是没有器材是绝对中性的,因此才需要靠着各式各样不同口味的音响器材来搭配。要让声音丰润,线材是不可错过的调声法宝,线材不但是必要配件,也可说是最经济的调整方式。

    蔡法官从头到尾全套使用Power Source线材,并不是没有其它选择,而是C/P值的问题。目前市面上声底最厚的线材不少,Audio Research李兹线、Audioquest李兹线,OBL电源线、Power Station喇叭线以及贵到毙的NBS等,全是厚声底线材的代表。但这其中若要选出C/P值最高者,看来唯有Power Source以及OBL两家了。

    Power Source真有如此丰厚的特点吗?若怀疑就请永远不要试听,否则就别怪荷包保不住了。

    保有全频段极佳的平衡性

    蔡法官的器材搭配从讯源就讲求厚实的声音,您会不会把它误认为"糊"呢?如果是的话那就太可惜了。其实我一直在音响论坛上所鼓吹的"厚实",就是追求乐器本质的声音。您听过现场的小提琴拉出来的声音像钢丝磨擦的声音吗?我想那绝对不可能发生。而评论中所使用的"饱满"、"厚实",其实标准正是现场音乐。我说这对喇叭听起来很厚实,就意味着它具有现场乐器宽松自然的特色。

    蔡法官播放了不同的曲目聆听,从小提琴独奏到大编制的交响乐片段,这套系统呈现出从容不迫的气度,尤其是低频段的表现,更是令人称奇。

    DQ-30不过每声道使用一支十吋的低音单体,却连鬼太鼓都可以感受到地板摇晃的威力,而且共鸣和谐,一点也不紧绷。Classic 60后级并不算是低频控制力相当优秀的后级,而其输出功率也不大,为何可以营造出宽松有气势的声音呢?

    器材搭配是原因之一,再来使用软性避震以降低高频量感也是助力之一,而影响声音最大的DQ-30恐怕又是一对被大家所遗忘的好喇叭,如果找得到的话,请读者直接购买,绝对错不了。

    在这样极不理想的环境中,能够发出轻松自然,平衡感佳的声音确属不易,连编辑部在依照标准尺寸设计的聆听室中,也难以调整成平衡感佳的声音,凡事用怀疑的态度用心调整、多方面比较,就可以让自己的系统在无形中升级,这恐怕比换机升级要来得有意义。

    看完了这一篇用家报导,您可不要高兴得照单抓药,以为回家一摆就能够出好声。如果调整器材真有这么容易的话,音响店早就门可罗雀了。事后我问蔡法官对于这套系统还有哪些改善的计画?他说还要再添购一个音响架,不要让器材叠在一起;另外线材也将升级成最新的Power Source SE喇叭线。还有,如果有机会的话,他想把刚刚装好的日本进口日立分离式冷气换掉,那部室内机的声音简直在开玩笑!提供给读者做参考。

  通过[煲机]踏上靓声之途

    煲机有如打通奇经八脉

    本刊间中都会收到不同读者的来电询问有关煲机的种种问题,例如器材是否都要煲?又如何煲才对?到底为什么要煲机?不经过煲机程序的器材是否不能发挥出十足水准?这些已经不是什么新鲜话题的疑问原来令到新近加入发烧行列的朋友仍然颇感迷惑,希望可以获得较为圆满的答案,而我留意身边为数不少具有奖历的音响发烧友原来都不大重视煲机,他们重视的焦点放在其它方面,却原来,煲机乃达至靓声的根源之一,很多人都知道新器材需要经过Run-In,如果只以政党聆听当然假以时日也能够达到Run-In的效果,不过,有效率的煲机方法一方面可大大缩短Run-In时间令器材更快进入最佳状态,另方面也可以更全面、平均地运动器材或喇叭的全频,关于这点,可以解释因何已经使用了一段颇长时间的器材明明应该已经煲够了吧,但在经过煲机程序之后却仍有明显的改善,这便是因为最常聆听的音乐其频率大多未能涵盖由超高至超低的每一段频率,即使有,播放的次数及时间亦难平均,所以站在煲机的角度而言是未竟全功,另外还有一个情况是久未使用或最近甚少使用的器材均可以透过煲机令其尽快回复状态,以人为比喻,经过一定的身体锻炼以后,再经常运动保持身体在最佳状态,自然工作效率也会大大提高吧,因此,掌握正确的煲机方法实际上对玩HIFI的得益相当大。

    煲机三部曲

    要进行煲机首要者是选择合适的软件,这主要可分成两类,首阶段煲机应用第一类讯号碟进行,讯号碟记录的Pink Noise最重要是频率够齐全,由20HZ至到20KHZ具备,连续地由最高而至最低不断播放,这类讯号碟并不难找到,雨果金碟1、Stereophile Test CD 及部份测试碟都具备,而Sheffield Lab所出的旧版XLO测试碟其中第8段更为煲机讯号中的经典作,其一段讯号中交错包含了各段频率,虽然开大声时相当吵耳难听,但煲机的效果却相当理想,只可惜此碟经已停版,读者唯有向身边的朋友打听相借回来使用吧。踏入第二阶段的第二类碟乃用频宽兼顾较全面的音乐碟进行煲机,首阶段是开通全频,次阶段着重的是煲音乐感。选择的CD碟可以考虑Unplug2或3,Unplug2中两段宝森多夫演奏用钢琴录音及三段古典名琴片段便十分'正斗',用以煲机的确一流,而碟中还有教导不同乐迷着重古典或爵士乐等的不同煲法;Unplug3的煲机片段亦属上选,而且既是测试片段也可作为煲机(Track 11-20)的音乐,不会令人烦厌。接着读者也可自行进入第三阶段的煲机,乃以自己最喜爱的音乐软件类型进行,使器材在播放此类型的音乐时更能发挥尽致。

    当预备好合适的CD后,煲机程序便可以展开,先以煲齐系统的所有器材计算,在放入CD碟后 program 所要重覆播放的片段,然后按Repeat不断重播,前级音量掣调节到平常的聆听位置,不过大亦不宜过小,过小便煲不到喇叭的低音单元,而为安全计,可先行听听最高及最低频段时喇叭有否不胜负荷的情况,播放用的讯号碟声音基本上不作欣赏用途,多听会令人感到心烦甚至头痛,因此用其煲机的初阶只适宜在离家外出、家中没有人时进行,一般而言便会是你的上班时间,这样每天大约可进行十小时的煲机,要进行时有些要点是要留意的,一是使用胆后级的话便不宜离家外出进行煲机,瞻开着了在安全性、稳定性始终不如原子粒,安全第一,还是不要冒险,要煲的话,用其它原子粒后级好了,又或者只用不会令人烦厌的音乐碟待有人在家中的时候才煲;其次是噪音问题,可能会引起邻居的不满或投诉,解决的方法是将左、右两只喇叭以面贴面方式的相位相反,活动动作变成一只向出时另一只却向入,面对面便会抵消了大部分的声音,换句话说噪音会大大降低而单元活动幅度却仍然有同接正相时一般大。不过,假如在将喇叭面对面时噪间仍觉得扰人又如何解决呢?特别是大喇叭高音特别响亮,解决的方法有二,十分简单,可用咭纸卷成圆筒状(或索性用卫生纸筒裁短),放在两只喇叭的高音单元之间,再将喇叭推贴令纸筒位置固定,吵耳的高音便会减少了,至于两只喇叭面贴面的距离可移近至两、三寸,越近越能够抵消声音。另一个方法是用棉被之类覆盖在喇叭之上便可以盖掩噪音了,但要视乎情况留下疏气空间,以防万一音量调得太大时长时间下来单元温度会上升,预留空隙可让其有需要时疏气散热也。

    功夫、耐性换靓声

    那使用讯号碟煲机一般需时多久呢?其实可以自行每隔两、三天便比较一次以 解进度,通常在进行了最初的一、二十小时之后已经可以听到分别,至于要多久才足够可以视乎自己的条件及耐性,一般初阶以讯号碟三百小时已经十分理想,然后再以音乐碟煲一百小时左右,这数百小时的时间一般乃指需时较久的全新开箱喇叭而言,其它CD机、前、后级需时较短,线材也不用太花时间,总言之是视乎耐性吧,硬要规定多久容易令人心灰,难以坚持,反正短短数天的煲炼也可以见功,多煲一点得益便会越大,对于久未使用或少用的器材也可相应以短时间的煲炼使回复状态。


    那么在煲机以后的分别会在那方面呢?我想读者们也必心里有数,可以预计得到吧!不错,便是高、低频去得更尽,声音更从容畅顺,弱音部分分外清晰、精细,而低频轻易下潜得得更低、量感也更为丰满等。煲前与煲熟后的分别一句形容便是'开了声'进入了状态,对从未进行煲机程序的朋友的确值得留意如何正确地选择软件去尝试及体会一下煲机所带来的音效改善,不过受到家人或其它条件所限制的人士只好另想办法,或许可将音量妥协地调低一点或造好隔噪音的功夫才煲机吧!

    还想补充一点有关煲机的问题,只单一件器材煲炼会比较容易,如果只煲CD机最方便不过,只要按Repeat由它唱个七日七夜不关机也没有问题;而CD机至前级的讯号线也会一同煲,前级扭开正常音量则前级也可煲炼,而前去后级讯号线、后级、喇叭线在不接喇叭的情况下仍可以连接灯瞻或自砌电阻来煲,最重要是有Loading便成,喇叭要煲便无可避免要开声了,其造成的噪音问题会是煲机过程中最令人困扰的事情,宜小心处理,勿因此机时惹起与家人或邻居因此而争执,而热量高的后级也要留意散热是否足够,否则长时间工作令温度上升会有引致危险的可能性,读者若在进行煲机期间务须注意安全问题,特别是在离家外出的情况下去煲机,也再一次提醒各位瞻后级不宜在无人看管下长时间开机,因为万一市电供应有突然意外的变化便有可能会令灯胆出现不稳定的变化,后果难以估计,这情况就如同使用热水炉或煲汤睇火般,不怕一万,只怕万一。

    较激烈的煲法

    有一派资深的发烧友认为煲大喇叭时音量可以尽量调大,细喇叭则在最初的一百小时以正常音量,其后照样加大音量,约比正常聆听再加大一到两格令讯号落至低频时低音单元濒临拍边边沿而仍未拍边为止。这样煲喇叭在约十小时后单元旁边及背后的接线柱位都会产生热力,外部手感温暖,内里则已发热了。该派同道有感如此煲喇叭为最撤低、最有效及最快捷,正是各师各法,本人也尝试过这种方法,喇叭在进行大音压煲炼之后,起初声音会很sharp,大概是高音放得很尽的缘故,在完全煲透以后便会一切政党声音肯定是去得最尽,但这种煲机法需要对HIFI具有较深入的认识,一不小心留神容易对单元、分音器做成伤害,要认真考虑是否要冒险去获取最、最撤底的煲炼效果?条件上又是否容许呢?因为即使将喇叭面对面一只接反相后噪音仍然会相当巨大及令人吵耳难耐,我只想告之读者有这么一派一理论却不建议各位奉行之,还是依照温和的煲机程序去进行比较稳健,而成效上亦足够令人满意了。

  线材在音响体系的地位

    相信每一位发烧友对线材是不会陌生的,即使在最简单的发烧系统,也需要一对讯号线与音箱线。线材是连接器材之间的桥梁,但线材在整套系统中究竟起了什么样的作用,位置究竟有多重要,还有,一套系统中线材投资的比例应多少才合理,这也是多年来各音响发烧友争论最多的问题之一。我想从近期系统升级所得到的经验与大家共同探讨这个问题。

    我所拥有的系统并不高级,CD机是超值的飞利浦951,功放是丹特声IA270,音箱是卓丽Hiper 1#MKII,讯号线是MIT330,音箱线是NBS小飞龙。听音室长4.3M宽3.3M,地面铺化纤地毯,前后墙吊厚绒窗帘布,并作简单扩散处理。

    我所用的线材原来不是MIT与NBS,是怪兽I330与古河FS450。系统出来的声音解析力不足,高音延伸不足,高中音偏暗偏朦,中低音肥而低音出不来;整体上建立不起音场。听"丰收锣鼓"时应在最后的打击乐总是抢在最前面;人声定点大且总在音箱中间,不能后拉;适当音量大动态时时常低音单元拍边;音乐重播损失了许多细节;当时感觉最大声音趋向平面化,纵深的层次不明显。本来所用的三件器材虽不是高级货,但素质并不低,搭配也算合拍,再排除其他种种原因之后,我决定从线材入手对系统进行升级与"改造"。

    首先更换讯号线。众所周知,951是一只不错的CD机,有乐感及一定的解析力,但中低频密度不足,整体声音偏薄。为弥补951的不足,我选用了MIT330讯号线。MIT线以有肉、柔和、中低能量足著称,恰恰弥补了951的不足之处。带有"黑匣子"的MIT330需用不少的时间去"煲",新线的MIT高中音暗而滞,低音出得来却收不住。经过约400小时的煲线后才显出本色,与I300相比,可以说是高音通透柔和,清晰度大增,许多高频泛音都能表达。听《民歌蔡琴》"恰似你的温柔"中的吉他粒粒清脆,分隔度与节奏感好。中音密度增厚,歌手歌唱技巧与感情表露无遗,口形缩小并向后拉,基本能表现出录音室的空间感。听学友的"我应该"时能表现学友扎实唱功与歌词表达的感情,引人入胜。

    可是接着就有问题出来了。古河FS450音箱线的档次相比之下就低了一点,线的纯度不到导致高音过于锋利,人声质感失去了温暖而略带沙沥声,整体上音乐味配不上,改成双线分音作用也不大。因而我找来了NBS的小飞龙换上。原以为小飞龙因为解晰力好会使声音偏薄,但一试之下却是没问题的!经过一周的煲线后,整体效果就出来了。整套系统的声音表现出为高音通透而有解晰力,中音虽然不够厚暖,但也能表达出歌者的感情。低音方面打心口的低音还好,超低音虽不行但已是整套系统的最大表现了。

    经过这次线材升级后,我认为线材绝对是音响的一个大部分,不是体系中的配件。线材能直接影响系统的最后效果,就象换三大件一样,能给你一个明显的换机感觉。因而做为发烧友,在力所能及的时候绝对不能忽视线材的作用。


音箱的摆放位置

    音箱摆放的位置对音效表现有明显的影响,而对音场定位及低频尤为严重。以下是一般音箱摆位的要点,您不妨多加尝试:

    1,左、右音箱及聆听位置之间的距离应大致相等;

    2,书架式音箱摆放的位置不应太高或太低。通常的高度应与聆听者就座时头部位置相约;

    3,一般情况下,音箱不必做任何向内斜放,除非您的音箱扩散性差。

    音箱的各推动单元为机械装置,功放等电子器材的元件需要一定的物理老化,故每每全新的器材需要一段较长的时间做热身,才可将音响音效发挥至极点。热身期要有100小时左右,在此期间请以中等音量试听及热身。一般发烧友称这为"褒"机。

音箱的类型与性能指标

    音箱又称扬声器系统,它是音响系统中极为重要的一个环节。因为音箱的放音质量对整个音响系统的影响极大。目前,节目信号源设备和功率放大器的水平已做得很高,因此一个由优质音源、优质放大器和扬声器系统组成的音响系统,其放音质量就主要取决于音箱了。

    一、音箱的类型

    音箱的分类方法很多,在专业音响中常见分类如下:

    1.按使用场合来分:分为专业音箱与家用音箱两大类。家用音箱一般用于家庭放音,其特点是放音音质细腻柔和,外型较为精致`美观,放音声压级不太高,承受的功率相对较少。专业音箱一般用于歌舞厅`卡拉OK厅`影剧院`会堂和体育场馆等专业文娱场所。一般专业音箱的灵敏度较高,放音声压高,力度好,承受功率大,与家用音箱相比,其音质偏硬,外型也不甚精致。但在专业音箱中的**音箱,其性能与家用音箱较为接近,外型一般也比较精致`小巧,所以这类**音箱也常被家用Hi-Fi音响系统所采用。

    2.按放音频率来分:可分为全频带音箱`低音音箱和超低音音箱。所谓全频带音箱是指能覆盖低频`中频和高频范围放音的音响。全频带音箱的下限频率一般为30Hz-60Hz,上限频率为15KHz-20KHz。在一般中小型的音响系统中只用一对或两对全频带音箱即可完全担负放音任务。低音音箱和超低音音箱一般是用来补充全频带音箱的低频和超低频放音的专用音箱。这类音箱一般用在大`中型音响系统中,用以加强低频放音的力度和震撼感。使用时,大多经过一个电子分频器(分音器)分频后,将低频信号送入一个专门的低音功放,再推动低音或超低音音箱。

    3.按用途来分:一般可分为主放音音箱.**音箱和返听音箱等。主放音音箱一般用作音响系统的主力音箱,承担主要放音任务。主放音音箱的性能对整个音响系统的放音质量影响很大,也可以选用全频带音箱加超低音音箱进行组合放音。

    **音箱用于控制室、录音室作节目**使用,它具有失真小、频响宽而平直,对信号很少修饰等特性,因此最能真实地重现节目的原来面貌。返听音箱又称舞台**音箱,一般用在舞台或歌舞厅供演员或乐队成员**自己演唱或演奏声音。这是因为他们位于舞台上主放音音箱的后面,不能听清楚自己的声或乐队的演奏声,故不能很好地配合或找不准感觉,严重影响演出效果。一般返听音箱做成斜面形,放在地上,这样既可放在舞台上不致影响舞台的总体造型,又可在放音时让舞台上的人听清楚,还不致将声音反馈到传声器而造成啸叫声。

    4. 按箱体结构来分:可分为密封式音箱、倒相式音箱、迷宫式音箱、声波管式音箱和多腔谐振式音箱等。其中在专业音箱中用得最多的是倒相式音箱,其特点是频响宽、效率高、声压大,符合专业音响系统音箱型式,但因其效率较低,故在专业音箱中较少应用,主要用于家用音箱,只有少数的**音箱采用封闭箱结构。密封式音箱具有设计制作的调试简单,频响较宽、低频瞬态特性好等优点,但对拨声器单元的要求较高。目前,在各种音箱中,倒相式音箱和密封式音箱占著大多数比例,其他型式音箱的结构形式繁多,但所占比例很少。

音响调校初步

    其实声音的世界里,有著相当多奇妙及有趣的玩意。即使是价廉的器材,也可以藉由"技术"弄出不错的声音。我们的建议是,不管您手上器材是什么,价格是多少。应先将它弄清楚,玩尽兴,有了心得以后,再来谈换机也不嫌迟。          

    讯源以外的声音

    平常我们听音响,除了听到软体讯源放大的声音外,也会听到室内家俱。音响架的声音,这话怎么说。声音是能量的一种,扩大机以电能将音讯放大,经传送到线圈转变为磁能。然后吸引喇叭振膜,再推动空气,空气将此能量送到耳朵。使我们感觉到声音的存在,在传送的过程中,声能是向四处散射的。除了耳朵外也传到四周的物体上,物体受了能量之后。一部份会转化为动能并随之振动起来,这种振动又会推动空气产生具该物体特有音色的声音,声像就在这相互交织下传送再传送,影响再影响。形成了该环境自有的景像,我们称之为声底。         

    相信大家有的经验,家里的每个房间声底都未尽相同。而各房间亦会随著摆设以及家俱的多寡又会有不一样。那想一想同样的器材在不同的房间会一样吗,这样的差别有时的影响甚至超过器材本身。空间的问题之前谈过,现在专门来谈谈音响"架"的问题。                         

    一般的音响,我们会用承拖架来置放,即使是放在地上。地上也是承托的一种,当承托架受声波影响。自然会振动,而这个动能会传导到音响器材上。经由放大,再次的从喇叭跑了出来。我们从音响放在不同垫材上,就会发出不同声音的现象可察觉,另外声能同样会打到器材的壳子。壳子振动的"声音"传到线路上,放大后照样出来。我们听音响其实连架子,壳子都听了进去。这些"声音"到底影响"原音"有多少,那就看摆设及处理的方式了。我们希望的是影响愈少愈好,亦或是朝我们期望的方面去发展。若是不重视它,影响超过器材表现的情形是很容易发生的。                          

    各位不妨做做试验,将器材上(CD、扩大机、扬声器均可)放些重物,如书籍(最好多几本)或是枕头棉被看看。听听声音会变成什么样子。另外也注意一下,书本或是棉被的声音有没有跑进去。当实听时,没有人会把棉被放在器材上。这个实验只是给大家一个概念,声音的形成不仅只是器材。我们也可以自己来"制造"声音,至于"制造"好坏,须靠判断力的培养及不断的实验。当然吸取别人的经验也是必要,等 到有一天"技术"成熟了,配合器材的选择,终能拥抱自己想要的声音。     

    曾经我们看到市面上声音还不错的器材,打开来看线路,用料有时并没有什过人之处。而壳子却做的相当考究,扎实,我们多方实验,证实好声音与壳子有相当的关联。足见某些的音响制造商有注意到此点,我们选购器材时不妨用手敲敲看。外壳的声音,多少与该器材的声底有相当的关系,而在选购音响架的同时也,应以对器材相同重视程度来面对。
 
音响术语

FM(frequency modulation)调频

一种无线广播类型,其将音频波形作为变差编码进入载波信号的频率。一个中心频率为88.1MHz的FM电台会根据音频波的振幅传播一个频率变化范围从微小于88.1MHz至微大于88.1MHz的信号。

Frequency频率

振动或振荡的变化率。声音是振动在空气中的传播,能通过不同变化率的电信号来显示:低音调的声音通过缓慢变化的电压来显示,而高音调则由快速变化的来显示。频率以每秒周期数或Hz来测量。音频谱能常认为产20至20,000Hz。在无线电技术中,频率指电台的载波信号,如FM电台为88.1MHz或AM电台为1,010KHz。

Frequency response频率响应

显示元件如何平滑地产生音频信号的技术指标。典型数值是20至20,000Hz±3dB,表示元件能产生低至20Hz高至20,000Hz范围的声音,但声音响亮程度的变化不会超过正负3dB。若一个频率响应指标没有包括误差(正负分贝值)在内,实际上它是无意义的。

Graphic equalizer图示均衡器

有固定波段的均衡器。

Ground接地

理论上的零电位参考点,用来描述负连接。

Headroom净空,自由空间

以分贝表示,是指输入信号的最低电平和音频器件能正常处理不引至失真的最大电平之间的差异。

Heads磁头

磁带卡座的一种部件。录音时,它在磁带上产生磁场;放音时,它探测磁带上已有的磁场。大多数磁带卡座有独立的抹音磁头,通过使磁带上磁场无规化而抹音,从而可进行重新录音。

High-pass filter高能滤波器

一种分频电路,仅允许高于预定分频点的频率信号通过,而衰减低于分频点的频率信号。

Home theater system家庭影院系统

音视频组件的大聚集。要达到真正的环绕声电影声音统调效果,最少需要4个扬声器(两个在前,两个在后)。顶尖水准的系统另有一个杜比专业逻辑解码器,实际上为家庭影院系统增加了前中央声道扬声器和超低音扬声器。

HX Pro

指Dolby HX Pro杜比专业净空延伸。

Hz(hertz)赫兹

频率的标准单位,以德国物理学家Heinrich Hertz命名。赫兹数表示每秒周期数或每秒从一个基本状态开始以至恢复的变化循环数。在音频范围,基本状态是指没有声音时的空气压强或它的电学等效值(常电平DC信号)。赫兹值越大,表示音调越高。

IC(integrated circuit)集成电路

包含很多晶体管和电阻器的一块小型电子器件,它是大多数音频组件的基本组成部分。

IF(intermediate frequency)rejection中频抑制

用来在中频衡量AM或FM调谐器抑制外来干扰的能力,数字越大越好。

包含很多晶体管和电阻器的一块小型电子器件,它是大多数音频组件的基本组成部分。

音像之音场

    一套HI-END系统在重放音源时,存在着声音元素如何在三维空间中分布的问题,音素也就是声音元素,是指某一时刻声音综合组群中可独立表现的单元,比如其中的一个人声,或者一件乐器发出的声音。大脑是一个富于联想的思维器官,通过各种音素在三维空间的清晰分布,我们能联想出发出这些音素的歌唱者或乐队中的乐器在空间舞台中的真实分布状况,就如同在眼前形成一幅舞台表演形象,这种现象被称为"音像",因此,如果把我们前面评论的"音品"比作音乐的听觉语言的话,"音像"就是音乐的视觉图像。

    HI-FI提出与建立,一开始就是与音像结合的,即HI-FI系统把音源重放时应呈现清晰的音像作为凌驾于以往"高级"收音机或手提式录音放音机之上的基本条件。因此,作为HI-FI或者更高层次的HI-END系统,对音像具有很苛刻的要求。对这些要求,我们可以归纳为如下四个方面来讨论,即:音场、解析度、弱信号再现能力和质感等四个方面。这些问题我们将一一向朋友们介绍,今天我们先来讨论音场。

    我们里用来作为音像质量评价指标的"音场"是一个比较广义的要领,它泛指音素的三维空间分布全貌。具体包括音像舞台空间的大小。在听音室中所处的位置、音素群在音像舞台中的位置和音像舞台周围空间的透明度及气氛。

    音像舞台的大小和位置,可通过揣摩音素分布的边界位置体现出来。音场除有宽、深、高三个维外,音场的前幕幅中点线到达聆听席的距离也是一个重要的位置要素,它可以衡量音场的靠前或靠后。HI_END级器材对音场的理想要求是音场 应略等于音源的真实表现域,音场前沿到达听者的距离应等于场宽的一半左右为好,独唱演员或独奏演员都应该站听者正前言的新加坡 ,有偏离或动态摆动也不会离中央线太远,这一点十分重要。最后一个重要要求是:音素在音场空间中的分布应该具有均匀性,也就是说音素在音场中的分布仅取决于信源信息的指导,不受音场空间位置的作用而出现密一块稀一块之类的现象,就象电视屏幕那样,不应该有电视画面某一部份色彩特别浓或特别淡、特别深或特别浅,或某部份"像素"特别挤或特别蔬。

    上面所述音场是一种理想的音场,在一般家庭里是很不容易完全实现的,这是因为它不仅与器材本身有关(其中音箱的关系最重要,其次才是功放部份),同时也取决于音源软件所包含的音场信息,更取决于听音室的大小和结构,以及音箱在听音室中的摆位,聆听座与音箱的相对位置和高度等等,这些就不单是器材投资所能解决得了的问题。许多住房客厅或居室又小又不规则,一般还不能单独用来作为听音室,由于还要摆放各种东西,因而音箱的摆位很难随心所欲,甚至只能缝里插针,常常因为建筑结构上的左右不对称性(比如左面是墙右面是窗或左面是床右面是门等),这些都对正确音场的形成产生极坏的影响。所以,首要的问题是要保证好音场在听音者面前的居中性,往往较大幅度的调节左右声道音量平衡旋钮直到感觉上合理为止。

    至于音箱在室内的摆放方法,有些烧友提出"317"规则,还有人提出另一些规则,这些方法我们将在其它节目时间里向朋友们介绍,有的中高档音箱在说明书上注明了放置方法,这些规则都有一定的参考价值,但在实际应用中针对你的听音环境和音箱来讲并不一定最好,也不一定行得通。比如,如果需要音箱放在1/3房间长度的地方同,就只能在专业听音室内才能实现,一般兼作其它用途的房间这样放音箱就会挡路,因此,一切还要靠自己因地制宜地反复实践和努力,摆出一个至少还能说得过去或者进一步属于比较好的音场来。

    前面讲到音场规模与音响器材的关系仍是很密切的,虽然其重要性略次于摆位和听音室结构。首先音箱与音场的关系是不言而喻的,一般来说优质音箱厂家在设计音箱时都作了充分考虑,这种音箱只要摆放合理,是会比较好的音场来的。至于功放性能,对音场的影响也不小,功放的功率越大,形成音场的能力也越大,

    最后我们来谈谈音场空间的透明度与气氛问题,这确实属于一个十分微妙的问题,对初哥乃到于一些中级烧友来讲都往往是难以体会的问题,为了了解这一问题,我们可以拿一张在世界著名音乐厅的现场录音片在系统上重放一下,如果它使人能象坐音乐厅内聆听现场音乐会那样,不仅听到交响乐的立体演奏声,而且明显能感觉出这种演奏是一种十分字根表、透明的环境背景中演奏出来的,在音乐间隙连翻乐谱的声音和前排观众的小声叹息声都能十分逼真地再现出来(当然这也涉及到我们将要谈到的小信号再现能力),而一旦交响乐队管弦齐鸣、鼓声震天、如万马千军步入**时,强大的音乐主体与音乐厅空间结构四壁回声形成一种极其壮观的鸣响(也就是我们常说的堂音)给人以十分贴切的身临其境感觉,这样就达到了HI-END器材对音像舞台周围空间透明度与气氛的理想要求。

    当然,有经验的烧友都知道,音场是完全可以空墙出室的,要不然就不会有"音场宽深、直抵对街"的广告词了,但是音场的范围毕竟是包容下一个乐队,要想包容一个音乐厅的全部气氛是非常困难的,所以,我们应该以现实客观的对待一套HI-END音响系统。

影响声音的基本因素

    器材的配搭,是件要命的事,你打开音响杂志,光是叫你弄清楚世界上有多少牌子,相信没有人够胆给你答案,加上每个牌子都会生产不同的型号,每个牌子的音色取向有所不同,就算你有本事,把器材配这配那,你只可能凭经验(有时是直觉)把手头仅有的器材或线材作搭配而已,是否适当,测试结果很多时都有所争论,所以各位只可作参考。

    下面谈谈其它影响声音的基本因素,也是因为有了这些因素,发烧友才有东西可玩,而对这些因素能加以了解,校声时肯定有很大的帮助。第一是环境因素,第二是人的因素。这里我们只谈环境的因素,这因素最为复杂,因为它包括了以下几个特性:一.聆听环境的共震特性;二.外来震动;三.声音的回输震动;四.聆听室的声学特性

    环境的共震特性若用频谱测试分析仪去测试的话,房间的频率响应特性曲线会像舞龙般高低起伏不平,就算你用的器材如何高级,也必受制于这房间的音响特性,你如何消除或减轻这房间先天的影响,使响应平直,令组合有好的表现,就要看你玩的功夫了。房间的比例以长方形比较容易处理,最忌的是四方形的房间,驻波特别多而厉害,难以处理,稍懂音响的朋友都知道这差不多是死症,很难玩得靓声。

    外来震动:有些聆听室邻近路边或贴近工场,或隔壁是升降机房或泵房之类,很多时候都受到汽车经过时和机器开动时所造成的噪音或超低频影响,令音响器材受到震动而声音模糊不清,这种情况看来只有搬屋或模仿录音室设计,在屋内做一个与屋外隔绝而浮起的房间,做足隔音措施,才可避免。

    声音回输震动:当音响组合工作时,声音会震动墙壁、天花板和地面,更有部分直接或间接冲击音响器材,这些震动经由不同的媒介,例如音响架、空气等以不同的速度和强度先后回馈到器材上,引起器材震动和产生自身的谐振,导致工作中的器材线路上产生微妙的电子流动变化而令声音变化,结果使声音模糊的现象,可以说是一种失真。市面上大部分的承放音响器材的配件,例如钉脚,什么木、钢砂之类的产品,都是为了对付这类谐振而生产的。

    聆听室的声学特性:除了上面所谈过聆听室先天因比例和形状对频率特性产生的影响外,每个聆听室的建造时的材料,和日后在室内做装修时的材料、布置、家具、窗帘等一切都会把原有先天的音响特性改变,这些改变部分可预测或是计算到,但很多未知因素,例如装修的施工,日后搬入时用的家具的材质,地毯的厚薄,摆设的位置等,是难以估计的、也没有数据可用的,就算是音响工程师也拿它没办法。正因为如此,聪明的发烧友想当然地去胡乱设计一番,他们多在以后才细意去分析房间的声学特性,再用目前市面上可以用作调音的材料,或是用例如RGP板、Room Ture、Sonex、扩散板之类的专业材料去调好房间特性,往往比盲目地自以为是地去乱搅一通、到头来难以收拾好。

规格与数字的迷惑

只要是商品,都会有些规格数字,有些重要有些不重要。到7-11买罐饮料,别光是喝得不亦乐乎,仔细瞧瞧成分标示,原来90%都是糖水。到市场秤斤论两的买蔬菜,除了付钱之外,它还伴随着其它的规格数字,例如维它命含量、矿物质等;但买卖双方都可以不知道,生意照样做、蔬菜照样吃,菜农也照样种。

可是某些商品的规格数字极其重要,制造者及卖方应公布周知,买方也应主动索求。正巧前几天看到朋友买Siltec含银锡丝在用,随口问了一句:含银成份若干?他竟然说不知道。拿起包装盒审视,有提到含银,但没提到比例,因此究竟是3%、5%还是8%?恐怕真的没人知道。

现在的音响迷几乎都会购买含银锡丝,而且似乎也知道含银锡丝熔点略高,所以烙铁瓦数也要高一点,最好是用恒温烙铁。但若再问共晶点温度是多少,竟然没有一个人知道。

焊锡是固体,当接触高热时,焊锡会逐渐熔解,由固态熔解成液态的过程可用一条曲线表示,称之为液相线。当高热离开,熔解的焊锡就会逐渐凝结成固态,此过程也可以用一条曲线表示,称之为固相线。而液相线与固相线交叉的那一点,即是共晶点,代表最正确的焊接温度。

许多年前,音响迷想买锡丝,几乎都只有63/37这种─锡占63%、铅占37%。 真正质优、无杂质的锡铅锡丝在市面上几乎是买不到的,有两个途径,一是向美国NASA太空总署购买─但它应该不会卖,一是到日本秋叶原购买。因为美国NASA航天飞机使用的焊锡就是日本Almit公司生产的KR-19MR,标准不含银的锡铅焊锡。

这家公司很怪异,创办人泽村经夫是颇有名气的诗人及民俗学者,也曾当选过地方性议员。据说,缘起于Toshiba电饭锅,促使泽村经夫走向金属熔接的路子。初期公司之营运甚差,赔了不少钱,幸好有银行借款,才逐获得生机,现时员工已超过50位。

泽村经夫谈生意一向不来英文,若有欧美厂商接洽,泽村先生就不理会;也有可能是他并不懂英文。但当Almit的KR-19送至美国检定后,太空总署就找上他签约。是不是航天飞机不适用含银焊锡?用了之后会爆炸?当然没那幺严重,但事实是:NASA航天飞机指定使用锡63%、铅37%的焊锡─因为Almit KR-19没有酸化物,没有杂质。

有音响迷奇怪为何含银锡丝焊的焊点并不会很亮─要真会亮可能就麻烦了。银成分应被包在里面不外露,若露出焊点之外,没多久就会氧化变黑。无铅的银锡锡丝颇为流行,比例大约是银4%、锡96%,另外还外加2%的松香助焊。焊点焊妥后,也不必刻意清洗干净。

当锡铅比例是63/37时,固相线温度是183度C,液相线温度是184度C,几乎完全相同─比重约8.4。当65/35比例时,温度分别是183度C及186度C。95/5比例时,温度分别是183度C及224度C。若是60/40,则是183度C及190度C。焊接时一定要用恒温或控温烙铁?一般固定式烙铁不行?若说用普通烙铁焊接声音比较差─打死我都不会信;当然选把好烙铁也有其必要。 (注:度C是指摄氏温度之意,标准摄氏温度符号存成HTML文件有问题 。)

音响用焊锡,特别是DIY用的焊锡,若超过1mm粗,大概就是个笑话。1mm焊接喇叭座已足敷使用,零件接脚的焊接,最好选细锡丝,例如0.6mm。规格成份相同时,锡丝是愈细愈贵,细锡丝也比较好焊。若是2mm以上,那最适合焊接水管!

美国Weller烙铁很贵,一个控温器带一只烙铁要台币一万元!使用者说真是好用,连续焊接温度不会降。控温器可调温度,但问起可连续焊接是用什幺规格数字表示?手上有四把Weller烙铁的人都不知道。到材料行问问看,保证没人知道─因为Weller没提到此项规格。 控温烙铁最重要的就是每分钟连续焊接次数,典型值应是26/M,表示每分钟能焊接26次。买Weller的人要知道,进口Weller及卖Weller的人也应该知道,否则它到底好在哪里?

控温烙铁适合线上量产用,若不常连续焊接,例如一般DIY迷,买把日制Hakko/DASH就很好用,30W尖头式,4%含银都没问题。每次用完后务必清洁烙铁头,一把陶瓷烙铁绝对可用好几年。有无含金焊锡?目前是没有,因金与锡不能溶合成一体。

美国AB碳精电阻停产了,其实很多人都已料到这是迟早的事。纯碳电阻之最佳特性就是完全无感,但它也有两大缺点,一是铁定会因吸收水份变质而造成阻值升高,一是电流杂音系数比一般电阻高。 或许管迷坚信碳精电阻声音好,事实上有不少国外管机厂商早就改用线绕无感电阻,而且宣称音质比碳精还要好。

OK,很多人都在卖无感电阻,问他无感电阻的电感量是多少?保证也没人知道;买卖双方都不了解。电阻的电感量与频率有关,例如:<0.002μH/0.2MHz─这是IRC无感电阻标称值,代表它的电阻在200KHz频率时,电阻电感量绝不高过0.002μH;这样你懂了吧? 电阻的杂音呢?它与阻值高低有关,以最常用的金属皮膜为例,高级品可做到0.1μ/V,普通品则是0.5μ/V;美国SEI电组就有标示电流杂音。

要想降低电阻的杂音,除了选高级品种外,记得:一、选低阻值电阻,二、工作电压不要太高。 以上所提的规格数字是大家都不知道,厂商也经常不公布。但若厂商标示在说明书上,卖方及消费者却视而未睹,甚至加以曲解,您认为如何?这种事却一直在发生。

话说六年前国内某汽车杂志,因刊登一篇有关平衡式放大文章,造成作者与厂商间有些不愉快。那位作者在文章中提到平衡式不一定好,有些机器也是假平衡。于是厂商不爽,找人投稿反驳。

在国内,装汽车音响还算是大生意,一部70万的车可以装30万的音响,电瓶也得更新─车主可不愿为家里添购30万音响。主机当然是在前座,放大器有时安置在后行李箱,于是由前驾驶座到后行李箱必需拉一条长长的讯号线─问题就出在这条讯号线。

厂商说这条长长的讯号线会感染杂音,解决的方法就是先经「平衡式发射器」,变成平衡式讯号线再接到后级放大器,这样就没有杂音干扰。《交直流》的读者大概都会想到发射器应该就是转换器,它可以利用电子线路,或是变压器,将非平衡unblanced转换成平衡balanced接续。

家用音响也讲究平衡式接法,但似乎也没有人知道,同一台Hi-End后级,若采平衡式接法,失真会增加、讯号杂音比会降低!面对特性劣化状态,代理商、经销商、杂志评论员依然振振有词:balanced接法比较好听。

在《交直流》杂志上常看到真平衡、假平衡的说法,笔者不能同意。平衡就是平衡,不应有真假之分。探讨平衡,一定要考虑输入及输出。后级放大器的负载是喇叭,没有平衡或不平衡的问题;但输入端就有可能是平衡。 后级输入采平衡接法很简单,只要将反相讯号cold拉到回授端即可,这也正是平衡接法劣质化的主因。因为:后级没必要,也没法做平衡式放大结构;桥接-BTL不是为了接续而是为了提高输出功率,所以请勿混为一谈。

前级为兼顾输入及输出,所以会有平衡式放大结构。但不论是:一、采用两组线路做正相及反相放大,二、以IC反相放大取得cold讯号,还是三:以变压器取得反相讯号,对不起,它们都是真平衡。一的情况最复杂,成本也较高,stereo的全balanced,就要有四组完全相同的放大电路。但三也不差,高品质变压器也不便宜,性能也很好,Jeff Rowland前级就是利用变压器取得反相讯号。

Mark Levinson、Krell、Threshold、MBL这些Hi-End、Hi-price后级都有平衡式输入,有机会请详阅原厂说明书,比较讯噪比、总谐波失真、频率响应之特性,只要厂商敢登,笔者就敢以人头担保:balanced比较差!但你可能查不到,因为它们都不刊登;只有日本Accuphase敢说实话,平衡输入与非平衡输入规格齐全。

平衡式接续的优点是:可长距离传送,但音响迷若是以客厅做聆听室,就无必要采平衡式接法。平衡式接驳完全不能提升音质,反而会劣化音质,特别是后级,它就是使平衡式劣质的真凶。各杂志主笔请记住上述这句话,有机会访问国外厂商设计师时,一定要他提出确实的数据,绝对不要让他含糊混过─但我保证他支支吾吾的提不出balanced的规格与数字。

那有没有假平衡?无任何反相放大装置的就是假平衡,进口Hi-End机也曾玩过这种飞机,例如瑞士名牌Revox。 至于车内那条讯号线,真有必要花钱另购发射器吗?笔者开小车,没换音响,故不敢肯定,但预测只要将讯号线做成具有方向性,就有可能避免杂音干扰。不仅车内音响,一般CD到前级、前级到后级的家用音响,都应该以具有方向性的讯号线连接─请大家试试看。

在电器店及大卖场,或是邮购目录上都可看迷你音响组合,有手提式、有床头式,几乎都是马来西亚或越南制造的日本品牌。但真他※的贱,明明没几瓦,却贴张1400W的卷标纸!一只1400W的变压器,比它整台还重。面对这种公然欺骗消费者的行为,还真是没办法。虽然它们加注PMPO功率,但消费者根本无从了解,甚至音响高手也不知道那1500W是如何「计算」出来的?SONY/PIONEER/KENWOOD以及AIWA/SANSUI/PANASONIC这些大厂在玩数字游戏,你要如何对消费者解释?

有一种省电灯杀,价格不低,号称21W的亮度超过60W灯杀。电灯杀的30W或60W ,指的是消耗功率,功率数字愈高愈耗电。至于亮度或照明度,以前是以烛光表示,现在可能是以流明─Luminous表示。省电灯杀确实耗电量较低,但其亮度也没有广告宣称般那幺高,用照度计一测就知道它的lux是多少;以本人几年来的使用,它不单是价格比较贵,故障率也比较高,并不划算。

金鼎电池在几年前自称它的电能是一般碱性电池的七倍,但现在就已不再如此自夸。很简单,接上负载测试就知,怎幺可能有七倍? 笔者层经测过,以电阻做负载,与日本进口碱性电性电池相比,还不到三倍!

还有一个数字扑朔迷离,但与音响无关,就是进入2000年1月1日是否就进入21世纪?或者进入2001年1月1日才算进入21世纪?由于意见过于纷奇,学者、宗教团体、媒体、政府机关,大致以2000年元旦就是21世纪的开始;有些科学家虽然不同意此说法─如**博士─但都不愿正式表示意见。似乎英国人比较认同2001年元旦才是二十一世纪,因此这个千禧年还是20世纪。

最近似乎有了改变,包括报纸大标题「世纪末冠军...」的出现,显然大家已逐渐接受2001年才是21世纪的开始。

两台扩大机,频率响应分别是20Hz~15KHz及15Hz~18KHz,纯以规格数字评比,后者优于前者,但实际聆听,后者不一定优于前者。音响不同计算机,计算机CPU比较,386优于286,486优于386,586优于486。

你认为计算机真是这样吗?早期买一台24bit扫瞄器,600x1200光学分辨率。后来看到新机种都是48bit,于是一换再换,目前使用48bit/1200x2400光学分辨率扫瞄器,但扫图品质却远逊于旧机种;不是差一点,是差很多。

为何新型48bit/1200x2400比不上旧型24bit/600x1200?纯以规格数字言,新机种绝对优于旧机种。但新机种的价格比较便宜,规格数字还大幅提升,根据笔者猜测,偷工减料之处就是隐藏另一项规格─CCD,因CCD才是扫瞄器的心脏。旧机种的采用的CCD是高级品,价格经往往超过80美金,故依然能够很轻松的以24bit/600x1200狂胜新机种48bit/1200x2400!

电视机有「水平分辨率」规格,400线、500线或700线;目前NTSC系统绝不超过400线,而已被淘汰的LD影碟则在425线以上。但观赏LD,其画质仍比不上电视晚间新闻及八点档连续剧。问题在于另一个规格才重要,就是「视频讯号杂音比」,可是却常被忽略。

当年Pioneer最top的影碟机曾做到53dB,美国Runco更高至54dB,但电视台的标准都在60dB以上,它的专业摄影机更超过70dB!目前风行的是DVD,据说高级机种接近65dB。有空请多比较,好好的、确实的架设天线─不能以catv联机,以「晚间新闻」做比较,不是危言耸听,你可能会发现:府上DVD画质还是比不上电视台节目。

很不幸的,据说在顶楼架设天线,仍无法接收无线电视台的节目。据了解,有线电视CATV的强波器,会刻意干扰无线电视台的画面!

产地证明也常是音响器材选购时的盲点,很多人知道许多日本品牌并非在日本制造,而是在马来西亚、越南、新台币或中国大陆等地生产。这没关系,品牌归品牌、产地归产地,不算是欺骗。

但若是在台湾制造,却宣称德国原装进口,就是欺骗。购买德国HECO及DUAL或是凤诚音响、ELEO的产品,要特别问清楚是否原装进口,以免被骗。

喷墨打印机的墨水匣是消耗品,以EPSON原厂墨水匣为例,我买的是包装纸盒上打印made in USA,但拆开内部却是墨西哥制造!所以美国制造的只是纸盒。EPSON这样标示没错,但一肚子火,真是它xx的。

有些DVD杂志每期赠送2张DVD,真是便宜,因正版DVD每片至少500元!赠送的DVD虽无精美包装,但都是合法的压制片,不是烧录片。

可是这种赠送品的品质与正版不同,它是4:3,但故意不做修正,因此人人有张马脸─上下画面比较长!若你拨电话询问,对方回答:赠送品不要钱,你想看标准16:9,请买正版片!

有张《猎杀U571》DVD,正版只卖168元;同时它也有六百余元的版本在卖。168元的《猎杀U571》也是品质有问题─影音不同步!
作者: zgmfx10akira    时间: 2012-4-30 15:42
功放与音箱的配接

    在设计、安装一套音响系统时,不免遇到功放与音箱的配接问题。从艺术方面考虑,功放与音箱的配接在音色方面应冷暖相宜、软硬适中,最终使整套器材还原音色呈中性。从技术方面考虑,功放与音箱配接有下面几点注意:功率匹配;功率储备量匹配;阻抗匹配;阻尼系数的匹配。如果我们在配接时认识到上述四点,可使所用器材的性能得到充分的发挥。

    一、 功率匹配:为了达到高保真聆听的要求,额定功率应根据最佳聆听声压来确定。我们都有这样的感觉:音量小时声音无力、单薄、动态出不来,无光泽、低频显著缺少,丰满度差,声音好像缩在里面出不来。音量合适时声音自然、清晰、圆润、柔和丰满、有力、动态出得来。但音量过大时,声音生硬不柔和、毛糙、有扎耳根的感觉。因此重放声压级与声音质量有较大关系,规定听音区的声压级最好为80~85dB(A计权),我们可以从听音区到音箱的距离与音箱的特性灵敏度来计算音箱的额定功率与功放的额定功率。

    二、 功率储备量匹配:音箱:为了使其能承受节目信号中的猝发强脉冲的冲击而不至于损坏或失真。这里有一个经验值可参考:所选取的音箱标称额定功率应是经理论计算所得功率的3倍。

    功放:电子管功放和晶体管功放相比,所需的规律储备是不同的。这是因为电子管功放的过荷曲线较平缓。对过荷的音乐信号颠峰,电子管功放并不明显产生削波现象,只是使颠峰的尖端变圆。这就是我们常说的柔性剪峰。而晶体管功放在过荷点后,非线性畸变迅速增加,对信号产生严重削波,它不是使颠峰变圆而是把它整齐削平。有人用电阻、电感、电容组成的复合性阻抗模拟扬声器,对几种高品质的晶体管功放进行实际输出能力的测试。结果表明,在负载有相移的情况下,其中有一台标称100W的功放,在失真度1%时实际输出功率仅有5W!由此对于晶体管功放的储备量的选取:
  高保真功放:10倍
  民用高档功放:6~7倍
  民用中档功放:3~4倍
  而电子管功放则可以大大小于上述比值。

    对于系统的平均声压级与最大的声压级应留有多少余量,应视放送节目的内容、工作环境而定。这个冗余量最低10dB,对于现代的流行音乐、蹦迪等音乐,则需要留有20~25dB冗余量,这样就可使得音响系统安全、稳定地工作。

    三、 阻抗匹配:它是指功放的额定输出阻抗,应与音箱的额定阻抗相一致。此时,功率处于最佳设计负载线状态,因此可以给出最大不失真功率,如果音箱的额定阻抗大于功放的额定输出阻抗,功放的实际输出功率将会小于额定输出功率。如果音箱的额定阻抗小于功放的额定输出阻抗,音响系统能工作,但功放有过载的危险,要求功放有完善的过流保护措施来解决,对电子管功放来讲阻抗匹配要求更严。

    四、 阻尼系数的匹配:阻尼系数KD定义为:KD=功放额定输出阻抗(等于音箱额定阻抗)/功放输出内阻。由于功放输出内阻实际上已成为音箱的电阻尼器件,KD值便决定了音箱所受的电阻尼量。KD值越大,电阻尼量越重,当然功放的KD值并不是越大越好,KD值过大会使音箱电阻尼过重,以至使脉冲前沿建立时间增长,降低瞬态响应指标。因此在选取功放时不应片面追求大的KD值。作为家用高保真功放阻尼系数有一个经验值可供参考,最低要求:晶体管功放KD值大于或等于40,电子管功放KD值大于或等于6。

    保证放音的稳态特性与瞬态特性良好的基本条件,应注意音箱的等效力学品质因素(Qm)与放大器阻尼系数(KD)的配合。这种配合需将音箱的馈线作音响系统整体的一部分来考虑。应使音箱的馈线等效电阻足够小,小到与音箱的额定阻抗相比可以忽略不计。其实音箱馈线的功率损失应小于0 .5dB(约12%)即可达到这种配合。

几种喇叭的发声方式

    目前绝大多数的喇叭都还是用传统的锥盆式单体前后运动发声,比较学术性的说法,这些喇叭叫电动式(Electrokinetic Dynamic)或动圈式(Moving Coil)。早在一八七七年德国西门子的Erenst Vemer就获得了动圈式喇叭的专利,不过真空管迟至一九0七年才正式运用,而爱迪生最早的唱机是唱针直接带动振膜而后经号角放大发声,所以西门子的专利一直没有用上。一九二0年美国奇异公司的Chester Rice与Edward Kerrog还有爱迪生贝尔公司的P. G.Hokuto才首度发展出实用的动圈式喇叭,七十多年来,除了材料不断改良外,你记为喇叭科技真的有进步吗?下面是几种常见的喇叭发声方式:

    一、动圈式。基本原理来自佛莱明左手定律,把一条有电流的道线与磁力线垂直的放进磁铁南北极间,道线就会受磁力线与电流两者的互相作用而移动,在把一片振膜依附在这根道线上,随著电流变化振膜就产生前后的运动。目前百分之九十以上的锥盆单体都是动圈式的设计。

    二、电磁式。在一个U型的磁铁的中间架设可移动斩铁片(电枢),当电流流经线圈时电枢会受磁化与磁铁产生吸斥现象,并同时带动振膜运动。这种设计成本低廉但效果不佳,所以多用在电话筒与小型耳机上。

    三、电感式。与电磁式原理相近,不过电枢加倍,而磁铁上的两个音圈并不对称,当讯号电流通过时两个电枢为了不同的磁通量会互相推挤而运动。与电磁是不同处是电感是可以再生较低的频率,不过效率却非常的低。

    四、静电式。基本原理是库伦(Coulomb)定律,通常是以塑胶质的膜片加上铝等电感性材料真空汽化处理,两个膜片面对面摆放,当其中一片加上正电流高压时另一片就会感应出小电流,藉由彼此互相的吸引排斥作用推动空气就能发出声音。静电单体由於质量轻且振动分散小,所以很容易得到清澈透明的中高音,对低音动力有未逮,而且它的效率不高,使用直流电原又容易聚集灰尘。目前如Martin-Logan等厂商已成功的发展出静电与动圈混合式喇叭,解决了静电体低音不足的问题,在耳机上静电式的运用也很广泛。

    五、平面式。最早由日本SONY开发出来的设计,音圈设计仍是动圈式为主题,不过将锥盆振膜改成蜂巢结构的平面振膜,因为少人空洞效应,特性较佳,但效率也偏低。

    六、丝带式。没有传统的音圈设计,振膜是以非常薄的金属制成,电流直接流进道体使其振动发音。由於它的振膜就是音圈,所以质量非常轻,暂能返应极佳,高频响应也很好。不过丝带式喇叭的效率和低阻抗对扩大机一直是很大的挑战,Apogee可为代表。另一种方式是有音圈的,但把音圈直接印刷在塑胶薄片上,这样可以解决部分低阻抗的问题,Magnepang此类设计的佼佼者。

    七、号角式。振膜推动位於号筒底部的空气而工作,因为声音传送时未被扩散所以效率非常高,但由於号角的形状与长度都会影响音色,要重播低频也不太容易,现在大多用在巨型PA系统或高音单体上,美国Klipsch就是老字号的号角喇叭生产商。

    八、其他还有海耳博士在一九七三年发展出来的丝带式改良设计,称为海耳喇叭,理论上非常优秀,台湾使用者却很稀少。压电式是利用钛酸等压电材料,加上电压使其伸展或收缩而发音的设计,Pioneer曾以高聚合体改良压电式设计,用在他们的高音单体上。离子喇叭(Ion)是利用高压放电使空气成为带电的质止,施以交流电压后这些游离的带电分子就会因振动而发声,目前只能用在高频以上的单体。飞利浦也曾发展主动回授式喇叭(MFB),在喇叭内装有主动式回授线路,可以大幅降低失真。这些设计目前都不是主流,我们有机会再来探讨。

甲类功放音质醇厚原因

    甲类功放以其独到的醇厚甜美音色在发烧圈中享有盛誉。从笔者接触过的多款进口和国产功放来看如,从深层次的技术方面讨论不多,笔者现就放大器电路设计原理方面谈谈这个问题。

1.采用MOS FET金属氧化场效应功率管

    在甲类功放中使用MOS FET已是许多高档功放靓声的法宝之一,这种具有类似电子管特性的管子使功放音色平添许多暖意。列如,CYMET AM50机末级采用4对东芝MOS FET名管K1529,J200,著名的"金嗓子"甲类功放也采用该管。AM50机为充分发挥该管的性能,在放大器输入,推动级也全部采用场效应管,使前后级音色更加温馨迷人。MOS FET具有负温特性,工作状态非常稳定,故特别适合高热度的甲类放大器。

2.设计风冷式恒温散热器

    甲类放大器效率很底,末级发热量很大,一般均配以大型散热器装置。传统散热方式对甲类放大器来说有两点不利之处,一是散热器温度随室温变化很大,这可导致音色的变化。甲类放大器的末级必须具有一定温度,温度太底则音色不佳,许多发烧友发现热机比冷机好听就是这个原因。其二是传统的散热器的预热过程太长,在冬季往往数小时不能达到理想的温度。AM50机采用独特的风冷式恒温散热器。

3末机采用无负反馈电路

    研究发现,负反馈电路特别是大环路负反馈会有损音频放大器的听感,特别是瞬间响应。列如钢琴声及人声表现在大环路负反馈时音色明显不如无大环路负反馈时。许多听过AM50机的发烧友都认为该机人声,琴声特别靓,泛音特别丰富,在完全是成功应用无大环路负反馈的结果。国内品牌有(钟神,八达等)。

    (最新的国外音响资料显示,放大器采用局部和适当的负反馈,不仅可大大降低失真,而且对瞬态响应无太大损害)

  甲类、乙类和甲乙类放大器有何不同

    甲类(Class-A)放大器的输出晶体管(或电子管)的工作点在其线性部分中点,不论信号电平如何变化,它从电源取出的电流总是恒室不变,它是低效率的,用作声频放大时由于信号幅度不断变化,其实际效率不可能超过25%,可由单管或推挽工作。甲类放大器的优点是无交越失真和开关失真,而且谐波分量中主要是偶次谐波,在听感上低音厚实、中音柔顺温暖、高音清晰利落、层次感好,十分讨人喜欢。但一直因为耗电多,效率低,容易发热和对散热要求高而未能在大功率的放大器中得到广泛使用。由于器件长期工作于大电流高温下,容易引起可靠和寿命方面的问题,而且整机成本高,所以制造甲类功率放大器出名的厂家,现在已大多停止生产晶体管甲类功率放大器。

    乙类(Class-B)放大器的偏置使推挽工作的晶体管(或电子管)在无驱动信号时,处于低电流状态,当加上驱动信号时,一对管子中的一只半周期内电流上升,而另一只管子则趋向截止,到另一个半周期,情况相反,由于两管轮流工作,必须采用推挽电路才能大完整的信号波形。乙类放大器的优点是效率较高,理论上可达78%,缺点是失真较大。

    甲乙类(Cass-AB)放大器在低电平驱动时,放大器为甲类工作,当提高驱动电平时,转为乙类工作。甲乙类放大器的长处在于它比甲类提高了小信号输入时的效率,随着输出功率的增大,效率了增高,虽然失真比甲类大,然而至今仍是应用最广泛的晶体管功率放大器程式趋向是越来越多的采用高偏流的甲乙类,以减少低电平信号的失真。

你的系统Hi-Fi吗?

    大多数发烧友谈论的话题除了音乐之外莫过于器材了,从自家的土炮到价值千金的洋枪洋炮,一应俱全,其中不乏有道听途说,人云亦云者。舌战之后,不免要来个"**拼",一决雌雄为快。纯粹的器材发烧友更甚,他们的精力全部集中在器材的表现和更新换代上,对美妙的音乐几乎到了"听而不闻"的地步,只听其音,不知其乐,管它是贝多芬还是张学友,还是无聊至极的效果测试片。特别是土炮发烧友,在殚思竭虑并付诸行动之后总期望自己的作品有上乘的表现,以证实汗水没有白流。至于花钱买器材的朋友更要证实一下大把钞票换来的机器是否物有所值。那么如何评判一套系统的水准呢?你心中是否已有一把尺子?这恐怕是一个非常现实的问题?令人啼笑皆非的是有的朋友把左右声道对调甚至相位接反却全然不知,还大谈其音质如何动人,音场如何深远。因此我觉得发烧友欣赏水平还有待提高,应从基本功练起,不能好高骛远。

Hi-Fi的标准

    关于Hi-Fi定义,书籍报刊上已探讨过无数次,这里不再赘述。其实不同国家的不同厂家都有其对Hi-Fi器材的电声指标最低要求,我国的《国标》也有相应规定。因此,严格地说,无论你的器材有多么靓声,如果没有优良的电声指标,都不能称之为Hi-Fi。事实上,没有高的电声指标的系统,也只可能在某些方面讨听众的喜爱。举个明显的例子胆机表现人声**乐可谓是其专长,但是一些Hi-End级的胆机实测数据表明,其谐波失真并不低,有的可达1%,已达到喇叭失真率的数量级。信噪比低,转换速度慢,功率小是其弱点,象美国Hi-End级的单管胆机CARY CAD-300SEI的功率中是十瓦,其适用范围大受限制。

    现在一般所说的Hi-Fi已不是严格意义上讲的,而是相对而言的,君不见贴着Hi-Fi标志的台式录音机、随身听比比皆是。一般发烧友在缺乏仪器的条件下也不可能对器材进行测试,因此都是凭主观听感来评定,因各人喜好取向不同,其结果必然带有主观色彩。

    从我个人发烧准则来讲,我要求一套Hi-Fi的重放系统能忠实地再现录音软件所记录的全部信息。我这里强调的是忠实地再现软件中的信息而不是一些文章上说的原汁原味地再现现场效果,这是要以软件记录的也是原汗原味的现场效果为前提的。因此我想把Hi-Fi录音和Hi-Fi重放器材分开讲,因为:
'
    1、一般发烧友不能涉及录音过程。

    2、Hi-Fi录音不见得就有现场效果。对于同一现场演出,不同的录音师,必然有不同的录音效果。因为要考虑到录音器材、录音制式、混音手法的不同,其中也含有主观的成份。因此如果让一个乐队重复地演奏两遍,而叫两个录音师用自己选用的器材、自己的方式录制两张唱片,那么在乐器的定位、音场宽深、声音平衡度、混响等方面均可能有不同的表现,谁能说他的录音就是原汁原味呢?即便是音乐会的现场听众也有离舞台远近之别。特别是流行音乐和电子音乐的录制,多数情况下根本不存在"现场"(现场录音LIVERECORDING除外),在现代音乐的多路同期或分期录音中,各个乐器或各组乐器是在消声室中分开同时或先后录音再缩混而成。MIDI(MUSICAL INSTRUMENT DIGITAL INTERFERENCE)技术的运用使多种电子乐器的录音不用MIC而通过导线来进行,"现场"何来之有?

    我认为在Hi-Fi重放中,现场效果应是指录音师塑造的一个声音环境,可能与真实的现场十分接近,也可能根本没有真实的现场。

    现场效果是如何让你感觉得到的?我想重放效果必须具备以下几个条件:

1)乐器(人声)音色的真实感;

2)定位清晰,富有空间感;

3)适当的混响;

4)高信噪比;

5)足够大的动态范围;

6)均衡的声音比例。

    这六个方面其实就是发烧友常用的五花八门的形容词的概括。

    一个好的音乐软件应该具备以上特征,重放系统在重放软件时如具备这些特征,我们就称之为Hi-Fi,反之则是Low-Fi。

    有经验的人,而且必须是有经验的人,只要有一双正常的耳朵就可以判别其优劣。这种人就是我们常讲的"金耳朵",我想"金耳朵"并不是指其耳朵特别灵敏,相信大多数人的听觉功能是相差无几的,这种能力来自于经验,假如一种乐器的音色在你脑中已根深蒂固的话,那么其细微的变化都会引起你的注意。试想叫一个对乐音一无所知的人去评判一套系统,充其量只能说出好不好听而已,然而好听不见得就Hi-Fi,因为可能有"味精"。

磨刀不误砍柴功

    关于测试软件的选择,我也想谈谈我的体会。毋庸置疑,要选择Hi-Fi录音软件。有选择地选用合适的软件,将有助于迅速、真实、全面地反映器材的素质。从我个人来讲,选用的原则是:

    1 不用电子音乐软件,而用自然乐器(ACOUSTIC INXTRUMENT)的录音。电子乐器一般是通过电缆来录音,其声像、混响、音色均是由合成器或电脑设定,并不代表真实情况。电子乐器的音色千变万化,令人捉摸不透,无从与真实情况加以比较,失真的系统重放电子音乐有时还要更动听。电子合成器可以制造一些特殊效果,如爆棚、环绕等,会更讨好听众,但会使人的判断产生偏差,因此不足以作为评价Hi-Fi的依据。

    出于以上缘故,我甚少用电子贝多芬《BEETHOVEN IN BUST》或《BREATHLESS》作为试音碟。值得一提的是《BREATHLESS》一片中的伴奏明显,听感与《LIVE》一片可谓相去甚远。

    2 不用自己特别喜爱的音乐片段。对于精彩的片段,精力极易被优美的旋律所吸引,而不会全神贯注去分辨其音质的变化,而且情绪也容易为之陶醉,即使音质不是很完美,动人的音乐也会令你为之动容而喜形于色,音乐派的发烧友尤甚。

    3 选用三种类型的音乐,管弦乐,独唱,小提琴独奏。管弦乐可谓是最严峻的考验,器材的分析力、定位、动态范围均可以得到全面的体现,由于其层次复杂,动态宽广,要得到完美的重放效果也最难。

    例如,乐队中大提琴、低音提琴的低频段声音可以衡量系统低频的解析力,上乘的低音表现为丰满,而且有轮廓感、颗粒感,擦弦声仍不丧失。定音鼓声的清晰度、力度可以衡量器材(特别是音箱)低频的瞬态响应和控制力。音乐中的**片段,整个乐队的声压级可达100Db,对系统的动态范围和高电平时的线性是严峻的考验。

    独唱、小提琴独奏作品的录音都采用近距离录音,可以得到清晰的声音,而且两者的音色、质感为人们所熟悉,容易辨明是非,是考验系统中高频通透性的重要手段,比起用三角铁等高音打击乐器更有说服力。

    有的朋友可能会问,为什么在评价一套系统时要用很靓的录音软件呢?如果一盘Low-Fi唱片,只要系统重放出来和它原来一样差,这个系统不也是Hi-Fi吗?答案是肯定的,但是你能判别它们一样差吗?试想一下下面两种情况:一种是已知一条直线或近似直线,以此为参照,判断另一条线是否与它一致;另一种是,已知一条杂乱无章的曲线,哪种情况容易一些,答案就不言自明了。

结束语

    以上是我在短短的发烧经历中的一些体会,愿和各位发烧友交流探讨。每个人走的道路不同,必然有不同的经验。发烧是很有个性、创造性的活动,不应墨守成规,因循守旧,但我主张要科学发烧,不要有盲从心理,人云亦云。凡事总有其内在的必然规律,发烧并不是神乎其神、深不可测的东西,更不应该是吹嘘出来的。它本是一种精神,一种对美的执着追求,因此决不是富人才能拥有的高档器材。在对艺术与科学的探讨过程中,我一直相信,兴趣是最好的老师。

频谱与听感

    各种不同频段有各自的音色特点。

    高音频段HF:6∽20KHz:这个频段的声音幅度影响音色的表现力。如果这个频段的泛音幅度比较丰满,那么音色的个性表现良好,音色的解析能力 强,音色的彩色比较鲜明。这个频段在声音的成分中幅度不是很大,也就是说,强度不是很大,但是它对音色的影响很大,也就是说,强度不是很大,但是它对音色的影响奶大,所以说它很宝贵、很重要比如,一把小提琴拉出a'--440Hz的声音,双簧管也吹出a'--440Hz的声音,它们的音高一样,音强也可以一样,但是一听就能年出哪个声音是小提琴,哪个声音是双簧管,其原因就是,它们各自的高频泛音成分各不相同。一首歌曲也是一样,例如韦唯演唱一首"爱的奉献",田震也演唱一首"爱的奉献"。两首歌调一样,响度也一样,而人们一听使知哪个是田震唱的,哪个是韦唯唱的。这就说明,两个歌手各自的高频泛音不同,高频成分的幅度不同,所以说两个人的音色个性也就不同。如果这个频段成分过小了,那么音色的个性就减色了,韵味也就失掉了,声音就有些尖噪,出现沙哑声,有些刺耳的感觉了。因此,高频段成分不要过量。然而又绝对不能没有,否则声音会失去个性。

    中高音频段MID HF:600Hz∽6KHz:这个频段是人耳听觉比较灵敏的频段,它影响音色的明亮度、清晰度、透明度。如果这个频段的音色成分太少了,则音色会变和黯淡了,朦朦胧胧的好像声音被罩上一层面纱一样;如果这频段成分过高了,音色就变得尖利,显得呆板、发楞。

    中低音频段MID LF:200∽600Hz:这个频段是人声和主要乐器的主音区基音的频段。这个频段音色比较丰满,则音色将显得比较圆润、有力度。因为基音频率丰满了,音色的表现力度就强,强度就大,声音也变强了。如果这个频段缺乏,其音色会变得软弱无力、空虚,音色发散,高低音不合拢;而如果这段频率过强,其音色就会变得生硬、不自然。因为基音成分过强,相对泛音的强度就变弱了,所以音色缺乏润滑性。

    低音频段LF:20∽200Hz:如果低音频段比较丰满,则音色会变得混厚,有空间感,因为整房间都有共振频率,而且都是低频区域;如果这个频率成分多了,会使人自然联想到房间的空间声音传播状态。如果这个频率的成分缺乏,音色就会显得苍白、单薄,失去了根音乏力;如果这个频率的成分在音色中过多了,单元邓就会显得浑浊不清了,因而降低了语音的清晰度。

    不同频率的细节对音色的影响

    16∽20KHz频率:这段频率范围实际上对于人耳的听觉器官来说,已经听不到了,因为人耳听觉的最高频率是15.1KHz。但是,人可以通过人体和头骨、颅骨将感受到的16∽20KHz频率的声波传递给大脑的听觉脑区,因而感受到这个声波的存在。这段频率影响音色的韵味、色彩、感情味。如果音响系统的频率响应范围达不到这个频率范围,那么音色的韵味将会失落;而如果棕段频率过强,则给人一种宇宙声的感觉,一种幻觉,一种神秘莫测的感觉,使人有一种不稳定的感觉。因为这些频率大多数是基音的不谐和音频率,所以会产生一种不安定的感受。这段频率在音色当中强度很小。但是很重要,是音色的表现力部分,也是常常被人们忽略的部分,甚至有些人根本感觉不到它的存在。

    12∽16KHz频率:这是人耳可以听到的高频率声波,是音色最富于表现力的部分,是一些高音乐器和高音打击乐器的高频泛音频段,例如镲、铃、铃鼓、沙锤、铜刷、三角铁等打击乐器的高频泛音,可给人一种"金光四射"的感觉,强烈地表现了各种乐器的个性。如果这段频率成分不足,则音色将会会失掉色彩,失去个性;而如果这段频率成分过强,如激励器激励过强,音色会产生"毛刺"般尖噪、刺耳的高频噪声,对此频段应给予一定的适当的衰减。

    10∽12KHz频率:这是高音木管乐器的高音铜管乐器的高频泛音频段,例如长笛、双簧管、小号、短笛等高音管乐器的金属声非常强烈。如果这段频率缺乏,则音色将会失去光泽,失去个性;如果这段频率过强,则会产生尖噪,刺耳的感觉。

    8∽10KHz频率:这段频率s音非常明显,影响音色的清晰度和透明度。如果这频率成分缺少,音色则变得平平淡淡;如果这段频率成分过多,音色则变得尖锐。

    6∽8KHz频率:这段频率影响音色的明亮度,这是人耳听觉敏感的频率,影响音色清晰度。如果这段频率成分缺少,则音色会变得暗淡;如果这段频率成分过强,则音色显得齿音严重。

    5∽6KHz频率:这段频率最影响语音的清晰度、可懂度。如果这段频率成分不足,则音色显得含糊不清;如果此段频率成分过强,则音色变得锋利,易使人产生听觉上的疲劳感。

    4∽5KHz频率:这段频率对乐器的表面响度有影响。如果这段频率成分幅度大了,乐器的响度就会提高;如果这段频率强度变小了,会使人听觉感到这种乐器与人耳的距离变远了;如果这段频率强度提高了,则会使人感觉乐器与人耳的距离变近了。

    4KHz频率:这个频率的穿透力很强。人耳耳腔的谐振频率是1∽4KHz所以人耳对这个频率也是非常敏感的。如果空虚频率成分过少,听觉能力会变差,语音显得模糊不清了。如果这个频率成分过强了,则会产生咳声的感觉,例如当收音机接收电台频率不正时,播音员常发出的咳音声。

    2∽3KHz频率:这段频率是影响声音明亮度最敏感的频段,如果这段频率成分丰富,则音色的明亮度会增强,如果这段频率幅度不足,则音色将会变得朦朦胧胧;而如果这段频率成分过强,音色就会显得呆板、发硬、不自然。

    1∽2KHz频率:这段频率范围通透感明显,顺畅感强。如果这段频率缺乏,音色则松散且音色脱节;如果这段频率过强,音色则有跳跃感。

    800Hz频率:这个频率幅度影响音色的力度。如果这个频率丰满,音色会显得强劲有力;如果这个频率不足,音色将会显得松弛,也就是800Hz以下的成分特性表现突出了,低频成分就明显;而如果这个频率过多了,则会产生喉音感。人人都有一个喉腔,人人都有一定的喉音,如果音色中的喉音成分过多了,则会失掉语音的个性、失掉音色美感。因此,音响师把这个频率称为"危险频率",要谨慎使用。

    500Hz∽1KHz频率:这段频率是人声的基音频率区域,是一个重要的频率范围。如果这段频率丰满,人声的轮廓明朗,整体感好;如果这段频率幅度不足,语音会产生一种收缩感;如果这段频率过强,语音就会产生一种向前凸出的感觉,使语音产生一种提前进人人耳的听觉感受。

    300∽500Hz频率:这段频率是语音的主要音区频率。这段频率的幅度丰满,语音有力度。如果这段频率幅度不足,声音会显得空洞、不坚实;如果这段频率幅度过强,音色会变得单调,相对来说低频成分少了,高频成分也少了,语音会变成像电话中声音的音色一样,显得很单调。

    150∽300Hz频率:这段频率影响声音的力度,尤其是男声声音的力度。这段频率是男声声音的低频基音频率,同时也是乐音中**的根音频率。如果这段频率成分缺乏,音色会显得发软、发飘,语音则会变得软绵绵;如果这段频率成分过强,声音会变得生硬而不自然,且没有特色。

    100∽150Hz频率:这段频率影响音色的丰满度。如果这段频率成分增强,就会产生一种房间共鸣的空间感、混厚感;如果这段频率成分缺少,音色会变得单薄、苍白;如果这段频率成分过强,音色将会显得浑浊,语音的清晰度变差。

60∽100Hz:这段频率影响声音的混厚感,是低音的基音区。如果这段频率很丰满,音色会显得厚实、混厚感强。如果这段频率不足,音色会变得无力;而如果这段频率过强,音色会出现低频共振声,有轰鸣声的感觉。

    20∽60Hz频率:这段频率影响音色的空间感,这是因为乐音的基音大多在这段频率以上。这段频率是房间或厅堂的谐振频率。如果这段频率表现的充分,会使人产生一种置身于大厅之中的感受;如果这段频率缺乏,音色会变得空虚;而如果这段频率过强,会产生一种嗡嗡的低频共振的声音,严重地影响了语音的清晰度和可懂度。

浅谈功放

    一个最简单的音响系统包括音源、功放和音箱,缺一不可,这几件器材的质量基本决定了整个系统的质量。其中,功放作为音响系统的动力,在音源和音箱之间起着桥梁的作用。

    功放的工作原理其实很简单,直观来说就是将音源播放的各种声音信号进行放大以推动音箱发出声音。从技术角度看,功放好比一台电流的调制器,它将交流电转变为直流电,然后受音源播放的声音信号控制,将不同大小的电流,按照不同的频率传输给音箱,这样音箱就发出相应大小、相应频率的声音了。由于考虑功率、阻抗、失真、动态以及不同的使用范围和控制调节功能,不同的功放在内部的信号处理、线路设计、生产工艺上也各不相同。传统的功放经历了几十年的发展,一直没有特别的分类,直到近年来随着音视频播放设备的发展和影视软件的丰富,使得许多音响生产厂家在传统功放的基础上,参照真正电影院的声音播放特点,设计生产出了不同类型不同技术特点的综合型的功放,人们将它称为AV功放,相应地就将单纯用来欣赏音乐的功放称为纯音乐功放。按当前音响消费的需求,民用音响中的功放已基本定型为两大类,即纯音乐功放和家庭影院AV功放。

    纯音乐功放

    纯音乐功放在设计上强调最低的信号失真,忠实地表现出音乐的场面、细节和演奏、录制技巧,以满足人们对音乐的最佳欣赏要求,这就是人们常说的Hi-Fi。在设计和生产上,纯音乐功放的要求极其严格。搭配合理的高品质纯音乐功放和音箱具有极高的音乐保真度,能让许多人受到音乐的感染,这就是为什么在家庭影院热火朝天的今天,仍然有不少文化修养较高的人士醉心于纯音乐音响的原因,甚至有不少最初追求AV潮流的人对音响有了一定了解后,又重新开始欣赏Hi-Fi音乐,就更说明Hi-Fi的魅力了。

    纯音乐功放品质的高低并不完全由它的技术指标所决定,不能简单地看它标注的功率多么高,频响多么宽,失真多么低,而应该特别注重其设计生产工艺和音乐的解晰力。比如技术指标并不太高的胆机就要比很多晶体管功放声音好听。此外,纯音乐功放还尤其讲究与音箱的合理搭配,推甲音箱很好的功放不一定能推好乙音箱,在实际搭配时应该参照它们的工作类型、阻抗特点、灵敏度以及输出电流,并需要实际试听。下面向大家介绍两款性价比很高的纯音乐功放,供大家参考。

    雅骏(ARCAM)ALPHA 5功放。对发烧音响稍微熟悉的人一定不会对产自英国的"雅骏"感到陌生,虽然它又小又薄貌不惊人,甚至有些平淡和小气,以至在几年前的一次展览会上大家都对这么小的功放能否推动发烧音箱表示怀疑,更不敢奢望它的音质表现,但当它镇定自若神气活现地推动天朗音箱时,大家都为它小小的身躯竟有如此之好的性能所折服,"雅骏"的名气也随之越来越大。其ALPHA系列功放是在原来的DELTA系列的基础上经过一定改进后推出的机型,设计上采用纯甲类结构,为了使信号失真降低,内部电路也十分简单,元件型号也没有什么特殊的地方,但是由于制作工艺和材料质量要求十分严格,所以即便貌似简单,雅骏的ALPHA系列功放却有着非凡的音质。在实际试听时,雅骏ALPHA5和产自同一公司的天朗607音箱配合(音源用的是雅骏的ALPHA1 CD机),音质简直可以说近乎完美,尤其是在欣赏弦乐和人声时,ALPHA5的解析力使得天朗音箱的优点尽显无遗,在播放维瓦尔第的《四季》时,小提琴的每一个音符丝丝入扣,清晰悦耳,丝毫没有某些功放的那种很"炸"的味道;用《蔡琴老歌》试听,歌手的每一个换气和吐字都非常清晰地表现出来,亲切感人,与这张CD的风格相当吻合。虽然ALPHA5在8Ω时每声道只有40W的输出功率,但是作为工艺地道的英国甲类功放,推好多数高水平的音箱是绝对没有问题的,在音乐**时也能做到干净利落,绝对不拖泥带水。同时ALPHA5仅仅3000元左右的价格,却综合了晶体管机和胆机的优点,真可以说是超值的器材了。

    天龙(DENON)PMA-890DG功放。在日本生产的几种名牌功放中,天龙功放以功率充足、音质醇厚见长,其中PMA-890DG功放是一款发烧味十足的产品。在设计上,DENON PMA-890DG成功地解决了甲类放大器高效率和大功率的难题,将每声道输出功率在8Ω时做到110W,实实在在是技术上的突破;同时,PMA-890DG设置了数码输入端子,内部也相应设计了20Bit的解码器,这点足以看出DENON在音质表现上的良苦用心;另外,它那重达20公斤的体重也让你不得不相信它的用料质量。在外观上,DENON PMA-890DG让你第一眼见到它就会喜欢:落落大方,气派非凡,无论摆放在什么样的家庭,都算是一件装饰品,它沉稳的机身给人以稳重的感觉。在试听时,用它来推意力的一款平价音箱EL80,在播放著名的TELARC录制的柴可夫斯基的《1812序曲》时,无论是在乐曲开始部分描述和平生活的舒缓章节,还是在中间部分交错出现的俄罗斯民族音乐和《马赛曲》旋律所描述的战争残酷场面,DENON PMA-890DG的表现都有张有弛,需要温柔时它温柔,需要猛烈时它猛烈,尤其在乐曲结尾表现战争胜利的宏大庆祝场面时,DENON PMA-890DG更加显示出它的高人之处,那令人难忘的炮声和钟声真实有力。一曲终了,在感叹柴氏音乐魅力的同时,也不禁感叹DENON 功放十足的底气。虽然相对于工薪阶层4000元的价格稍微贵了一些,但对喜欢音乐的人来说,DENON PMA-890DG还是物有所值的。

    在这篇短文行将结束之前,有必要讲一讲模仿与创新的问题。我们说,成功的设计常常会诞生成功的设计师,并由此诞生成功的品牌、成功的企业和企业形象。而设计的成功必来源于创新,没有创新就没有成功的设计。但是,就像人们崇尚"失败是成功之母"这句著名格言一样,谁又能说模仿不是创新之母呢?且不说人类从大自然获取创作灵感,甚至产生了仿生学这样一门科学。我们几乎可以肯定,世界所有国家在产品设计、开发上都不约而同地走着从模仿到创新的路。战后的经济恢复时期,日本曾经将仿制国外先进产品作为本国经济发展的国策。早期的Nikon(尼康)相机就是照抄德国的CON-TAX,如今已经没有多少人知道CONTAX这个牌子,而Nikon相机却已稳坐世界相机制造业的头把交椅。何以如此?盖源于日本国内自60年代中期焕发出来的革新精神和创造力。改革开放以来,国内类似情况及其成功事例也时有耳闻。诚然,在我们的创新能力尚未达到一定水准时,我们通过模仿、仿制国外先进产品也是一种学习,也能取得某种成功。但是,如果我们一味模仿就永远长不大,那将是我们的一个悲剧。有报道称,上海90年代一个统计数字表明,企业在开发新产品的方式中,模仿占41%,将原有产品稍作改进的占33.6%,有创新意识的占25.4%。这说明我国企业界、工业设计界,在产品的创新设计方面还有很长的路要走。


    曾几何时,我们的产品与国外进口产品一比,仅从包装上就已看出高低。而今,我们的包装已经有了长足的进步,与国外产品包装相比已难分伯仲,这是一个可喜的进步。但是,我们的产品设计创新能力还无法与之抗衡,在音箱生产业更是如此。艺术造型音箱的出现,给业内吹来了一股清风,也给音箱生产企业的领导者提供了新的思路,更给消费者提供了满足个人主观消费选择的机会。但愿不久的将来,当我们再走进音响市场的时候,那里已经变成百花齐放、姹紫嫣红的艺术造型音箱的新世界。

浅谈音场

    "音场"到底是什么样的概念?在发烧音乐的发源地美国,有两个词与音场有关,一个是"Sound Field",另一个是"Sound Stage"。"Sound Stage"主要是指舞台上乐队的排列位置和形状,包括长、宽、高,是一个三维空间的概念,而我们所指的"音场"其实就是"Sound Stage",因为如果把"Sound Stage"直译成"声音的舞台"或"音台"这确实无法让人望文生义。至于"Sound Field",实际上与我们以前所介绍的"空间感"相对应。因此,当我们提到"音场的形状"时,实际上就是指您的器材所再生的乐队所排列的形状。由于受到频率响应曲线分布不均匀以及音箱指向性的影响(比如房间的宽度大于深度或者深度大于宽度),音响所播出来的声场实际上或多或少是与原录音时的情形有差异的。有些音场形状本来就是四四方方,没有拱凸凹的。这种音场舞台的不同形状当然不能与录音时的原样符合。有一个值得注意的问题:现场演奏时,乐队的排列是宽度大于深度的;但在录音室中,为了产生出音响效果,乐团的排列方式往往会改变,通常纵深会拉长,尤其是打击乐器会放得更远一些。这样就不是我们在音乐厅中所见到的排列。
  
    "音场的位置"
  
    音场的位置应该包括音场的前、后、高、低。搭配不当的某些器材会使整个音场听起来象飘浮在半空中;有些听起来则又像是坐在音乐厅的二楼观看舞台一样。形成音场位置的原因很多,比如音箱的摆位、频率响应的不均匀都有很大的影响。一个理想的音场位置应该是怎样的呢?我们可以用听一个交响乐队演奏的方法来体会。当交响乐队演奏时,低音提琴、大提琴的声音应该从比较低一点的地方发出来,小提琴的位置要比低音提琴和大提琴略高一些;录音时乐团应该是前低后高,像铜管乐器就极有可能在较高的位置。对于整个音场的高度我们可以用下面的方法来确定,音场高度应该略低于您坐着时两眼平视的高度。换句话说,小提琴应该在视线以上,大提琴、低音提琴应该在视线以下。铜管至少要与小提琴等高或更高。那么音场的前 、后位置应该在那里呢?资深的发烧友都知道,应该在音箱的前面板拉一条直线然后往后延伸的一段距离内。当然,这种最理想的音场位置是不容实现的,因为它与您的音响搭配、聆听环境和所播放的软件有极大的关系。一般来说,从音箱前面板往后延伸比较容易,不过,不能"后缩"得太多。如果后缩太多,象一些发烧友说的那样"直抵对街"就不对了。
  
    "音场的宽度"
  
    有时候我们常常能听到发烧友夸口:"我的音场不只是超出音箱,甚至可以破墙而出"。这句话在外行人听来,简直是天方夜谭。而对于有经验的朋友来说,只不过有一点夸张而已。通常,在流行音乐的演奏中,您可以偶而听到有乐器在音箱外侧响起;而在古典音乐演奏时,您往往会觉得乐团的宽度已经超出二个音箱之间的宽度,这就是超出音箱、宽抵侧墙。许多发烧友都有这种经验,不必多费口舌。至于破墙而出,那恐怕就要靠一点想像力了。至少,用想象的眼睛能够看得到的音场位置才算真正的音场,墙外的东西我们看不到,我们很难肯定它在那里。所以,音场的宽度其实只在墙壁之内而已。这种感觉您完全可以从刚才那首1812序曲中体会到。如果您听到的1812序曲,声音是紧缩在两只音箱的中间而没有超出音箱两侧的话,那么您最好请一位懂行的发烧友去给您的音响诊断一下,看看是那儿出了毛病。
  
    "音场的深度"
  
    "音场的深度"就是我们常说的"深度感","深度感"不同于"层次感"、"定位感",因为层次和定位与音场没有多大的关系,而深度感却仍然属于音场的范围。与"音场的宽度"一样,许多人会说他家的音场深度早已破墙而出,深到对街。这当然也仅仅是一种自我满足的形容词而已。真正的"音场深度"指的是音场中最前一线乐器与最后一线乐器之间的距离。换句话说,它极可能是指小提琴与大鼓、定音鼓之间的距离。"宽到隔邻、深过对街"这应该是包含在"空间感"中,这个问题有待我们在今后的去讨论。有些器材或环境由于中低频或低频过多,因此大鼓与定音鼓动的位置会靠前一些,这时,音场的深度当然很差。反过来说,有些音场的位置向后缩,结果被误以为音场的深度很好,其实那是错误的。我想您一定没有见过一个乐队会排成一个竖条的,您只要把握住"小提琴到定音鼓、大鼓之间的距离"这个概念,您就一定能准确地说出音场的深度。  
 
  如何令音响器材发挥较佳表现?

    在既定不变的音响系统里,着实讲究不少摆置与取电技术,致令不用花费太多金钱,取得较理想的音响效果。

    首先,我们要清楚家中电源电压是否恒定,即使有跌幅也不能太大,否则应为系统加上优质稳压器,其二,墙上电源应不只一组供系统使用。换句话说,要将数码与模拟器材,各自由墙上的独立电源供应电力。这个当然,像彩电、录像机等,最好能接到第三组墙上电源去,可减低电流负荷及回路干扰等等。其三,假设一组墙上电源由于要同时插上前级与分体后级,就要加上一个多位式延伸的转驳排插。至于插入电源插头的次序,第一组应先是(接近电源输入线)前级,然后才到后级;并将所有数码器材,包括CD转盘及解码器,依顺能再多一组独立电源供应(尤以输出大者)后级最好。

    事实上,所有供应音响系统用的电源,最好能独立来自电箱,中途不连接其它墙上电源出口。基于整个家居不同电源的"地"全被连接着,若要令声音变得较干净,亦可试给任何一个不打算利用的墙上电源除去地线。这亦即是话不同的"地"有部分不再贯通到音响系统用的墙上的电源,效果当然较好。

    说到延伸接驳的多位式排插。应作用质量较佳者,倘若难以选择。最低限度也应使用金属外壳的、至于其附属电源线,较稳健的做法是配用英国多股粗芯,工业产品,一则效果有保证;二则不若许多所谓专用发烧级电源线,或多或少存在独特个性,令往后调校整个系统的声音时,出现额外、意想不到,或难以补救的毛病来。再者,这条电源线应给裁剪到最短,以减低自身电容、电阻、电感及一切来自大气的射频干扰,影响电源线的单纯供电用途。

声频放大器的基本功能

    声频放大器应包含前级放大器和后级放大器,或为合并放大器,它们为了与系统中其它器材连接和运作, 应具备一些基本功能,如电源开关、音量控制、平衡调整、输入信号选择、录音输出选择、高音和低音调整等。当前对于各种控制功能的设置,有两大倾向,一种是以繁多的功能吸引消费者,然而并不实用, 对音质更无好处,另一种则取消了音调控制等, 达到几乎不能再少程度, 理论上虽对音质有利, 但于实际使用时常会带来不便。可见,对基本功能还是需要的,现就其用途及操作进行阐述。

    电源开/关(Power ON/OFF):控制放大器的电源通或断, 大部分放大器在接通电源后,须经数秒钟时间后, 继电器方将扬声器接通, 以避免开机时的脉冲发出噪声。前、后级分体放大器在操作时,应先开前级再开后级, 关机则先关后级, 再关前级。

    输入选择(Selector):也称声源(Source)或功能(Function)或输入(Input), 通常包含唱头(PHONO)、激光唱机(CD)、录音座(TAPE)、调谐器(TUNER)和辅助(AUX)等声源设备, 还有视频设备(VIDEO)。当声源设备与放大器后背信号输入插座正确连接时,用此钮即可选择声源设备放音。

    录音输出选择(Record 或Record Selector):此选择开关可在录某一声源时播放另一声源而不相互干扰, 其选择内容通常与输入选择相同。

    音量控制(Volume):也称电平控制(Level), 用以控制信号,使输出音量大小适于聆听。有平滑变化和步进变化两种控制形式。大多数音量控制都是左、右声道同时由一个旋钮同轴控制, 也有同轴但可分别独立控制两个声道音量的形式, 就能省去平衡调整。

    平衡调整(Balance):通常应置于中间位置, 在左、右声道音量不平衡或需要某一声道音量增减时使用。

    高音(Treble)低音(Bass)调整:可用以补偿重放声音中高音或低音的比重,一般情况下均置于中间位置,以保证频率响应的平坦。

    直通(Direct):也称音调失效(Tone Defeat), 用以使信号不受音调控制电路影响, 保持平直频率响应的开关。

    前置输出(Pre-Out)后级输入(Main-In):仅在合并放大器中设置,平时以专用插头跨接。拨下插头时前置放大部分与后级放大部分即分离,就能各自独立使用。亦可在此两对插座间插入其它信号处理设备,如图示频率均衡器等。  
作者: zgmfx10akira    时间: 2012-4-30 15:42
玩胆机不可不知的基本常识   


胆机有高成本效益,一部五千元的合并胆机或前级,音效往往胜过贵它一倍,甚至更高价钱的晶体管机。更重要的是胆机的音乐味浓,泛音重,这或多或少由于二次谐波失真的加入,因此,给聆听者的感受觉是声底顺滑,堂音丰富,像是进入了现场和演奏者在一起。我喜爱用胆机听音乐,以下为各位介绍一些玩胆一机的方法及要点,物别适合一些初玩胆机的朋友。
单端推挽转换

单端A类电路产生的顺滑细微及通透的声音,物别在播放人声方面,确实令人着迷。当然最好是自行试制,如愿以300B,EL34,KL66单端机等,但是制作单端机需用较高的成本,输出牛普通的要一千五百一对;而是本出品的差不多要六,七千无一对,如没有充足的指引及制作经验,实在不宜自行制作,免枉化金钱。近日,在外国音响杂志看到了介绍一些转变撤换机为单端机的线路具参考价值。见图书1,一只强放管作恒流工作,避免输出变压器受直流磁化而饱和。当中SA及SB为双刀双掷开关,RX作为降压用途,避免开机声箱出现卟声。开关置于AL及BL点为单端接法。输出功率固然降低,屏流一般调节较高,但是不可超过屏耗允许安合适什。另一种接法见图2是将两胆并接,开关置于AL,A2等为单端接法,置于B1,B2等为一般推挽接法。

三,五极管互换

常说三极管声音清澈通透及分析力高,很多人会喜欢更改超线性接法为三极管接法,加入一个别100 电阻连接帘栅及屏极,如图示2所示加入一个双刀,双掷及时性100 电阻,但是,需留意调高负偏压,避免超出最高屏耗值。一般测量屏流方法可于阴极对地加入一个10   (2至5W)电阻,度量电阻上电压降,例如测量到1V,根据金欧姆定律(I=E/R),屏流为100MA。。

另外,由五极管转接为三极管输出,由于输出牛原为五极管输入出而选用,接三极管后由于与最佳屏阴未完全匹配,影响了声音质素。三极管负载最佳工作点为工作于屏阻的两倍,五极管则要求选   择工作在屏极负载之五至十分之一之间。以6l6gc为例,三极管屏阻为1.7k而五极管屏阻为27k,故此,三极输出适合选用3.4k之输入出牛,而五极管输出则适宜选5k以上的输出牛,而6l6gc一般五极管的扩音机多使用6k以上的输牛出,故较不宜接三极管输出用。故此,真正为三极管而设计的扩音机,音质大多优质胜于五极管改接三极管的扩音机。三极管接法于低音域失真较大,动态受影响。交适合作聆听小品用。接法参考图3。

延长胆的寿命

灯胆的加速损耗,大多是由于灯丝及阴极损耗而引起。灯丝方面,冷起动(即不是让灯丝渐渐加压)加速速灯丝的损耗,特别是使用ac燃点灯丝。如6l6gc为例,灯丝一般耗电66.3v0.9a,但开机刹那的浪涌电流达3a。至于强放胆方面,由于现代机种一般采用整流子高压,整汉高压,开机时有浪涌电流,因高压在开机时便立即加于屏极,而阴极却未能预热充足,已出现屏流,由于阴极发射电子靠涂在阴极金属筒上的一层金属氧化物,有相当的温度,在没达到工作温度时,由于没热透,各部分的电阻率是不同的,这样屏流就集中在电阻小的区域损坏.在关机时亦然,关机后由于灯丝电源切断,阴极温度下降,而高压滤波电容容量一般都较大,高压还会保存一段时间,这段时间保持的屏流,同样支加速阴极的损耗,故此,可考虑用下列方法改善:                                         
1.灯胆整流,这是一般五,六十年代收音扩音机使用的整流方法。这要求电源流烃压器有另一5V及备用耗电量。因整流后高压可有十数秒时间才完全加至屏极,而阴极有充足时间预热,不致加速灯量员耗。不过,其弊处在于灯胆整流引起高压电源内阻提高,对信号源来说   ,会产生降压,减低增益,一般影响减慢了瞬变,声底慢了。解决方法可考虑并联两胆整流,以减低电源内阻。   
2.加装高压开关,见图5,如一些厂机,设了备用及工作两个开关,原理便是先开启灯丝开关,于一定时间后才开启高压开关。如于高压次级次级加上开关及并接电阻。s1并接阻及以后串接电阻,期望可于开机后预热时间内有某程度降压,消除因浪涌电流而加速胆损耗现像。高压方面,s2可于s1接上后再接上,让阴极有足够的预热时间,才加上满度的屏压。
3也可使用延迟电路,让灯丝及高压均可渐渐地加高,更具保护灯胆的目的,但是线路较为复杂,又不知对音质影响的程度如何,要求更高的制作知识及技术,故未必适合一般人士制作。

直热式三极管300B的迷惑   

    提起WE300B直热式三极管,在音响圈还真是无人不知、无人不晓,嚼槟榔之徒虽未听过5751,但「三百逼」这几个字往往也能朗朗上口;国外甚至有人称之为「本世纪最伟大的放大组件」。此管做SE单端单管放大结构时,输出功率虽不高,却一直有「管王」美誉,若匹配极高效率喇叭,也常有惊人的表现。几年前美国AT&T宣布重新生产WE300B,每只$350美元,虽声势浩大,但很快就冷了下来。

    300B横扫全球,威力甚强。亚洲地区最疯300B的是日本,只要有现品立即出价收购。在《MJ无线与实验》刊物上也常有300B的制作文章,甚至于还为它出了一本特辑。某天在看杂志时,突然让我想起日本《无线与实验》杂志每年五、六月都举办「自作派比赛」,那管王300B在比赛中是否也一直是年年稳居王座地位?

    掩不住那股好奇,立刻动手翻翻这几年订阅的《无线与实验》杂志。很意外,300B虽多次参赛,但几乎都是倒数第几名,虽有管王之美誉,在历年自作派比赛中却败得相当惨。

    多年来一向是晶体机称王,其实有两个意外,一是300B敬陪末座,一是历年来排名第一的,「很不幸」都是晶体管机。以下所述绝无造谣虚假情节,也未预设立场,纯就事实报导,请诸位看官自行体会。

    记得《交直流》23期中提过的井上博文吗?他在多年前就曾参加第二届《无线与实验》主办的自己装比赛,并以晶体机得到第一名。第三、第四届的自己装比赛因笔者手边无杂志故不得而知,若有读者知晓,还望告之一声。但猜测,这两比赛的荣冠也绝对与300B无缘。

    1993年是第五回自作派比赛,排名首位的是猪俣胜,得奖作品是MOS FET后级。栗田利男以572B管机名列第二;柴田由喜雄排第三,也是晶体后级,输出晶体是3对2SA1146/2SC2706。第四名虽是管机,但也不是300B。

    1994年第六回自作派比赛扩大举办,先分成东京顺位及大阪顺位,然后再排总顺位。勇夺大阪顺位第一名及总顺位最优秀赏的是田川博树的晶体后级,它的输出采半对称式。东京顺位第一、总顺位第二的是保谷和男的6CA7推挽管机,第三名有两位,一是栗田利男的推挽输出4-65A管机,一是天野洁的无NFB电池供晶体管机。这一年东京顺位第二名是里馆光春的晶体后级,输出晶体是Motorola的MJ3055/2955,但总顺位较低。

    1995年的第七回自作派比赛,将东京顺位改成关东顺位,将大阪顺位改成关西顺位。关东顺位首席作品是小菅 胜的6550A真空管后级,第二名是宫入信夫的EL34后级;第三位也是真空管机─栗田利男的6C33C 无输出变压器OTL后级。关东顺位排行,真空管机虽大获全胜,但300B也没沾上边,管王再度失利。

    关西顺位第一名是丰永靖宏的晶体机,输出晶体是2SA1006B及2SC2336B。第二位是采8只30KD6做输出的真空管机,得奖人是原田宪二。没有第三位,因为原田宪二与丰田修二两人并列第二。非常巧,两人名字最后都是二,早知如此,取名原田宪一不就顺位第一?丰田修二也是搞管机,输出管是6G8B。

    关东顺位+关西顺位再排综合顺位,并取前六位自作派高手。总排行第一就是丰永靖宏的晶体机,关东顺位第一的小菅胜在总顺位为第二;宫入信夫、栗田利男、原田宪二、丰田修二并列第三。故当年自作派比赛,第一名仍是晶体机,二~六名则是真空管机。

    那300B呢?第17位、第20位…等,还真的有点不堪入目。至于可替代300B的VV-30B,95年最佳成绩是第九名。1996年是第八回自作派比赛,其结果刊登在六月号MJ上。不过这年有大变革,不再比扩大机了,而是比数位模拟滤波器-DAC,因此300B管王不会再很难看的垫后。

    日本自己装迷真的很迷300B,一旦写起组装报告,都是赞美之辞,百分之百没有「频宽不够」这种词汇;结语又往往是「与×××是绝佳的匹配...」,好得让人流口水。但是我参观过两次MJ杂志在日本音响展的展示房间,根本听不下去!─又混又闷,整个声音挤在一起。但那些日本diy迷却听得很爽,让我很佩服....。

    那为何300B参赛会搞得灰头土脸?MJ杂志在评选时是搭配号角型高效率喇叭,故7W~8W之输出应无问题。据MJ杂志报导,由于是采开放式,故评选时除评审委员及参赛者外,一般读者也可以在会场听到各机的声音,而评选标准是以音质、设计、配线这三项为评分重点。或许有管迷会说:300B在音质这项一定拿高分,但后两项可能比较低,所以总分被拉低,非战之罪。

    错了,丰永靖宏的晶体机在音质项目就是获得最高分─10分;而关西地区的柴田由喜雄亦得到10分(也是晶体机)。300B呢?保谷和男的300B单端,音质项目只拿到6分。喜本正一的300B单端也是6分,评语有「音场狭」字样;而保谷和男的评语:音场小、超低域不足气味;而上述两台晶体机的评语都无此缺点。奇怪的是:柴田由喜雄的晶体机在总排行应是第二名,但不知何故未列名;而95年自作派总排名倒数三名,竟都是管机。

    96年八月福华饭店Hi-End展有个特色:国产厂商特别多,并以管机占大多数。但他们似乎对管机前级没兴趣,主力竟然都摆在300B后级上,好象只要是三百逼,就会有人买。

    若论300B音质如何?管迷绝对认定它是天下无敌。我曾听过300B后级推Altec A7剧院之声,当播放《阿姐鼓》时,因低音乱成一团,根本找不到鼓皮在哪?当然,A7效率高,配300B绝无音压上的问题。可是A7或A5虽然体型硕大,但也绝对发不出真正的沉稳、结实的低频,故遇上大量采用电子合成器做配乐的CD片,例如电影配乐,A7的低频就只能一片混浊,而且完全没有改善的可能,除非是换喇叭─可能更换聆听空间吗?

    其实也可以改用别的管仔

    有三位管机制造者曾对我说过:要做后级不要用300B,因300B的声音并不那么好听。反问什么管仔比较好听?有一位说6550A/KT88,另两位则回答是6CA7/EL34。日本MJ-无线与实验杂志某专栏作者曾参观96年福华Hi-End展,我跟他聊了很久,他个人偏爱MOS FET,但若是真空管后级,他会选EL34,而不是300B。

    300B配A7是否正确?但一昧播放《阿姐鼓》,岂不是自暴其短?好在现今的管迷普遍性不懂音响技术,音乐素养也低,因此生意照样可以做。其实高效率、高音质、小体型的喇叭不是没有,配上好的管机也真能发出迷人的美声;当然这是要付出极高的代价。

    通常管机制造者都会排斥晶体机,国内厂商犹甚。他们常将晶体机归罪是又冷又硬、缺少「肉声」,消费者也认之无疑。96年福华饭店音响展,就曾经有过两次真空管迷在我的展示房间穿帮,听了几十秒钟就说:一听就知道是「球仔香」。他们可能看到桌子上摆着管机前级套件,再听声音,直觉就认定Skywalker APS-250是真空管机。老管家温燕萍先生也曾将我的晶体后级当成是管机,弄清楚后,他还奇怪晶体机怎么能这么温暖?

    晶体机又冷又硬,那是十来年前的说法,而且还是指日本机,特别是日制AV扩大机。很多年前我听过金田明彦制作的前级,原装进口不到五万台币,但感觉上就是又冷又利,听久耳朵受不了。现今质优的晶体机,可以做到比管机还要温暖、还要有「骂香」。你真的认为管机的声音比晶体机温暖?当300B搭配Altec金属号角高音时,那种难听的金属声往往利如刀割,令人无法卒听,漫说是300B,就算换上800B都没用。故管机生产者宜多方面接触,以扩展自己的视野。

    《无线与实验》历年来的自作派比赛也呈现出某种意义,就看你如何去解读。当然,300B参赛多年都无佳绩,并不会减损管迷对它的爱戴,也说不定有人认为:那是日本人没将300B搞出好声,换上Audio Note保证名列前茅。

    管王WE300B在1938年才上市

    既然本文谈论的主角是300B,那也趁此篇幅聊聊300B。在真空管发明之初,若有人想装管机后级,且输出功率超过1W,只有UX-171及Western Electric的WE205D。若想要更高的输出,那就跳级用大型发射管211,这是'20年代的事。WE也有211D,但体型比211略为削瘦。

    WE205D是球型管,像个大灯杀,它的前身是205A,1917年上市。205D出现是1925年,但并未受到重视,因Westinghouse也在这一年推出UX-112及UX-171,为audio级最通用管。

    Westinghouse在1928年上市UX-250,它是大功率三极管,灯丝还有氧化物涂膜;而当时最大真空管制造商RCA也推出一系列250管。

    WE管的输出较低,1929年的244A也只有50mW,于是在隔年推出与UX-250同级的WE252A。WE-252A是450V/60mA,做SE单端输出是8W,推挽可得到12W。WE-252A就是WE300A的前身,它的产量丰富,并持续至1978年才停产。在日本市场,WE252A比WE300B更有身价,一支WE252A索价30万日币,而且你有钱还买不到。

    1933年是真空管发展史上极重要的一年,铭管相继上市,RCA有2A3,WE则推出同规格的275A。但WE决定以300A取代252A,并在上市后大获好评,电影院争相购用,那时WE300A与同厂号角喇叭597高音/12A+TA-2151低音是绝配。

    WE300A接脚为标准4-pin,可以和2A3共享脚座,而811A也采用相同接脚。但到了1938年,WE将300A改成300B,主要的变动就是接脚的位置转45度;因为300A可插用2A3管座并无意义;2A3的灯丝电压是2.5V,300A则是5.0V、并不能直接换用。WE-300A的原接脚设计,可能是RCA的2A3为当年的管王,迫使WE-300A走其后路;但1938年WE改成300B,反而开创出新的局面。

    是法国音响迷炒热WE300B

    WE300B一开始,特别是在二次大战之后,曾被大量用在电源power supply电路中,与音响扯不上关系─300B也可以当成整流管用。大约是1956年左右,有些法国音响迷发现单端输出的300B配上号角型喇叭相当不错,于是为数众多的法国小乐团都争相购买300B。当时WE的报价我并不知道,但1988年出清库存时的报价是:最小订单5000支,每支美金$125。到了1990年再清仓时,300B每支就要卖美金$300元;至于消费者从经销店购买,就得花费500美金。

    法国人还真是对300B贡献良多,有位日法混血Jean Hiraga先生,在1973年首次于MJ-无线与实验杂志上谈论WE300B,没想到立刻为WE公司发掘出大笔money进帐的市场。日本音响迷非常衷爱300B,贸易商找上WE大量吃货。但日本人也很挑剔,先选早期生产的300B,印黄色字,WE的logo是原厂「闪电」字体;比较后期上市的300B虽然也是美国本厂制造,但Western Electric字样却是一般体;由1938年至1988年,WE300B曾多次做小变动,故虽然都是美国原产,但价格并不相同,甚至实际测试时,它们的特性也有不同。

    96年一月,在Las Vegas的冬季CES电子展中,Charles Whitener Jr.正式向外界宣布:AT&T重新生产WE300B,不但是在美国肯萨斯市原产地,甚至还找回当年的老师傅,每支小卖价美金350元;好象Jadis已开始采用新WE300B。但96年WE300B似乎仍飘影无踪,很多贸易商都想进货,却是只闻楼梯响,未见人下来。WE-300B新管后来终于上市,价格不低,特别是对装管,有十几个参数配对,还装在颇精致的木盒内。

    除了WE本厂外,1989年美国Richardson也打印Cetron的logo生产销售300B,Cary就是选用Cetron的300B。1992年,中国曙光Shuguang也生产300B,它的价格比较低廉,300B在经销商的报价是美金50元。

    1994年又有新厂加入,Vaic Valve也推出300B,型号是VV-30B,它的屏耗比较大。几乎同年,Svetlana也上市它们「不同」的300B-低μ SV-811s。最近,Sovtek也生产300B,造成管迷在品质及价格上有更多的选择。

    根据国外的失真测试,在500V/50mA、500V/75mA及300V/75mA三种条件下,平均来论,中国曙光300B并不差,但美国Cetron的300B失真却都是最高。而1996年新WE300B确实有比较低的失真,但屏压不宜超过450V,否则会从.095%升至.47%─管迷不可不察。

    曙光300B的声音表现也不错,但因材料及制造方式,与它牌比较,测试者认为它的寿命可能较短。 Vaic VV-30B也是好管,但屏流要100mA才可能才会好声。如果不是Vaic的300B,屏流不要超过75mA。

    苏联制Svetlana SV-811s并不适合与300B直接互换,因它具有不同的屏极阻抗特性及灯丝电压,换用SV-811系列管,还要更换输出变压器。

    至于Cetron的300B,早期生产的管仔声音不佳,1995年改进的300B,也因品管不齐未获好评。国外做测试时,发现Cetron 300B插上后,灯丝-栅级间有问题,将灯丝改成4V,结论仍是This is not good。

    我的想法是:若Cary选用Cetron的300B完全不出问题,那Cetron的品质就应该没问题,因成品机使用的管子都曾经过筛选。

    Sovtek的300B才刚上市五年多,此管是美国New Sensor公司与苏联合作生产。2000年底,Sovtek上市最新的300BEH,不再打印Sovtek的商标,并自称是目前能买到品质最佳的300B。

    日本也曾生产过HF300B,但不知为何,日本管仔虽曾外销至美国赚取外汇,可是在音响界却无地位,连日本管迷都罕见采用日本管。

    300B生产厂商已不少,但品牌却更多,英国金龙管-Golden Dragon就是中国大陆制造(英国金龙已经收摊了),还有RAM及Ruby(日本也有),都是以OEM做挑选配对,然后打印自己的logo销售,当然价格就要往上跳好几级。国内也有向中国大陆订制,还用石墨屏极─graphite-plate。

    石墨屏极300B在初测时,失真甚高,run-in时间颇长,屏流也不要太低,声音才可能会好听。但比较上算的还是VV-30B,它有三种type,做SE单端有12W输出!

    300B是名管,but not godly(这句话是老外说的),因此千万别将它神物化─3/5a小喇叭就是被过度神物化。建议大伙用心试试其它的管仔,说不定别有一番滋味在心头。

    附记

    WE300B原始规格数据─灯丝5.0V/AC或DC/1.2A、屏流60mA/300V时、放大因子3.85、屏阻700Ω、栅极至屏极互导5500μMho、最大屏压450V、最大屏耗40W、最大屏流100mA自给偏压/70mA固定偏压、栅极-屏极电容15μμF、栅极-灯丝电容9μμF、屏极-灯丝电容4.3μμF、脚座WE100M或WE115B。

  “胆”机和晶体管机有什么差异

  “胆”机是电子管机在港台地区的俗称,素以声音阴柔见长,晶体管机则以阳刚著称。晶体管机的长处在于大电流、宽频带,低频控制力、处理大场面时的分析力、层次感和明亮度等要比电子管机优越,但电子管机的高音较平滑,有足够的空气感,具有一种相当部分人所喜欢的声染色,尽管声音细节和层次少了些,但那种柔和而稍带模糊的声音却是美丽的。  
晶体管放大器的谐波能量的分布,直至十次谐波以上几乎是相等的量,其高次谐波量减少极小。电子管放大器的谐波能量的分布,则是二次谐波最强,三次谐波渐弱,四次谐波更弱,直至消失。可见,电子管放大器引起的主要是偶数的二次谐波,这种谐波成份非常讨人喜欢,恰如添加了丰富的泛音,美化了声音,而晶体管放大器产生的谐波中,奇次谐波份量相当大,这就会引起听感的不适。此外,当放大器处于过载状态,发生削波时,电子管的波形较和缓,而晶体管则是梯形的平顶状,造成声音严重恶化。所以电子管放大器的音色一般比较甜美温暖,特别是中频段更是柔顺悦耳,这也是电子管放大器得以在70年代末东山再起,与晶体管放大器分庭抗礼的原因(当时,初期CD机的声音较冷硬,正需这种放大器作补偿)。但是晶体管也能制成线性度很高的放大器,它具有极高的指标,而且功率场效应管的传输特性极似电子管,制成的放大器失真特性与电子管相似,效率则更高。  
电子管的内阻大,晶体管的内阻极小,故电子管放大器的阻尼系数远比晶体管放大器低,对扬声器的控制能力不利。此外,电子管放大器需用高压电源、效率低、热量大、抗震性差、体积大、成本高、瞬态反应慢、低频及高频上段较薄弱、寿命较短等都是它的致命弱点。  可见电子管虽有其特有优点,但它比晶体管优秀则是一种误解,更没有必要把它们对立起来。电子管机和晶体管机孰优孰劣是个见仁见智的问题,它们各有所长,也各有所短。但真正性能好的“胆”机价格极其昂贵,远不是一般人士所能承受。当今世界上能雄踞一方的电子管放大器有Jadis、ARC、CT、VTL等品牌。

  胆机单管放大输出与推挽放大输出   

   时下,胆机在市场上的品种五花八门,发烧友在选择胆机的时候,往往眼花缭乱,不知哪一款更适合自己,很难正确把握住分寸,对不同型号胆管的音色也缺乏深刻的了解。    胆机与晶体管不同(也有相同处)。严格来说,不同的胆管所发出的声音也各有千秋。而电路设计的不同,音色也有不同的变化,其中推挽放大电路的形式在数量上,占市场的主流地位,它的最大特点是相对于单端放大电路来讲,效率较高输出功率也较大。当然,电源利用率也比较高一些。比如我们常见的KT88、KT100、6550、EL34、6L6等,在推挽放大电路输出级里应用的就比较多。推挽放大电路由于推挽管分别放大信号的正负半周,在输出变压器的初级回路里,对于电路内感应所形成的噪声、交流声等杂音信号有一定的抑制作用,因为没有经过倒相的信号,在推挽放大电路中,是不能耦合到输出牛输出端子上的。所以该电路信噪比相对比较好。同时,由于推挽输出变压器不存在直流磁化作用,输出变压器可以同电源变压器一样采用交叉迭放硅钢片的方式制作,这样可以相对单端放大来讲,缩小输出牛的体积,使成本降低,由于上述这些显著的优点,所以胆机厂家比较乐意采用。    在推挽放大电路里,因为最少要用两只输出管分别放大信号的正负半周,所以必须在电路中设计倒相电路,以分配给功率输出管合适相应的信号,这样才能满足推挽放大电路的基本工作条件。 在胆机的倒相电路中,有采用变压器倒相的,也有用胆管进行倒相的。比如我们经常见到的屏阴分割倒相,及长尾倒相电路等等,但不管使用哪能种方式倒相,都存在着一定的优缺点,利用变压器做倒相电路的设计由于成本高,且不能用大的负反馈来改善音质,很少有人使用。而电子管倒相电路很难保证信号从低频到高频正负半周分割的一致性。倒相电路这些缺点,使音质的重放在这个环节上多了一个障碍。    单端放大的功率输出电路,在效率方面比推挽放大电路要低,使电路比推挽电路要简单得多,使用的元器件也比较少,故障率比推挽放大电路要低得多。单端放大电路由于没有倒相电路这一环节,信号直达末级功放管的输入级,所以不存在倒相电路的种种麻烦。在推挽放大电路中,倒相后的正负半周信号,要分别送至“上下”推挽管在栅级进行推挽放大,由于最少要用2只功率管来协调工作,这就要求每对功放胆机的一致性能要好,这样才能保证推挽放大后的波形完整不失真,而实际上每对推挽管的性能很难保证从低频至高频的一致。所谓配对亦只不过是在一定频率范围内配对而已。如果工作在乙类状态的推挽放大电路,还会存在交越失真的危险性。而在单端放大电路中,因为信号的正负完整波形都在一只功放胆机内进行放大的,又由于单管放大电路大都是工作在甲类状态,而甲类放大电路的工作点又都是选择曲线平直部分的中间部分,所以不存在有交越失真等问题。另外一个对比就是胆机之所以比晶体管好听(相对而言),一个最主要的原因就是晶体管机虽然各项指标做得比较高,但三次谐波失真比胆机大,即奇次谐波比较大,而胆机二次谐波失真比晶体管机要大,即偶次谐振动波失真大于晶体管机,但从听感上来讲,人耳对奇次谐波失真比较敏感,它给人带来的印象是一种生硬的感觉,比较让人讨厌,但耦次谐波失真带给人的是一种柔和的感觉。人耳比较容易接受,好比适量的调味品一样,这也是胆机好声的一个主要因素。    而对推挽放大胆机电路与单端放大胆机电路来讲,两者比较,单端放大输出电路的奇次谐波失真更低于推挽放大电路,它所存在的大都是耦次谐波失真,所以更好声。   单端放大电路虽然简单易制,但对电路间元件的排列要求较严,设计不合理,极易产生交流声。而单端输出的变压器,比起推挽输出的变压器来讲,制作更为复杂,这是因为单端放大电路的输出变压器初级有直流高压通过,会产生磁饱和作用,推挽输出牛虽然也有直流高压通过,但可以抵消这种现象。所以一般在硅钢片投入时,要留有一定的间隙、空气隙。而气隙的大小要视电路要求及输出功率大小来调整。因为硅钢有气隙的存在,使整个输出牛的导磁率大为降低,所以要采用截面积较大的硅钢片来制作,成本比推挽输出牛在同等输出功率时体积及制作的难度要大一些。   单端输出放大电路,由于电路简洁,音质又好,故障率极低,所以非常受资深发烧友的青睐和追求。别忘了世界上有许多的胆管成名,全有赖于单管输出电路的设计所发挥的迷人音色。比如素有“白马王子”之称的WE300B、胆王845等,它们所再现出的高贵音质,只有在单端输出时才能发挥出最大的潜力。

什么是真空管

电子管从根本上说就是控制电子流量的阀门。它的外观有点像灯杀(通常由玻璃制成),其中已经被抽至几近真空。在这个近乎真空的密闭腔体内有两个主要设备:一个被称为加热极,位于电子管的中央位置,在电子管工作时会发出橙色的光(某些真空管有不止一个加热极);另一个是由阴极、金属栅极和金属板(也被称为阳极)组成。阳极板是您能在电子管中看到的最大的金属构件。所有元件都用云母和陶瓷垫片定位和分隔。
电子管玻璃上的银色物质是什么?
银色物质被称为"吸氧剂",它的目的是帮助增加电子管内的真空度。不同真空管的颜色可能会有所不同。有时吸氧剂在真空管工作时会流动,甚至能够薄薄的平均分布在整个真空管的腔体内。吸氧剂的边缘往往会变成棕色。但这些都不会影响到电子管的正常工作和稳定性。
为什么使用真空电子管?
在我们详细说明前,有些人或许会有这样的疑问,“为什么使用真空电子管?”有人会很快回答:“电子管看上去好酷!” 但事实上远不止如此;实际上,电子管还有很多优异特性没有得到深入应用。   
为什么真空管在音频回放上具有优势?
为什么要用真空电子管?最简单、最直接的原因就是由于电子管所表现的音色对听众的吸引力。但那些推崇晶体管技术的人们却有着不同的观点,并由此进行了很多测试和试验用以证明自己的论点。甚至到最后连统计学家也参与到了对晶体管和电子管测试结果的分析中去。
一种论调认为即使是最普通的晶体管放大器的测试结果都要优于最好的电子管设备,但这个结论并没有考虑到音调的因素。简单来说—虽然电子管音乐的谐波失真(harmonic distortion)和频率响应(frequency response)都不及晶体管设备,但它对音乐的表现力却明显高出一筹。因此如果选用真空管,将使音乐变得更加动听!
摇滚吉他手Jimmy Page的"Stairway to Heaven"和AC/DC主音吉他手Angus Young的"Back in Black"都有一个共同的特点—那就是真空管给他们的吉他演奏注入了新的生命力,使得他们能够随心所欲的表现自己对音乐的感受!
真空管的工作原理
让我们一起来看一下真空管的工作原理。现代的真空管共由4种基本构件组成:极对灯丝(Filament) (加热用)、阴极(Cathode)、栅极(Grid)和阳极(Anode)。当极对灯丝连上电压对阴极加热,激发阴极电子通过栅极打在阳极上。通过这样的电子流,电子管可以将较小的交流电放大成较强的信号,实现信号放大功能。在信号放大的同时,通过控制栅极电压可以控制电子流量,因而获得所需的电子特性。
今天,大多数电吉他和电贝斯的放大器都是以电子管为基础的。而且专业的音响设备也都是采用电子管作为预放大设备的。甚至真空管还可以用在数模转换设计中。由此可见真空电子管是与这些音频相关设备最自然最可靠的选择。

   三极管王300B知多少   

   电子管机发烧友大概已有一个共识,就是三极管的声音较好,功率管中又发直热式三极管为上品。原理上三极管线性较好,所产生的谐波少,虽然直热式三极管比旁热式的好声难以在工程学上得出证明,只是人人皆知此说,我等也只能随俗而人云亦云了。
    由于内部结构和材料不同,直热式三极管中不同编号的如300B及2A3,其发声便有所有分别。即使是同一编号的管子,不同厂家的产品也大为不同,主要也是材料、手工及制造机械相异之故。有些厂家的品质控制比较严格,如"西电"(WEC)及Bendix等,堪称一流,其产品贵精不贵多。大路货中以RCA公推第一,GE及Sylvania则略逊一筹,其它杂牌厂货则更差了。
    一只管子之所以能成为经典,主要在其声音出类拔萃,而不是以测量数据取胜。今日300B有很多厂家生产,它们的互导率、屏阻等特性是一样的,但唯独"西电"WE300B独领风骚,其中原因如上述。笔者最近收集了一些有关300B的资料,荼余饭后的谈话题材。
    WE300B的源流应追溯到1930年"西电"推出的WE252A,当时用以抗衡Westinghouse及RCA的UX-250,两种管子的特性相近,作单端输出时功率达8W。此管只有洋葱头一种外形,主要用于"西电"的75A、59A、59B及67A几种扩音机上,在酒店、百货商店及舞池歌厅场合使用。WE 252A于30年代中期便告停产,今日已成为无价宝,可遇而不可求了。
    1933年"西电"推出特性相近的300A代替252A,管身改成ST19型,即与今日见300B一样。管座为标准四脚UX-4式,但座身上有定位针。管子可使用811A大发射管有护颈套的管座或平板型(Wafer)四脚座。300A设计用于10W以内的输出,适合工作于较低屏压电路上,系列内包括86A、87A、91A及92A等扩音机,300A于1940年完全为300B取代而停产。
    300B早于1938年便开始生产,特性与300A一样,但管座身上的定位针作了45°改变,这使两种管不能互换于有金属护颈的管座上,但一般的平板四脚座则无影。300B最重要的改进是灯丝结构(见图一)。WE300的灯丝颇为复杂,为两个M形而以弹簧悬挂,总长度超过一般同等大小的管子。300A的灯丝为首尾接出式,300B则有中心轴头,灯丝首尾接在一起为一端,中心轴头则为另一端,这是一个十分重要的改良。如果灯丝是以直流点燃时,300B的电子发射数量亦然。即使以交流点燃时,也会因灯丝较粗较短而减低交流声。300A则在直流灯丝供应时,电子发射集中在负极的一端,沿灯丝线减少到接正电端处最少,屏极表面吸收的电子分布甚不平均,这事实上会对声音造成影响的。如果用交流点燃灯丝时,也会因灯丝较长而导致较大的交流声。
    300A的生产期为7年左右,相信只有管座刻字的一种产品,在30年代这是一种流行形式。300B则生产期长,早期为斜体字而有WE的闪电标记,70年代改为正方字体,最后停产前及近两年复产的又改回早期的黄色斜体字,原因是日本人认为黄斜体了的WE300B必定较为好听。 300B与Hi-Fi世界 因为"西电"的产品质量高,并非一般大路货色如GE或Sylvania的可比,价钱也远比其他厂同效能的管子贵,这就大大地限制了其流行程度,正因如此一只如此优良的WE300B,多年来竟然无藉藉之名。

    二次大战前,300B只有在"西电"生产的电影声带扩音机上才能见到,"西电"为当时最大的电影扩音机制造厂,以租凭形式供电影院使用,并提供保养服务,所以其旧机的状态都保持甚佳。这些扩音机中最著名的当推91A,此机用一只300B作单端输出,功率达到8W之大,可算用尽了300B的功能,而另一型号92A也不遑多让,它以两只300B推挽,有12~15W输出。两种型号今日都价值连城,成了所谓"西电"传奇。 照当时的美国工业标准,电影扩音机的频率响应为80~10000Hz时衰减会达到20HB之多。相信所有的美制电影声带扩音机都跳不出这个框框。这种频率响应与今日的H-iFi标准20~20kHz相差实在太大了,简直成了一种中低频放大器。但事实上,80~10kHz已能囊括大部分乐器的声音,更不要说人声了,所以这种扩音机显然也能真实地得播某些乐器不多的音乐,如爵士及歌曲等,虽然不免有其局限性,但在其狭窄的频率范围内,有十分出色的表现也是可能的。 "西电"这引起戏院扩音战后被新一代的机种取代,多为Altec-Lansing的几种型号如1568、1569和1570等,这些产吕的频应已达60~20kHz,今日也相继成为古董,但不大受欢迎,因无特异之处。拆出的"西电"机则以工业废料形式运往日本,日本人甚喜爱西方各牌,其中部分小型的型号如91A及92A,这种机大小适中,甚合地方狭小的日本居室使用,而且它们一直由"西电"保养,基本情况良好,于是最为吃音。货源有限,转眼间价钱涨到天高了。
    日本发烧友以WE91A(8W单端)配以高灵敏度的号角音箱,据称声音好得惊人。这种情况若非新耳听闻者实在难以理解。原理上这种300B单端扩音机,其失真率是以1%/W而递增的,即在1W输出时失真为1%,在最大输出8W时即达8%,即使不计其狭窄的频率响应范围,在5W的普通音乐响度时,其谐波也达5%之多,结果会产生甚大的音染。而大型号角音箱竟然也是以音染大闻名的。日本人以此两种音染奇大的怪异组合,却认为梦幻组合。其实这件事情上日本人只算老二,首先发现的是法国人。早在60年代中期,一帮走火入魔的法国发烧友,发现以300B单端机配以大型号角音箱,再加上其他古曲器材,用以播放爵士音乐或人声歌曲会有意外惊喜,这种风气70年代初才传到日本来,形成了上面提到的怪现象。我们不应质疑300B单端机与大型号角音箱组合的效果,因为各人的音乐感受不同,而且世上事物,有时负负得正也是可能的,但也不宜过度推崇这种300B单端机。在道理上,除非配以超过100dB的高效率音箱,否则在播放某些大动态乐段时,难免会出现力竭声嘶,令人毛骨悚然的声音。即使只听轻音乐,假如并非使用音染较大的号角音箱也不宜期望能营造出所谓梦幻之声了。平心而论,300B工作于推挽电路应得到更良好的效果。
    如上所述,300B一直只在"西电"生产的电影扩音机上使用,销量有限,少有发烧友知其优点,原因是当时有RCA的2A3占据了市场。战前民用Hi-Fi扩音机使用到300B的只有一台Brook 10C,它的线路见于《发烧音响》1997年3月第132期的古典扩音机线路集上,但该线路中的Brook 10C的却是2A3。原来它的功率管灯丝供应为两组2.5V,有选择开关可接成串连(5V)供300B或并联(2.5V)供应2A3,各适其适。但300B或并钱贵,所以用户都是选用了2A3。战后束射管流行,连2A3都地位不保,300B就更无立足之地了。300B于是只见美**事设备或太空总署的仪器上,作为稳压管,取其坚固耐用。当时美国富甲天下,政府成了WE300B的唯一用家。
    日本社会70年代起日渐富裕,在物以稀为贵的心理因素下,300B在高级Hi-Fi界渐渐出名,终于冒出头来了,而其价钱也告飞升,甚至达到500美元一只。70年初National Union以特许权方式也生产300B,80年初National Union倒闭后则由Cetron继续生产直到今日。Cetron所产制的300B其灯丝接法一如WE300A,与WE300B有分别,所以用交流点燃时噪声略大。其后有中国300B出现,年前则有两种俄罗斯的产品。相信利之所在,其他各国的300B会相继中入,因为可卖高价也。其质量永远及不上真正的WE300B。
    300B一直只在自作派间流行,近年才有些小规模的音响厂赶制300B单端机。唯一大音响厂生产300B单端机者为日本的Lux Corp,曾派代表团于80年代初期访问WE在Kansas City的工厂,并立时下了大订单。Lux于1984年年产了一台300B单端单声道后级,输出8W。此机推出时,定价10400美元一对,以当时美元的购买力折算,可能是历来最贵的300B单端机,但一年后已告升值20%,今日相信更是不菲了。年前也有Marantz推出之Project T -1 50W甲类三极推挽放大器,用4只300B推两只845输出,另用两只845作稳压。一台机使用7个变压器,定价25000美元,即50000美元一对,少有生产中的扩音机能望其项背。美国音响厂则以Cary Audio为先锋,生产300B单端机,但只以亚洲市场为目标。
    WE300B在1988年停产,其Kansas城的仓库两年后销售,当时的批发价为125美元,但需一次最少认购5000只才接受订货。1990年当WE的仓库卖完后,市上的零售价立时上升到300美元一只,其后在日本更有**过千美元者。
    名管有价,1996年一家WE的附属公司Westrex Corp.宣布重新生产300B,声称在其原来的Kansas城工厂,采用原来的材料和制作机器,甚至找回部分原来的员工。产品在1996年冬季拉斯维加斯CES展出,成品则于1997年推出市场,当时定价为350美元。重产WE300B的外观与60年代的一样,每管有编号(Serial No.)刻在管座身上,盒子精美,更附有独自的测试数据及曲线,使人有极其认真之感。因为产量少而售价高,管子的制作工序都十分严格,其老化过程也非他厂所及。据"西电"资料,300B的老化为3星期7小时 ,前两小时加高灯丝电压到7V、6V及250mA屏流,使管子产生高温以消灭残余气体和杂质。再以正常灯丝工作电压及60mA屏流点燃5小时以使管子状态稳定,然后才独立进行特性测试。此所谓慢工出细活,一只WE300B若应用在AB类推挽电路上,通常可以正常工作100000小时以上,可说是物有所值了。
其它的管厂生产的300B评价:
Cetron 300B
在欧洲(包括俄罗斯)还未正式生产300B之前,Cetron 300B是唯一品质可靠而且容易购得的300B品种了。再加上价位并非高不可攀,所以深受300B 迷的喜爱与推崇。因为Cetron的生产技术承袭自WE,所以不论在结构上或是材质上,都与WE300B最为近似,包括声音的表现也比较接近WE300B。不过跟真正的WE300B相比,Cetron 300B仅能说是制作稳定的替代品而已。随着各厂家推出因应的复制品之後, Cetron的名气与价格降低了不少。经过一段畅销之後, Cetron 电子管厂还是避免不了被时间淘汰的命运,因而终止生产,使得后期的Cetron 300B因为品质大不如前令人颇有微词。甚至到最后期Cetron停产之后所卖的Cetron 300B,据说是挑选以前库存或是淘汰的产品,使得Cetron 300B的名声也慢慢随之烟消云散了。
国产300B
若说起这波300B 的卷土重来,宛如四百多年前发展于意大利的文艺复兴运动一般的狂热,最大的原因,莫过于中国推出价格低廉的300B电子管。使得音响迷对300B 的梦想得以达成,国产300B简直就是电子管音响潮流的最大功臣。
早期国产300B没有经过进一步的测试筛选等品管过程,就将之上市流通,所以品质一直不稳定。不过後来曙光厂在有心人的投资与技术交流之下,制造品质越来越好,甚至推出特性不同结构各有差异的多样变种300B,供消费者选择。
国产300B在结构上与WE300B并不相同,其中最大的差异便是灯丝结构上的差异。WE300B 是采用古典的灯丝悬挂方式,利用金属钩固定灯丝并可微调阴极灯丝的内阻。而国产300B则是使用较进步的方式,利用弹簧悬吊的方式固定灯丝,其优点是可大幅减少繁琐的人工,比较利于大量生产,但是弹簧悬吊的方式无法对阴极灯丝进行内阻微调的工作,灯丝加热温度不平均的问题便比较严重,这也就是许多国产300B灯丝点亮之後亮度不够平均的主要原因。
其后曙光厂便推出一系列不同制造形式的300B ,其中便有遵循古法以固定悬吊方式来固定灯丝的品种,使声音表现更接近WE300B ;以及将屏极镀上石墨,以增加屏极效率的品种;另外还有更高级的版本是将屏极镀上钛合金,同样也是增加屏极效率,并可增长使用年限。不论国产300B 如何改变内部结构,原则上购买国产300B最好是选择已经经过测试挑选之后的产品,虽然在价位上会稍微贵一些,但经过挑选之后的产品,不管是在声音的表现方面,或是使用年限上都比较有保障。
Sovtek 300B
在WE宣布准备重新生产WE300B之後,令许多300B迷兴奋不已,但是因为各种理由, WE宣布必须将上市时间无限延期时,也让300B迷们再度望穿秋水怨声不已。就在这青黄不接的时刻, Sovtek受到美方资金的赞助,宣布Sovtek将开发生产模仿WE规格的Sovtek 300B,并在很短的时间之内正式上市,并且以精良的品质与低廉的售价作为号召,使得电子管音响的市场再度受到一阵骚动。这个在管壁身上印上红星标志的Sovtek 300B,一开始由于引进的数量不多,在市场上的价位稍微偏高,大约是国产300B一倍左右的价钱。但是在业者大量引进之後,价位就逐渐下滑,约略高於国产300B一至二成的价位。在结构方面, Sovtek 300B的灯丝悬吊方式与国产300B类似,同样采用弹簧悬吊,声音的表现较为刚强,跟各种国产300B比较起来显然於音响性的表现上较为优良。不过Sovtek 300B 同样也面临因为大量生产,而使得制造品质的稳定度无法满足消费者的需求情况,这是选购Sovtek 300B 时必须注意的问题。
JJ /Tesla 300B
JJ/Tesla 300B 是由刚从倒闭了的前捷克斯洛伐克国营电子管厂-----Teslovak / Tesla 分离出来的斯洛伐克分厂生产的新款300B,白磁管座,管形瘦高,单管最大输出可达15-20W,价格在Sovtek 300B和国产300B之间,品质亦较稳定。鉴于刚刚上市,国内市场尚难见其踪影,相信不会太久即有许多制造300B电子管机的厂家采用。据悉以有Cary 和Unison 等知名厂家已率先推出使用JJ /Tesla 300B的单端电子管机。由于输出能力强大,且声音较有素质,JJ /Tesla 300B是一款较有竞争力的300B新星。

发烧信号线
 
    一套优秀的发烧音响器材,有必要配置高级线材、而选用什么档次的线材、线材的制作材料及制作工艺对其整体品质的影响等一系列问题均要与器材本身的档次挂钩。一套廉价的音响使用高级线树与选用普通线材所得到的还音差别并不大,而一套中高档次的音响在使用高级线材与选用普通线材时所得到的重播质量却存在着明显的差别。这种差别不大与差别明显的不同结果,是由音响器材本身的品质决定的。但从另一角度来看,如果想仅仅凭借几条高级的音响线来使低档次音响器材的重播效果明显地改观却是不现实的;而在一套合理的中高档次器材搭配中,忽略线材的配置则会直接限制音响器材潜力的充分发挥,使重播的音质、解析力等受到一定的影响。因此,正确地认识线材在音响系统中的位置,是很有必要的。

    从表面上看,好的线材与差的线材在通以直流电信叼的状态下电阻值都非常小,似乎没有个么太大的差异。其实,这是个简单的错误。由于音响器材所重播的信号是不同频率的交变信号,而非恒定不变的直流信号,因此,在传输音频信号时,好线材的传输准确,传送的频率范围宽、表现真实、层次丰富;而相对较差的线材所传送的信号则会随着频率的变化而有所改变,其信号失真的程序也会因频段的不同而各异,两种线材的差别这时会相对明显。发烧音响线材基本上可分为;信号线、音箱线(喇叭线)、电源线三大类。

发烧信号线

    信号线是用来传送由音源(信号源)所产生的音响信号的线材。它主要包括同轴信号线(RCA)(AV信号线)、数码信号线、当缆信号线、平衡信号线。

    同轴信号线是最为普及的标准信号线,它的两头均为RCA同轴插头(俗称莲花插头),可对目前市场上出售的标准曩碟机、CD机、VCD机、DVD机、LD机、卡座、调谐器、LP唱机、MD等音源设备与HI-FI发烧功放、AV功效等音频处理/放大设备进行连接,这种线使用广泛,属不平衡传输类型,具有一定的抗干能力。

    数码信号线是同轴信号线的一种,它与同轴信号线外观相同,并可相互串用。与同轴信号线不同的是,它的传输速率快,传送频带宽(在视频范围)、抗干扰能力强。数码信号线的主要用途是在高档器材搭配中用来连接CD转盘与D/A转换器(数/模转换器)传送单一的数码讯号,以及DVD的数码输出至AV功放的D/A转换器信号传输。

    光纤(缆)信号线与数码信号线的作用相同,只是它所传送的是来自于CD转盘/DVD机的数码光信号。由于数码电信号在CD转盘中进行了电/光转换,变成了光信号在光纤中传送,又因为在光纤信号线中传送的光信号不受外界电磁波的影响,而且光纤传输可使两者之间信号浮地,没有公共的接地,避免公共地线的干扰,所以光纤信号线的抗干扰能力要强于数码信号线。光纤信号线使用光纤插头,本身由光导纤维制成怕折,在使用时应尽量避免卷屈及振动。

    平衡信号线是高档次音频信号传送线,在传输过程中可抑制共模干拢,通过内部差分放大器自然地抵消掉,从而起到了抗干扰的作用,平衡式信号传输的特点主要有如下几方面。平衡式放大线路的优点已经在近年来逐渐为那些高级音响发烧友和厂方所认识,它的原理是把信号分为正相信号(热端)和反相信号(冷端)传输。两者对地阻抗相同而极性相反,当采用双芯屏蔽线在传输过程中,外界的干扰信号对它们来说是同相的,这样可以在传输后的末端利用输入级的差分放大器共模型抑制和抵消放大输过程中的各种电磁、电源、湿度造成的外界噪声或内部噪声干扰,使音质更为纯净和通透。由于平衡传输在输出的有用信号是相加,其信号输出辐度在理论上是原来的2倍,因此平衡线路放大器不但具有最小的噪声,而且输出强劲,驱动控制力极佳也是其最大优点之一,在信号电平越低的情况下,平衡线路的传输纯净的优点就越能显示,而用在功率放大器相比较,采用平衡线路放大器相具有更好的清晰度通透感,瞬变更为快捷利落,高低频延伸更好,分析力方面更加细致,声场显得更为深远阔大。中低档音响器材的信号传输几乎都采用单端不平衡方式传输,即利用两根单芯屏蔽线和两对RCA插头插座就可传输一路两声道立体声信号。普通的单端传输线和RCA接插件制造方便、价格便宜,因此单端不平衡传输在中低档音响器材中获得了广泛的应用。而在许多高档前后级分离式音响器材中,通常采用双端平衡传输方式,即采用两根双芯屏蔽线和两对XLR平衡插座传输双声道立体声信号。双端平衡传输方式在同档次的传输器材造价也较高,但高档次的传输器材广泛应用双端平衡传输,说明在传输效果方面要胜于单端不平衡传输。

    一般认为屏蔽线可有效消除外界电场对内芯传输信号的干扰,从而保证了信号良好地传输。事实上并非如此,即使屏蔽良好的屏蔽线也还会引入一定的电场干扰,另外,对信号产生干扰的不仅仅是电场,诸如磁场、振动、温度等均可对信号造成干扰,在信号传输过程中受到干扰的程度与信号线质量和传输距离有很大关系,信号线质量越差、传输距离越长则受到干扰的程度就越大。在单端不平衡传输过程中对于已引入到信号线中的干扰是无法消除或削弱的。在许多情况下,这些干扰会有令人察觉的表现,轻则掩盖了一些音乐的细节,造成音乐透明度有所降低,重则引入令人讨厌的交流声及其他可闻的噪声。另外,在单端不平衡传输中,屏蔽层也是信号电流的回路,存在着信号电流,当被此传输线连接着的两个系统之间存在着交流电位差时,这个交流电位将直接窜入到信号中。在单端不平衡传输方式中,除要求传输线屏蔽良好外,对信号线材质要求也较高,即音质音色对信号线材质依赖性较大。因此,在不改良传输方式的前提下,要想提高信号传输质量,主要依靠提高信号线质量。在遇到不得不使用较长的传输线时,再好的线材也无法发挥其应有的功效。这种不从传输方式着手改进而仅从信号线质量上有一定局限性的。从信号传输方式上着手在许多情况下效果更好。双端平衡传输可极大地削减单端不平衡传输方式中的诸多缺点,而且在双端平衡传输方式下,音质音色对信号线材质的依赖性相对降低很多,即意味着采用价格一般的信号线也可获得优良的音质音色。因此,这种改进的性价比是很高。双端平衡传输与单端平衡传输相比有很大的差异。双端平衡传输的信号为幅度相等、相位相反的同相和反相信号,所以在双端平衡传输方式中信号线为双芯屏蔽线,内芯两根导线分别传输热端、冷端信号。这两根导线紧密地靠在一起且走向、材质等均一致,因此对地阻抗一致。当信号源热端和冷端输出阻抗一致、信号接收端放大器热端和冷端的输入阻抗一致、整体达到完全平衡时,外界的电场、磁场温度,振动在内芯两根导线内产生的干扰是一致的。对于信号接收端来说这是一种共模干扰,这种共模干扰可用输入级的差分放大器电路加以消除或极大地抑制,这是在单不平衡传输中不可能实现的。双端平衡传输正是在这一点上占了很大优势,在很大程度上提高了信号传输质量,改善了音质音色。双端平衡传输午在对称和平衡,因此对信号线材质的要求相对降低了,可以使用平价信号线,在较长距离传输**效更卓越。

    双端平衡传输诸多优点,在Hi-End高档极品音响器材中获得了广泛的应用,产生令人惊喜的收获。平衡信号线通常用于发烧纯功放与前级或发烧纯功放与CD机之间的信号传输,平衡信号线使用平衡插接头。由于平衡信号线使用平衡插接头。由于平衡信号线中实为三条线:(2)信号+线、(3)信号线、(1)地线,极少也有(2)-,(3)+,(1)地的接线方式。因此,平衡信号线的接头亦为三个插接针(公头)或三个插接眼(母头)。在搭配相连接时,应注意依据公头接母头的互补原则来选择带有不同接头的平衡线。数码、信号线、光纤线、平衡信号线均属高档Hi-Fi或AV音响器材专用线材,使用这些信号线的设备,必须具备相应的输入输出专用插口,否则无法使用。

  发烧音箱线

    音箱线是音响器材中专门用于功放与音箱问连接的线材,由于音箱线传送的是功率信号,因此在它上面不应有太大的信号损失,这就在客观上要求音箱线具有极为优秀的导电性能,优秀的导电性能要求线材要具备极传送能力。目前用来衡量这两点的主要技术指标是N值与导线股数。N值是反映音箱线在制作中所使用金属纯度高低的参数。目前普通的音箱线所用金属的纯应在99.99%以上,在表99.99%达时,习惯上称一个9即为一个N,99.99%即为4N,而99.99%称为5N ,99.99% 叫做6N……。现在市场上高档次发烧级专用音箱线的纯正度一般在6-7N以上。音箱线中金属导线在传导各频段频率时所传送信号的速度是不一样的,特别是某些频率的信号沿导线表面的传送速度与其沿导线轴心的传送速度亦有微弱的差别。因此,为了使从功放一致的传送效果,同时进一步提高线材的导电能力,每根音箱线多配以多股导线盘拧而成,这样可以进一步提高音箱线的传送质量。

    一般来讲,在N值相等时股数越多,线的传导能力越强,线阻(阻抗)越低,传导速度越快。除了音箱线外,N值也用来衡量同轴信号线等某些其它线材。发烧线材(包括信号线/喇叭线)对音色有一定程度的影响,发烧友早已明白。发烧线材在音响系统中所扮演的只是锦上添花的角色,若想要音响系统的音色有较大辐度的改进,还是应该采用其他更积极的方法。高级发烧线材绝大多数来自欧洲、美国、日本等国家和地区,来自不同国度的发烧线材其表现也各具特色。日本的线材,大多极为重视导体的纯度绝缘材料的光洁度,以及导线的线径、总股数,不讲究线材结构,强调以高纯度的导体材料来改进传输效果,其音色表现也比较中性;日本的铁三角(audio technical)、古河(FURUTECH PCOCC)、登高(DENKO)Audio NOTE。美国的发烧线以威猛粗壮著称,产品质地精良,制作工艺考究,其表现大多动态凌厉、频响宽广,声音清晰爽快、质感明朗;美国的超时空(TARALABS)、怪兽(MONSTER CABLE)线圣(A.Q.audio quest)欧洲的发烧线材制作工艺精湛,对线材的编织、屏蔽、避震等方面比较考究,具有较好的音乐表现力与平衡度,外观朴实无华,适合表现古典音乐,并且利用特殊的编织技术来消除集肤效应引起的高、低频失真,使音色自然逼真,音乐表现力更佳。荷兰的(VDH)范登豪、丹麦的高度风(ORTOFON)、意大利的A.R.T。一般来说,欧美的发烧线材大多具有调校音色的效果。由于聆听者的听者品味、扬声器与放大器的先天个性,都会影响听到的声音。要用适当的导线去调校出各方面平衡的声音,首先必须找出发烧友自己那套音响系统的个性,然后采用个性相反的导线去令声音更平衡,而非一面倒的倾向某方面,例如声音太浓厚速度偏慢的组合便应用清爽结像线条清晰的接线。

    发烧线材品质的好坏,导体材料的传输效果可说战了相当大的比例。最常用的导体材料是铜,其次是银,当然也有用非金属材料如碳纤维来作导体材料,因此一般常用于发烧线材的是高纯度铜,分为无氧电解铜(OFC)、LC-OFC铜、无氧单结晶体铜(PCOCC)及Super Pcocc铜,依据纯度来分有4N、6N、7N、8N。OFC中文称之为无氧铜,因在冶炼铜的过程中不加入氧化物及避免了氧化所生产出的铜线,纯度为99.995%。OFC铜材中具有较长的颗粒,LM约为400个左右,这样可以令性能得到改善和进一步减少失真,一条OFC铜线的声音比采用高纯度的普通铜作相同设计的线材更为清晰平滑及动态更大。LC- OFC铜线其纯度比OFC无氧铜略高,但仍在4N的范围内,但导电特性要比 OFC铜好。PCOCC铜是由OCC铸造法生产的高纯度铜。用OCC冶炼法抽丝出的高纯度铜线就是PCOCC。PCOCC的特点就是铜结晶体大,铜的纯度则提升为99.996%,导电性当然是提升得更为理想。PCOCC 线材具备了信号传输上的重要特性,它在传输方向上达到了最小杂质的影响,极少或无颗界限,具有平滑的表面和特性的柔顺性,因而可以传送极为清晰的信号。SuperPCOCC则是将铜的纯度提高到99.997%(6N),其杂质含量更低,导电性当然比PCOCC铜更好。

线材制作大揭密
 
    音响导线是怎么做出来的?我们一边讶异于电源线、讯号线、喇叭线,甚至小小一条数字线对于声音所造成的变化,一方面又对越来越昂贵的高级线材望而兴叹。要报导线材的制造秘密,当然得找万隆不可,这是我第一个浮现的想法。事实上,台湾一直是全世界最大的高级音响导线OEM基地,而位于云林古坑的万隆公司又是个中佼佼者,许多国外名厂的线材都是委由万隆加工制造。碍于合约关系,我们无法告诉你哪些线是从万隆出来的,不过希望你看过这篇简单的报导后,对线材的神话与迷思可以有更进一步的认识与化解。

台湾的唯一

    根据经济部两年前的一篇报告,指出从1970年起,全球铜消耗量以每年2.5%左右温和成长,成为使用量仅次于钢铁及铝的金属。铜具有优异之热/电传导性、良好之抗蚀性及良好之成形性等特性,为3C产品零组件之重要原材料。台湾是世界第六大精炼铜消费国,十年来复合年增率达11%,居全球之冠,每人精炼铜消费量达28.4公斤,居全球第二,但是间接外销比例大。铜半成品可分为电线盘条及伸铜品两大产业,产值合占我国金属制品业的17%,下游关联产业主要有电线电缆、电子信息、家电、机械五金、建筑、饰品等。目前一贯作业制造厂商约有56家,1998年产值为555亿元,总产量约77万公吨,电线电缆占68%,伸铜品占32%。不过与其它工业国相比,台湾的竞争力较差,专家推荐台湾较具发展潜力产品包括电解铜箔、轧延铜箔、导线架铜片、精密黄铜片、磷青铜片、ACR内螺纹卷管、无铅黄铜棒、铜包钢接地棒、高纯度线材(OCC)、高传导极细线、161KV超高压电缆线等。

    从这篇报告中我们可以发现,台湾的铜制品产量相当的大,其中电线电缆又占了大宗,而且制造厂家众多,不过整体竞争力却不佳。OCC算是较高附加价值的技术之一,尤其是用在音响导线上。目前接受工研院材料所移植OCC制程(Ohno Continuous Casting Process)的公司有两家,一家是上市公司台一国际,一家就是万隆。台一国际成立有三十多年,目前在杨梅、新竹、观音等地分别设有炼铜、漆包线、电线电缆、绝缘材料四个事业部。炼铜事业部主要产品包括从0.32mm-8mm的无氧铜线以及OCC 单结晶无氧铜线。台一国际与太平洋电缆等是国内重要的光纤电缆厂商,对音响用线着墨较少,所以音响迷的焦点仍得放在万隆公司身上。

什么是OCC?

    其实万隆不单是台湾第一家以OCC技术制造音响导线的厂商,在全世界也都算是少有。据我了解,除了万隆之外,日本的住友 (Sumitomo) 及古河 (Furukawa)也都有类似产品。但古河只卖成品,不卖材料,而住友又对音响市场用力不深,因此万隆一枝独秀,吸引了许多国外的OEM订单。OCC技术是日本千叶大学理工学院(Chiba Institute of Technology)大野教授所研发的「大野连续铸造法」,可提炼出纯度至少4N,最高达到6N的纯铜或纯银线材,OCC的结晶长度比一般无氧铜(OFC)长达50-100倍以上,平均结晶长度为125m。由于这种铸造法有十多国专利,因此后面必须加上OCC,前面则由生产商自订,古河称为PCOCC,而万隆称为UPOCC (Ultra Pure Copper by Ohno Continuous Casting Process)。

    OCC制程是一种热模连续铸造制程,与一般传统连续铸造最大差异在于利用加热的铸模,而非传统所用的水冷模。铸模内壁温度保持在铸造金属的凝固温度以上,使金属凝固时不会从模壁凝固结晶,而是沿铸模口外之铸造拉引方向呈单方向组织凝固。此一制程技术可应用于生产纯铝、铝合金、纯铜、铜合金、纯银与其它合金及高温合金(Tm>1200℃)。同时也可制造不同形状的连续产品,例如线材(1.5-12mmψ)、板材(5-130mmω)、管材、异形材等。OCC材料的特色为单方向结晶或单晶组织,内部组织偏析少、杂质低,具有良好加工性(伸线、压延),具有电子信号高传真性,另外也适用于直接铸造加工性困难的高合金线材及板材。在工业上,OCC材料的运用包括音讯、视讯导线、喇叭;IC所用连接材料;焊接及接点材料;高性能热交换器管,以及高精密零件用材料(要求加工性)。

纯度与结构

    最早万隆是想向日本古河购买材料来加工,但古河只卖成品,不卖材料,迫使万隆从1991年开始参与工研院材料所的研究,并完成技术转移。从简单的电解铜,进步到无氧铜OFC,大结晶的无氧铜LCOFC,以及今天的单结晶铜OCC,究竟这些材料与导线之间有什么关系?我们可以这么说,影响导线声音表现的要素有三,分别是材料、绝缘与包覆,加上线材的结构。在材料部份,这些年来,设计者莫不把全力放在材料纯度的提升与结晶结构的改良。

    以最常使用的铜来说,材料就包括便宜的电解铜TPC(Tough Pitch Copper)、进一步除去TPC内所含的氧化杂质等不纯物的高纯度无氧铜OFC、让铜形成大的结晶,使其结晶粒子的界面空隙减少而成的LCOFC(线形结晶无氧铜)、以及讯号传送方向的结晶粒子界面理论上为零的OCC(单结晶状高纯度无氧铜)。我愿意多花一点篇幅介绍万隆,或者介绍OCC,主要也是想破除所谓高纯度铜的迷思。

你要几N?

    市面上有太多号称6N甚至8N的线材,最离谱的还有所谓9N银线。N是金属材料纯度的表示,与材料的种类无关,例如:99.99%即有4个9,称为4N材质。OFC以上的铜大都为4N,这也是音响导线用得最多最普遍的材料,具规模的炼铜厂都可以生产4N铜。进一步以化学方式除去含氧量与其它微量金属,是可以让纯度再提升,但仪器不一定测得出来。万隆的高董事长就说,他们与工研院合作进行量测,但国家级的工研院也只能测量到5N,再来的误差就太大了。那么6N或8N怎么来的?高董事长含蓄的表示,他个人对这些数据持保留态度。一般在科学量测时,有所谓的加法与减法,假设同样的材质,以加法量测,将氢分子等微量元素按比例计算,得到其纯度为5N。以减法量测,这些微量元素含量极低,几乎无法计算,就当成零,于是最后其纯度变成8N。一个5N,一个8N,但它们是同样的东西哪!

    高纯度的铜或银,不仅制造困难,要保证在空气中长期维持稳定更加困难。事实上当铜从炉具拉出来的剎那,就已经开始氧化了,所以部份线材设计者对6N以上的材料不以为然。但一些日本厂商却在这部份投入心血研究,例如高纯度铜一拉出来就边冷却边施以特殊包覆,减少氧化的可能性,日本能源Acrotec就是其中佼佼者,纯度99.99997的6N铜就由他们领先世界生产出来。Acrotec所推出的8N铜线,其规格已经达到大气中的极限,将不纯物质及Stress排除殆尽,在绝缘体材质及构造上也运用了独有的科技,Acrotec说8N铜线的不纯物含量仅为6N的1/100,确实非常惊人。

    Stress理论也是由Acrotec提出来的,他们认为导线中有压抑(Stress)的存在,在加工时会导致内部变形,这是除了结晶结构与纯度之外材料的另一个重点。导线经过弯曲或加热之后,导体内的结晶构造会产生变化,因此原子层次的歪曲、变形会造讯号传输上的障碍。Acrotec以特殊热处理法把原子排列转位的缺点减低,让结构相当安定,而且变得柔软有弹性,这是传统OFC材料无法克服的缺点。免除加工变形的6N铜其结晶数仅有4N铜之1/80~1/100,铜原子成为Stressfree状态,可以有较佳传输效果。

OCC的优势

    Acrotec可以说是高纯度材料的代表,但在结晶结构上,Acrotec的6N铜是属于LCOFC。Stressfree 6N线经过长达12个小时250℃加热的结果,其气体放出量远比OFC少得多,低温时的热传导率也比OFC高一个位数以上。同时,其柔软似金的特性,使得6N铜得以取代半导体Bonding用的金线。此外,诸如残留阻抗比、极低温的磁场拒斥率等电气特性,都比OFC强过甚多。Acrotec认为音响导线最重要的是在拉线后所进行的热处理过程,他们将原子排列的缺陷减至十亿分之一以下,机械歪斜极低,近乎于自然排列的状态,这也就是为何称之为 Stressfree的由来。铜结晶与结晶之间的杂质被浓缩时是很不好的现象,如果将结晶巨大化,结晶数不仅减少,杂质也相对地减少,这就是LCOFC的精神所在。没错,以电子移动的观点来看,结晶间的不纯物质减少,电子移动就阻碍少,原子排列也比较有规则,对电子讯号的传递是十分有利的,OFC材质有所谓「格子缺陷」的凌乱原子排列,并非最理想的材料。

    那么,OCC的一个结晶可长达一百多米,等于音响导线都只用到一个结晶而已,岂不是比LCOFC更好?我问过万隆高董事长,他有没有比较过彼此的差异,因为Acrotec的铜纯度显然要略胜OCC一筹。高董事长爽快的说没比较过,因为自己做线的,他实在无法忍受市售发烧线的高昂价格,而且他以为线的结构远比材料要重要得多。有关导线的结构与设计者有关,不在本篇讨论,所以我们还是专注在材料部份。

    LCOFC有它的好处,OCC优点又在哪里?传统电解铜都是一边冷却一边铸造的,OCC则完全相反,先将铸形加热,于铸出后再予冷却,如此一来,铜的结晶连续成长,结晶粒界面的空隙不会成形。在万隆的OCC熔炉内,温度高达摄氏1160度,炉具为特殊耐高温合金,炉心内灌入惰性气体防止液态的金属氧化。在炉心内另有多道过滤设备,除去金属所含的杂质,因此金属的纯度可以达到6N的要求。利用地心引力让液态金属自然的流出来,形成直径8mm左右的圆棒,一个小时只能铸造六十米左右,速度非常慢。照高董事长的说法,OCC一方面是产量少,一方面是成本高(过去使用石墨棒加热,一次就要六支,每支九千多元,现在改用合金加热线仍然不便宜),所以价格也降不下来。OFC无氧铜与OCC单结晶铜成本大概相差八倍,如果是OCC银线,成本更高达OFC铜的十五倍。不过OCC因为结晶长度很长,延展性特佳,加工后结晶不易折断,因此很适合拿来做复杂的编织。

名牌音响线的真貌

    虽然OCC有很多好处,但万隆帮忙代工的许多名牌音响线,只有极少数高价产品才舍得用OCC,绝大部份仍然以OFC材料为主。高董事长日前寄了一组超级喇叭线给我试听,这是以OCC纯银线制成的,结构经过特殊设计,声音非常的好,纯净度惊人,而低音又不会太轻。早几年前,万隆也尝试用OCC纯银线制作各种产品,并以自有品牌Neotech推出,价格相当吸引人。不过我向高董事长坦承,那些线固然透明清澈,低音量感却是不足,平衡性并不理想。说到这里,高董事长再次提醒线材结构的重要性,的确,使用的材料固然会影响声音质素,但最终的声音表现仍取决于结构。

    目前万隆有五位研发人员,负责开发各种新的线材结构。高董事长说一条好的音响导线,应该具备低电容、低电感、低电阻与低集肤效应等物理性,但并非绝对的。例如卡拉OK或专业用的麦克风线,与电容量就没太大关系,反而要求有更低的电感,才能降低干扰。而数字线呢,主要讲求阻抗准确,导体中心也要正确。事实上设计线材时有一套公式可以依循,包括材料、绝缘体等可用对数公式计算,一般他们都是计算好后先试做样品,再以仪器测量。

    部份国外厂商其实并不具备设计能力,他们请万隆提供一些样品,试听后再修改塑造出自己的风格,名牌线就如此诞生了。还有更夸张的,某英国品牌连修改都省了,直接请万隆在样品上换个商标就推出市场。当然,仍有一些名牌是直接寄来设计图,要求工厂按图制造,这已经算是有本事的。高董事长也说,这些技术底子较强的厂商,确实有些关键是我们所不清楚的,一组喇叭线要卖几十万台币,真得有几把刷子才行。至于那些不单委托OEM,连设计也假手他人的厂商,他们也会提出一套冠冕堂皇的理论与说词,真假如何,就有赖消费者自己来判别了。


结构真正重要

    这么说好象很不负责任,也不尽然如此,因为音响导线的电气特性不外就是电容、电阻、电感等几部份,同样一盘菜,就看大家怎么运用调理了,我们实在不能说有什么错。有一次在工研院与几个研究员闲聊,他们就开玩笑的说,想开发一些音响线材赚外快,结构由他们负责,说词我来搞定,理论与实际是可以完全脱钩的。明白这么回事以后,以后读者在选购线材时,各种神妙理论不妨仅供参考,最终的声音表现仍有赖耳朵来决定。有没有一种线材能搭配所有的音响系统又有杰出表现的?看来不容易,不同的结构影响了导线的声音表现,而不同的音响系统需要各异的调味,所以读者在选购线材时,别忘了贵的不一定适合你。

    在还未参观制线工厂之前,我对几千条细线如何缠绕成一条较粗的导线,一直心存好奇。看过之后,才发现缠绕线的工作已经全部机械化了,只要设计师想得出来,工厂就有办法代劳,当然越复杂的结构成本越高。一般缠绕线的方法,不外乎有三种:以一条或三条裸线为中心,其余周围之裸线以此为圆心向同一方向卷绕,称为「同心绕法」;也有以全部的裸线为一体,向同方向卷绕的「集合绕法」;另外就是采取折衷的「复合绕法」,大部份欧美制造的线似乎以采用「同心绕法」居多。

    最早的讯号线,基本上都采用单蕊结构的同轴导线,这是1930年代为了电话的长距离传送所开发出来的。由于低信号损失,一条导线上能传送多数的信息,不易受外来噪声的影响等,因此同轴导线能应用于所有的信号传送上。不过后来发现,一般的同轴导线其中心导体为一条单线﹐单线太细会使电气阻抗增加;太粗的话,则频率高的讯号不易通过。因此有人将多数比头发更细的导线束成一股﹐使低频到高频的传送损失减少;但又有人发现,细线的截面积较小,中低频段的信号「流通效率」较高频差,所以他们利用不同粗细、个别绝缘的导体,负责不同频段信号的传输,如此即可避免集肤效应,同时又能够达到全面性的要求。了解材料的重要性,接着我们知道,原来结构也真的很重要,同样的材质与同样的屏蔽,但只要线径粗细或缠绕方式有异,结果将相差十万八千里。

包覆隔离也不能忽略

    美国NBS是线材结构的天才,据说NBS内部的单蕊铜线都是工业用的普通材料,但经过特殊的编织结构后,NBS发出别人望而兴叹的声音,但也因材料先天受限,NBS的质感仍有可议之处。结构重要,隔绝外来噪声的包覆处理也不能忽略,隔绝越好,讯噪比越佳。一般的多层同轴线,是将外部导体的外围绝缘,再包以隔离网专用导体,藉此彻底的阻断经由讯号线所混入的噪声。影像的线则将复数的外部导体质直接卷绕而成﹐这是为了制定的75Ω规格。

    在一条线里面,除了最外层的隔离网或软质PVC包覆外,里面最多可以有十多层各式各样的填充与隔离设计。常见的填充材料有棉线、PE绳或PVC条等,由于绝大多数的导体截面积都是圆形的,因此必须藉由填充材料的填塞,构成紧密扎实的支撑,以避免线材在曲折时造成压扁的现象。导体的绝缘处理,也有绝缘漆包、PVC以及铁氟龙等不同方式,各种绝缘材质的电气个性互异,设计者可按需求来选择。一般说来,以价格最高的铁氟龙效果最佳。至于隔离层,主要是防止大气中的电磁波进入,使导线变成天线,常见的材料有铝箔、镀锡铜网等,甚至有用OFC无氧铜编织的隔离网。

    为了降低失真与隔绝干扰,音响用导线也有以平衡传送的结构,对正半波、负半波与地线分别传送,理论上,这是效果最好的方式。包覆与隔离多了以后,导线看起来都粗粗壮壮的,尤其是电源线,真的已经和蟒蛇看齐了。那么电源线、喇叭线等是否可以互通使用呢?比如把多出来的电源线拿来做喇叭线?理论上是可以的,但最好有一些另外的处理,因为音乐信号并非像电力一样只有50或60Hz,在流动的过程中同时含有各种频率成分的变化,不但要承受大能量,而且还要做到能无损失的传送复杂的音乐讯号才行。

平地起高楼

    说了这么久,我们才将话题转移到万隆电线电缆公司。高董事长说跨入这一行真是误打误撞,1980年公司成立时,任妇产科专科医师的高董事长仅是出资的股东之一而已,后来几翻波折,高医师成了高老板。1981年万隆开始开始生产各种电线电缆,初期员工约25人,到目前有员工100人,每年平均以30%之成长率稳定成长。高董事长客气的说工厂看起来很大,实际上每年的营业额才二亿台币左右,算是中小型公司而已。读者别忘了,这二亿的素材进入音响市场后,起码要卖二十亿以上,卖线的人吃肉,制线的人喝汤而已。真是这样吗?也未必。每种线材生产前都要打样,至少一百米,主要是一百米以上的线材用仪器量测才可看出端倪。万一打样成绩不好,成本就白费了;就算打样成功,一次最低生产量又是几百,甚至几千米,卖线的人得寿命够长才能看到成品出清哪。这么说来,卖线的人也有不少风险,市场越萎糜不振,线的售价只好越来越高。

    高董事长对这种不正常现象也感到无奈,因为连他们都不是稳赚的。记得前面说OCC在生产时速度极慢,从炉具流出来成型的OCC甚至不能用机械拉动,只能靠地心引地慢慢的下垂,精密度很高。结果南投的921大地震猛力一摇,把这部昂贵的OCC炉具差点翻倒,一位技术员说设备好象搬了家似的,花了好久时间才修护并就定位。原本OCC的产量就已经很慢很少了,大地震后很长一段时间,OCC宣告缺货,高董只能眼睁睁看着钞票跑掉。话虽这么说,高董从医师转行专注在线材制造上,一方面兴趣,一方面也逐渐有了成就感。高董的弟弟原来是检验科的医学技师,后来也入行帮忙,现在专门生产与加工插头等线材的零附件,一个从上游到下游的线材王国俨然成型。
作者: zgmfx10akira    时间: 2012-4-30 15:43
电源有什么困扰
 
    到底电源有什么好困扰的呢?对于一般居家电器,电源没什么好困扰的,但是对于重放音乐的音响器材,电源就有几个恼人的地方。首先,从家里墙壁传出来的交流电源一定会有噪声串在里面,这不仅是您府上所有加调光器、变压器的灯具、具有马达、压缩机的家电制品会影响到电源,外面电源主线里的噪声也会透过共享电源线而传到您府上。噪声有什么坏处呢?它会让电源产生谐波失真,导致声音的劣化,这也是许多音响迷发现音响愈晚愈好听的原因,因为夜间邻居使用电器的机会降低,电源干扰与电压稳定的自然就改善了。所以,市面上有许多的电源滤波器,其目的就是想让音响器材得到纯净的电源,这些滤波器主要是滤除EMI(电磁干扰)或RFI(射频干扰)。

医了头痛,带来脚痛

    电源滤波器有没有效呢?这是长久以来争论不休的问题。事实上大部份电源滤波器所滤除的频率大约在100KHz,以下的噪声滤除能力并不强。此外,滤波器的滤波组件无法承受大电流的通过,也限制了后级扩大机的使用。

    除了电源滤波器之外,还有没有别的消除噪声方法呢?有的,另外一种常见的方法就是使用隔离变压器来隔离噪声,这是工业界很普遍方法,不过它还是遭遇了同样的问题:电源必然会受制于必须经过的组件。假若小功率使用便罢,假若要提供大功率使用,隔离变压器本身的容量就要非常巨大,工业用隔离变压器动辄上百公斤就是这个道理。以前废五金还能进口时代,许多音响迷家里都有重达50公斤以上的隔离变压器,不知现在它们是否还在服役?除了噪声问题之外,都市人口集中地区还有电压下降以及不稳定的问题。电压不稳定会降低电器用品的寿命,电压不足则会使需要吃功率的扩大机软脚,这二者都会让声音劣化,甚至让电源变压器处于不正常的工作下而发出哼声。许多音响迷家里的纯A类扩大机摸起来才温温的,就是因为电压不足所造成。

    电压不足很容易用三用电表量出来,要解决这个问题也不难,大部份比较高级的前级里都有稳压线路,提供稳定的电压。后级扩大机的功率级通常不会有稳压线路,因为它所需的电流那么大,制作起来成本很高。此外,更重要的原因是稳压线路会让电源的供应无法如讯号般快速反应,反而造成速度迟滞。

    总而言之,无论是滤波器、隔离变压器或稳压器,它们对于解决主要问题上都有效。不过,通常主要问题解决了之后,难免也衍生了其它新的问题。这就好象医生常说「药」从另一个角度来看也是「毒」的道理一样,长期吃药的人可以抑制疾病不至于快速恶化,但同时也长期在损伤肝与肾功能。

电源另类疗法

    既然这么说,到底有没有一种方法是有效而负面效果最小的呢?其实是有的,那就是从波形与相位着手,上文介绍的Burmester 948便是如此设计。如果您用示波器来看从墙壁插座输送过来的交流电源,就会发现除了噪声谐波之外还有削波,也就是60Hz的波峰或波谷被削平了。这个现象就等于是交流电源的中点(也就是零点)没有维持在该有的位置上,使得交流电源的上下半波无法完全一致,也产生了相位不正确的问题。

    当交流电的零点无法保持在正确的位置上时,就会在正确的零点与不正确的零点之间产生相位飘移,这个相位飘移就等于产生直流成分(DC Component)。当器材内的变压器与这个直流成分耦合时,就会在变压器里的线圈中产生强烈的电磁偏压。更要命的是,愈高级、愈大的变压器就更容不下这小小的直流成分,甚至小于10mV的直流都会导致变压器哼声。这也就是有些音响迷家里后级会发出变压器哼声的原因之一。

    到底要如何来维持交流电零点的正确位置,使交流电正负半波维持一个上下完全平衡的局面呢?最彻底的方法就是再造一个完美交流正负半波。当然,再造正负半波的方法应该不是只有一种,但最有效的肯定不多,所以Burmester就把他们家的方法拿去申请专利,也早已获得专利。

自生电源发电厂

    这次我在CES看到一部令我好奇的电源处理器,那就是PS Audio的Power Plant发电厂。PS Audio的前老板Paul McGowan在1998年离开Genesis之后,再把原来已经卖给别人的PS Audio品牌买回来,这次不是推出一般的全频段扩大机,而是针对60Hz放大的扩大机,这个60Hz扩大机就是电源发电厂。

    在会场上,我遇到Paul,他拉着我看计算机监视器上所显示的波形。上面有其它厂牌电源处理器的波形以及墙上交流电的波形,当然还有经过他家电源发电厂处理过之后的波形。的确,在这样的比较下,Power Plant很有说服力,因为您不必有金耳朵,只要用看的就知道噪声消除的情况与波形正确与否。不过,Paul也没有在现场准备很多种电源处理器以供比较,所以我不排除其它产品也同样有效。为什么我会提到PS Audio?因为我读过它的目录后,发现它就是一个交流电合成器(AC Synthesizer)。说得白话些,就是以电子线路自行产生出一个110V/60Hz的交流电源,这个新「自生」出来的交流电源自然就把墙上插座输送过来的交流电源中的噪声去除了。请注意,它并不是把墙上输送过来的交流电处理之后使用,而是利用墙上的交流电来让发电厂动作,产生自己的纯净正确交流电,以供您的音响器材使用。

音响用电十四问

    问一:为何音响开机时,电灯会闪一下?
    答:这是因为音响器材开机时,由于器材内部大容量电容,在关机前处于空载的放电状态,按下电源开关时,电容马上从变压器吸取电力,由于吸取的电流极大(称为充电电流),以致于电力突然下降,日光灯自然会暗一下了。
    一般的后级只要滤波电容容量总和超过20,000μF,开机时就会发生此现象。因此部份设计完善的大功率扩大机,在开机时具有“缓冲电路”,也就是说开机时会经过大型水泥电阻缓冲,让内部电容慢慢充电,一段时间后(约几秒钟)再以继电器接通,如此既可以保护保险丝不会一下子烧断,也可以避免电灯闪一下的困扰。

    问二:台电的供电真的很烂吗?
    答:当大家遇到电源不稳定时,总不管三七二十一先把责任怪到台电再说。如果了解台电的人,则一定会大力辩解,并且提出合理的解释。事实上,台电的供电一点问题也没有,电力不稳定的现象,是配送过程中受到干扰而来的。
    先从发电厂说起好了,目前台弯主要的发电厂分成两大类,其一是核能发电,另一则是火力发电厂。不论是核能发电或火力发电,他们皆采用蒸气的力量,驱动蒸气涡轮带动发电机。这是一套极为精密的发电设备,涡轮的转速关系到频率的稳定性,大型的发电机与涡轮之间,具有计算机控制的变速系统,以确保在各种负载下维持稳定的输出频率(60Hz)。再者,涡轮发电机输出的电压绝对是稳定的正弦波电压,这是基本的物理原理,换句话说,要制造出扭斜的正弦波还有问题呢!所以,从台电送出的电力绝对是稳定的60Hz正弦波电力。至于干扰及电压不稳的问题,请见下题。

    问三:为何电力传输时,总是使用高压电,这不是很危险吗?
    答:电压超过100V时,就存在着危险性,但为何台电的配送电力总在22KV以上呢?这不是很危险吗?当然危险,所以高压电塔上总是挂着醒目的招牌,警告闲人勿近,否则容易发生触电的危险。使用高压传输,最主要是为了节省配线时电缆的用铜量,同时也降低电力传送时的损耗,因此从发电厂送出的电力是以超高压的方式传送。超高压传送的最大好处,就是电压高、电流小,电子流经导体时,发热量是以电流的比例计算,而不是以电压计算,因此有效降低导体的电流量,就能降低损耗,因此虽然危险,但只要做好防范措施,就可以避免危险发生。以高压传送的另一个理由,是为了降低客户端的电压变动率。如果以1:1传送,也就是说台电送出110V的电力直接到家庭,台电每降低1V电压,客户端的电压也会随之降1V。但如果以目前普遍使用的22KV传送,当电厂送出的电压有1V的震动时,客户端几乎没有任何感觉。

    问四:为何我家的电压经常不稳定?
    答:电压不稳定的情形经常发生在各种用电户,尤其是工业区附近。当建筑物申请台电配接管线时,会依照申请表格的数字,配接适当的电力给建筑物,但这只是一个预估值,如果用电户的用电量超过当初申请的电力容量,则容易产生电压下降等电力不足的现象。这不是台电不给你充足的电力,而是用户应该提出更大的用电申请。例如,某工业园区原来申请一万千瓦的用电量,台电当然依照申请配接一万千瓦的用电供应,如果工业园区的用电量超过额定负载,电力当然会发生吃紧的现象,电压自然会不敷使用而下降了。光口头骂骂没有用,其实只要向台电提出更大的用电申请,供电不足的情形就容易解决。所以下次电力下降的时候,请不要动不动就咒骂,赶快衡量自己的用电量,看看是不是超过了用电契约上的额定供电量?如果长期处于低压状态(例如电压低于100V),也可以向台电反应,他们会派员改变用户变压器的抽头,让您的电压恢复正常。

    问五:一般家庭使用的电力供应如何?
    答:家庭用电与工业用电不同,不但供电的形式不同,用电容量也不同。一般家庭没有大型电器设备,最耗电的电力器材顶多是冷气机或电热器,这些器材使用的电压不会超过220V,因此一般家庭用电多为乙类用电,110V单相三线供应。如何判断?看看自己的电表是不是圆形的?如果是,就表示为110V单相三线供应,如果是方形电表,则是最普通的110V单相双线供应。
    单相三线具有两条火线及一条水线,两条火线是互为反相的110V/60Hz,经过适当的连接,可以分别拉出两股100V或一股220V的电线,其中110V供应一般电器使用,而220V则提供冷气机及电热水器使用。使用单相三线供电方式的理由,最主要还是为了节省电力传送过程的损耗。经由适当的配线,从两条火线拉出去的两股100V电线,如果两边用电量均等,则依照相位抵销的原理,水线将不会产生任何电流,这就表示可以降低水线的线径,也可以避免无谓的电力损耗。换句话说,如果您家中维持固定的电力消耗量,在最理想的配线组合下,还有机会节省用电度数。

    问六:电力干扰哪里来?
    答:刚刚说道,台电送出的电力为完美的60Hz正弦波,但干扰从哪里来?其实,最主要的干扰源,仍然来自用电户本身。试着想想看家中有多少电器用品?当这些电器用品全部插上插头使用时,会产生多少干扰?冷气机、电风扇、日光灯等,没有一样是纯电阻负载,它们具有感抗也有容抗,只要开启就会回授干扰电力系统,将噪声寄生在电源上。开日光灯时音响会传来“啪啪”的声响,这就是日光灯的干扰。
即使自己非常洁身自爱,听音响时尽量不开其它电器使用,也不能保证用电一定干净,因为您府上电表的前端,仍然与其它用电户连接在一起,别人家里只要使用电器设备,也会对您产生干扰,程度则视情况而定。运气好者没有感觉,运气不好者叹气也没用,除非您自行申请一颗用户变压器使用。

    问七:如何避免干扰?
    答:这是大家所关切的问题,如何避免干扰?最直接有效的方法就是隔离。隔离别人对你的干扰,隔离自己家中电器彼此间的干扰。大型用电设备以及计算机最容易产生干扰,它们会产生高频噪声,也会产生电源谐波,寄生在电力系统中干扰其它电器产品。如果要获得干净的电力,使用隔离变压器或电源滤波器是一个好方法,利用变压器频宽不足的原理,滤除高频噪声,只让频率较低的60Hz电力通过,如此即可有效滤除高频噪声或频率较高的电源谐波。但隔离变压器也并非万灵丹,请见下题分晓。

    问八:电源滤波器有用吗?
    答:我比你还关切这个问题,如果家中有太多因素无法克服干扰,市售的电源滤波器有用吗?先说说电源滤波器的工作原理。简单的讲,电源滤波器所使用的材料多为电感、电容等材料,将电容与电感组装成一个“低通滤波器”,只让60Hz左右(或以下)的频率通过,即可阻挡60Hz以上的讯号(或称为噪声),进而达到滤除噪声的目的。
    电源滤波器有好几种,有的有附设稳压功能,并且具有自动调节输出电压的能力,利用变压器抽头不同的搭


配组合,以侦测电路配合继电器,连接不同的抽头,即可达到实时调整输出电压的目的,大多数的计算机用稳压器皆为此工作原理。但请别忘了,继电器连接抽头的瞬间,也会产生突波,这对电源又是另一种干扰。还有,低通滤波器的特性,就是阻挡较高频率的讯号通过,如果扩大机对电力供应需求的速度大过低通滤波器的供电能力,则会形成一个瓶颈,反而造成阻碍。例如:某某电源滤波器对于滤除60Hz以上的噪声非常有效,但如果此时扩大机抽取的电流量大过滤波器的供电能力,或扩大机需要快过于60Hz以上的供电速度,电源滤波器反而成为绊脚石。
    一般而言,电源滤波器适用于用电稳定、电力消耗较小的器材,如讯源、前级等,而功率后级及超低音,则直接插在墙壁上为佳。无论如何,不要以为加装电源滤波器就有正面效果,自己试试看最重要。

    问九:如何为音响准备一套理想的电源?
    答:自己盖一座电厂吗?当然不可能,不过要准备一套理想的电源倒没有想象中的困难,只要为它拉一条独立的电源线就解决了大半问题,剩下的还可以靠电源线及适当的小道具进行微调的动作。关于拉电源线的方法,请参阅上一期的专题以及本期的内文,尤其是这一期的曹先生家中的电源处理,可以说是一个理想的实现,如果您真的有心,不妨进行规划设计。您也许没有那么好的运气可以独自使用一个“杆上变压器”,直接获得从台电来的干净电源,但如果您住在公寓大厦,最起码也可以从电表处拉一条至少22mm平方以上的电源线给音响使用,这样一来就说得上尽心尽力了。信不信,花八千元换装一条独立电源线,比换一条八万元的电源线还有实质效果。还有,拉线时请一鼓作气,一定要拉22mm平方以上的,苦差事做两次是很累的,千万别相信水电行老板说3.5mm平方就够用了。

    问十:讯源器材与后级需要分开处理吗?
    答:最好是分开处理,最好的方法是拉两条电源线,一条给消耗电力较小的讯源器材、前级等使用,另一条则给消耗电力较大的功率扩大机、超低音等使用,虽然电源线的源头都是同一条,但仍然听得出效果。至于拉了电源线之后还需不需要电源滤波器,则请自行试试看,通常我的经验是:只要有充足的电力供应,滤波器不一定有正面效果。

    问十一:需不需要接地线?
    答:由于台电的供电形式,并没有真正的地线给用户使用,所以用户必须自行准备地线。接地线的方式以及原则,请参阅专题内文说明,曹先生家中的接地方式,虽然无法称得上最完美,但对于音响迷来说已经够发烧,接与不接哪个好?也必须实验才知道,因此曹先生也为此设计了一个接地开关,测试何者为佳。
    高级的音响器材大多使用三孔AC电源线,其中一条就是接地线,这条地线与机箱连接,经过电线传导之后直接与大地(地球)连接。接地之后的最大好处是:手摸扩大机机箱表面,不会再有麻麻的感觉,也就是说机箱的对地电压会非常低,低到无法感电。从安全的度来看,接地是有必要的,但从声音的角度来看,何者为佳谁也不敢打包票。

    问十二:一般家庭如何接地线?
    答:其实台电送来的单相三线电力线当中,其中一条已经接地,但由于路径过长加上有电流通过,因此多少存在着电压,这个电压会因为用电的情形改变,而随着升降。我在家中以AC电表测量,最低时约1V,最高时为6V。如果利用这条水线接地,也可以达到接地的效果,但最好加装一个AC电压表,随时观察AC电压。但就安全的观点来看,仍然不建议使用。连接水管或连接建筑物钢筋的方式也不建议,因为这容易导入其它干扰,例如雷击时,或其它电器漏电时,也容易藉由地线传导到音响器材。

    问十三:接地就能避免干扰吗?
    答:答案不是绝对肯定的,如果您接地接得不够彻底、不够小心,反而会带来坏处,将别人的噪声导入音响器材里。接地的目的大致可分成两类,其一是安全考量的电力接地,其一则是讯号接地。前者通常用于大型机械,例如洗衣机、马达等,当产生漏电现象时,可以藉由地线的传导,将电力传导至大地,以保护人员的安全。后者则为提升器材或仪器的讯噪比,将电路接地,以降低噪声。
    将器材接地连接在建筑物钢筋或金属水管上,不能保证别人也如此接地,如果音响器材的地与别人的洗衣机共享同一个接地,结果只会更坏不会变好,因此不建议将音响器材以连接建筑物钢筋或水管的方式,那是非常不卫生的。另外,地线既会导电,也会带来噪声,与别人共享接地,没事则矣,有事则将别人的噪声也导入音响系统,此时不如不接地。

    问十四:电缆线需要避震吗?
    答:粗重的电缆线,其实也可以视为音响电源线的一部份,既然音响电源线要注意材质及避震,电缆线也应该注意此现象。台电公司的配电所,由于传输的电缆长度相当远,电缆在电线杆上随风晃来晃去,彼此电缆间也会因为互相感应,而产生低频震荡;如果两条电缆平行传送,也会彼此产生电容效应,而变成电容式麦克风,这些现象虽然不会从喇叭中传出,但台电配电所里的鉴听设备却听得相当清楚。要做到最好,电缆行经的路径中,接触点可以以杀绵包覆,两条电缆尽量不要平行,这样就可以将噪声降得更低。
    结论:
    关于电源的问题牵涉广泛,各家自然有其独特的解释与说法,但基本上,电源供应应该尽量保持电力充足、电压稳定、寄生噪声低的处理原则,方法千百种,处理电源的器材也比比皆是,只要能够达到这些原则,对音响器材就有正面的帮助。
    最近曾经到一位音响迷家中听音响,他对于电源问题相当重视,所有的音响器材都使用市售电源滤波器处理,企图营造最干净的电源给音响器材使用。结果我带了一张非常严苛的发烧片前往测试,竟然发现大动态以及极低频出现的片段,扩大机的指示灯竟然暗下来甚至快熄灭了,很明显,这是由于输出大电流时由于供电不足,导致器材电压下降,器材本身电力没喂饱,再多的滤波器还有效果吗?那只不过是增加电力供应的瓶颈而已。事后这位音响迷根据我的建议,换装两条38mm平方的电缆,从此以后不论音量开多大,指示灯闪也不闪一下,这才是从基本面上解决电源问题。

  电源虽然相当无奈,但还是要做

    说起电源,我相信每一个人都有同样的心情:但是又何奈。明明知道,电源可说是一切的基础,如果电源不足,扩大机就吃不饱,吃不饱的马儿怎么能跑得好;如果电源骯脏,噪声流窜其中。血管中如果杂质过多,人怎么健康得起来?所以说,每个人都知道电源是最重要的事,问题是,怎么作才能把自己的电源弄好。
在此,我想与读者们谈谈我自己的经验与看法。不过,您可别期望过高,因为,我也是与您一样,面对电源,可用的筹码很少。不过,我比各位幸运的是我有过许多次装潢的经验,每次都会遇上不同的情况。累积起来,我的经验可能就比您丰富了。以下,是我认为一般人可以做到的几个原则。

模拟与数字分道

    首先,电源第一要务就是“人车分道”,对不起,是“模拟与数字”分道。而这模拟与数字的含意很广,不仅代表音响而已。这话怎么说呢?先来看看室内的照明设备。在一般家庭中,大概会有日光灯、卤素灯、省电灯杀(假的白热灯杀,其实也是日光灯)以及白热灯杀等四种。这四种,除了白热灯杀是靠烧钨丝来发光之外,其它都要藉助于变压器,以另类方式方光。这也就是说,除了白热灯杀之外,其它的灯具都会因为60Hz的闪烁动作或变压器发热之后所产生的噪声而影响到电源的纯净。此外,调光器本身也会发出噪声。像这些不够干净的照明用具不仅影响电源而已,它们还会发出噪音,影响聆乐的安静程度。如果您不信,请在夜深人静时打开日光灯,听听看是否有很小声的高频噪声。从以上的叙述中,您会发现白热灯杀的发光状况是连续性的,也就是模拟的;而日光灯所发出来的光线是不连续的快速闪烁,它是数字的。所以我说,在照明上,模拟与数字也要分开。我的意思是:如果您在听音乐时,最好只开白热灯杀。等到要看气氛时,才把其它的灯聚打开。

    此外,我也说过多次,凡是有马达的电器用品都不要与音响电源串在一起。因为只要这些电器用品一激活,噪声就源源不断的进入您的音响电源中。或许您没有试过这样会有什么影响,在此我举另一个例子来说明:我的VTL350曾经因为某个开关接触有问题而在喇叭里发出很小声的噪声,当我把手提电脑电源插上同个插座、并打开计算机电源时,喇叭里的杂音马上就增强了。关掉计算机电源,杂音又恢复小声。您看,即使是高级的手提电脑,把它的电源与音响接再一起,都会产生这种影响,更不要说冰箱洗衣机烘衣机冷气之类的东西。

    再来说到音响器材的模拟数字分道。由于数字线路很怕干扰,而且它们也会干扰别人。这也就是说,数字器材很孤僻,所以,孤僻的人就让它孤单,以免它不合群。音响的数字器材就是这样,最好给它们一条独立的电源,不要与其它的音响混在一起,免得自误误人。

大人与小孩分桌

    所谓大人,就是大功率的后级;所谓小孩,就是前级。大人与小孩如果同一桌吃饭,大人总是吃得又多又快,小孩永远只能捡剩的。虽然说前级所耗的电源很小,怎么样都够用。不过,当有些纯A类大功率后级随时都在吸食电源时,家里供电紧张的时候的确也会影响前级。所以,前级单独拉一条线给它用,后级单独也给它一条,


这样彼此不会抢食,大家相安无事。

电源箱越远,电源线要越粗

    一般人家里的电源箱与您的音响室应该不会再一起,有时候,电源箱在客厅,音响室在最远的房间里,二者海角天涯各据一方,此时就是音响迷最头痛的时候。想要从电源箱拉电源过来嘛,路途遥远,而且还要穿墙打洞,既不美观工程又浩大。如果委屈自己用墙上的插座嘛自己明知道根本不够用。怎么办?当然只有二个作法,聪明人看开一点,就用墙上的插座再拉牌插好了,反正我的音响没那么好听。像这样的人就不会有困扰。然而,有些人偏偏就是追求Hi End精神,一定要把电源弄到自己满意为止。此时,唯一的办法当然就是请电匠来拉线了。

    由于线要拉得很长,很长电流就会耗损,所以一般而言线径粗一些有好处。多粗呢?我的经验是:如果电匠告诉您“一般多粗就够”,您就加上三倍粗,这样一定够用。电源线要怎么走?为免影响观瞻,我的经验是走地板墙边比较不显眼,而且最好是把电源线用电工用的软铁管保护起来,以免自己把电线弄破皮;或者被老鼠当作磨牙工具。由于这种软铁管直径有限,如果用它,您就无法拉很粗的电源线。其实,我认为不必很粗也已经够用了。通常,您告诉电匠要多粗,电匠就会告诉您,电力公司没有给您那么大的电,用了那么粗的线也是白用。这话是真正有道理的,不过音响迷大部份听不进去。我的看法是:电匠根本不了解音响迷所需要的除了实用价值之外,还有心理安慰补偿的作用。

电源线不要首尾串起来

    我的意思是,电源线不要从电源箱拉一条出来后,就一路分了很多插座,这样的话到了管线末端,电压就会不够。最好的方法就是从电源箱中一齐拉出几条线,每条线就是做一个插座。这样一来,每个插座的电都是足的。当然,如果您要这么做,必须有一个先决条件,那就是您的音响室与电源箱在一起,才有办法这么拉。否则,一次拉那么多组线出来,我看这些线要怎么走?

    以上我所说的,都是一般人可能可以做到的。其它像打地棒拉真正的地线,根本就没有几个人能做到。或者是向电力公司申请一个电桶,那非得特权阶级才有办法。至于一般人喜欢用的电源处理器,那就不在本文的范围中。我的看法是,很少电源处理器能够全面有效,而且没有副作用的。所以,与其后天吃补,倒不如先天把身体练好,用足够且干净的电源来代替电源处理器。

    或许有人会说,就算我自己把家里电源弄好,但是邻居的电源噪声就不会串到我家里吗?在公寓内,我想这是难免的。既然这样,上面我所说的岂不是白说了吗?话不是这么说,如果您做了,事情可能不会那么糟。如果您不做,事情就会更糟。何况,这样做也花不了多少钱,说不定少买一条讯号线费用就有着落了。像我,由于拥有二个独立的电源箱,所以我拿一个来给音响用,另一个则给家里所有的电器用品、照明使用。我想,不会有多少人家里拥有二个电源箱的吧!不过不必羡慕我,我住的也是公寓,您有的问题我还是会有。

电源处理器到底有没有效
    我敢很肯定的告诉您:绝对有效!
    那么,电源处理器值得买吗?

    让我先来说自己的使用经验。以前Tice刚流行的时候,市面上还有一些其它品牌的电源处理器,形形色色的产品各自宣称都有效,音响店老板也大力宣扬这些价格昂贵的小东西很值得买。不过,对于器材升级计划永远是一大串的我来说,毕竟没有感受到迫切的电源处理需求,所以也提不起兴致去理会这些东西。后来居住Boston期间,公寓里摆设了一些录音器材与音响,才开始感受到电源处理的重要性。新英格兰地区的夏天不长,最炎热的时候顶多也只有27、28度而已,所以冷气机并非家家必备的电器,房子里自然不会有220V专用电源。想要用冷气机就只能买110V的机种。而且,Boston的老房子在电源方面不如台湾讲究,像我的公寓只有一个电源回路,包括录音器材等所有电器产品全部仰赖这组15安培电源,所以一旦冷气机的压缩器激活时,正在进行的录音就宣告报销。租来的公寓不可能改电源,许多宣称具有突波吸收的电源排插也都起不了作用,所以唯一的办法就是买电源处理器。于是,我就买了当时刚推出第三代机种的Tice Power BlockⅢ,还有几款Furman专业用的电源处理器。

针对自己的需求方向选择

    如果纯粹就解决冷气机强大突波的目的来说,包括Tice在内几款用上了隔离变压器、滤波线路的电源处理器都确实有效,比起那些超级市场贩售的各式电源排插好用多了。而且,Tice具有稳压的功能,应付冷气机激活所引起的严重压降也有帮助,所以我一直很庆幸这笔钱没有白花。

    问题是,对于音响迷来说,电源处理器除了解决电源的问题以外,还要能够带来「好声」的效果才够。所以在我确定Tice能够解决突波与压降的问题后,又特别注意它是否能够提供提升音质的附加价值。即使起初的器材并不算理想,但我还是能从TEAC VRDS-20唱盘搭配STAX Lambda Dignature/SRM-T-1耳机的组合中,听到了声音变稳、解析力变好的优点,后来买进的Basis/Boulder/Westlake系统就更不用说了。

    回到台湾以后,Furman就在录音室里当作电源排插使用,Tice则跟着我的家用音响系统,接连在几间没有电源专线的聆听室里继续服役。在这段期间,强大突波的问题不复存在,但是它对于稳定电压的效果仍然相当显着,比起录音室里高价的稳压设备来说,我仍然认为这款Tice相对划算许多。不过,去年搬新家前彻底规划了聆


听室电源专线,而且新社区的电压非常稳定,Tice解决问题的功能变得英雄无用武之地。因此,我一方面将它纯粹当作排插来使用,另一方面也仔细地评估另一个实用方向:包括Tice Power Block III在内的诸多电源处理器,在电源纯净的环境中到底能提供多少好处?或者,它们真的是「多只香炉多只鬼」的不必要装置?

    从过去年多的不断比较,还有这次试听最新机种的经验中,我的结论有二:
    一、 在电源状况恶劣的环境中,电源处理器通常可以明显带来好处,对于解决电源问题的帮助也有相当水准。
    二、 在电源状况良好的环境中,电源处理器的好处比较不容易被察觉 - 因为解决问题的功能没得发挥。不过,它们也确实能够带来「改变声音」的效果。

电源环境决定电源处理器的实用性

    上述的状况是一种「通式」,您若想要追求电源处理器的极致,希望它的设计能够为您带来最大好处,还是得要先了解它的应用方向为何。比方说,您最困扰的电源问题是突波太严重,就必须找真正设计来解决突波问题的滤波器,某些制品便无法帮上您的忙。如果您长期为电压不稳定所困绕,就必须用上具有稳压设计的电源处理器,这时候最好的方法就是以三用电表实际去量输出电压,看看哪些电源处理器是真正具有稳压作用的产品。或是您的聆听室电磁波干扰严重,电源相位波形严重失真等,市面上也都有针对特定范围提供「解决问题」的产品。重点是,您必须选对电源处理器,让它们针对您所遇到的问题去解决,如此才有可以带来明显的好处。

    严重的突波可以靠耳朵听出来,电压稳定的程度则可以拿三用电表来量测,这些都是我们比较容易察知的部份。不过,电磁波干扰与波形失真的问题对一般音响迷来说,就比较没有那幺容易自行测量,因此我建议:如果您的聆听室电源没有严重突波干扰,输出电压也相当稳定,而您又希望藉由电源处理器带来提升声音品质的好处,请不妨实际试过了再做决定。无论器材的设计取向、产品定位为何,最终还是要回归到声音表现的原点上,所以您如果能够经由电源处理器听到好处,它们也理所当然为您解决了某些问题。

    此外,无论原厂如何宣称他们家的产品有何等功效,只要是在可以自己动手验证的范围内,请尽可能先了解它们的功效究竟到达何等程度。在我们量测输出电压的过程中,发现所有六款电源处理器当中只有二款能够做到「稳压」功效,一款是Tice,另一款则是Ensemble Isolink/Power Point。当天下午办公室的电压为107V,经由Tice与Ensemble输出的电压都在115V左右,其它产品则是在105V或更低。在我过去的使用经验中,Tice即使遇上了140V左右的电压(工业区晚上停工时),输出电压还是能控制在120V左右,相信这对于饱受电压不稳的音响迷来说不啻为一项好消息。

    电源处理器不是万灵丹,它不见得能够解决您家中电源的所有问题,而且要视实际状况去选择使用,才能发挥原厂所设计的最大效果。如果您家中的电源问题严重,但是碍于实际情况无法拉专线,更不可能安装大型的稳压器、电桶等产品,这些市售电源处理器将可能是您的好帮手。不过还是要再次提醒您:这份「彻底研究」所提供的只是产品介绍,还有总编和我的直接听感与建议方向,最准确的购买指南还是 ─ 听过再买。

各式电源器材的功能分类


     看了上述种种的电源问题,您一定会开始审思,自己家里的电源是否也有相同问题正在发生?一般而言,电源干扰噪声的传播途径可分为下列二大类:

    一、普通模式(Normal Mode):简称通模,指的就是二组输入电源线之间的噪声。这些噪声大多是由开关动作或者是静态功率转换器等干扰所造成,当这些干扰与正常讯号重叠在一起时,器材组件是无法分辨的,因为正常讯号也是以通模的状态存在。

   二、共通模式(Common Mode):简称共模,指的是电源与接地之间的噪声。这部分噪声的起因多数是因为接地设计不良、雷击、广播无线电、马达电磁或者是接地故障等种种因素所引起。

   这二类模式是以噪声干扰的传播途径而区分,通常我们又会将其归类为电磁干扰(EMI,Electromagnetic Interference)与射频干扰(RFI,Radio Frequency Interference)等。一般家里会发生的电源问题,大致就是电磁干扰、射频干扰、电源稳定度等问题。想要解决这些问题,光靠音响器材内部的电源线路通常不够,因此才会有电源处理器材因应而生。但是,每位音响迷家中所遇到的问题都不尽相同,市面上的电源处理器材种类又相当多,因此该如何选购一部适合的电源器材,甚至自己到底应不应该增购这一类产品,也就是我们这次「彻底研究」的目的。接下来,我们将各种经常碰到电源问题整理出来,使读者能更简单易懂的进一步认识电源处理器。

电源处理器材常见的种类

    目前市售的电源处理器材,功能不外乎突波吸收器、电源滤波器、隔离变压器、电源稳压器等四种。它们个别负责不同的功能与作用,介绍如下。

突波吸收器(Surge Absorber)

    突波吸收器的主要作用,是用来抑制过高的突波电压。正常状况之下,电力公司所输送到用户家中的电源电压应为110V,但是在某些状况下会在瞬间出现高过正常的电压值,像是遭遇雷击或电力系统故障等因素。虽然电力公司设有保护措施,但因其反应速度与保护程度有一定的极限,因此还是有一些突波可能会在瞬间传送到用户家里。另外,电力公司的这些保护装置在「作动」与「复置」的瞬间往往也会产生一些突波,还有像是家里的电源开关在动作的瞬间,同样也会有突波产生。

    这些不正常的突波,虽然都只是在瞬间发生,但是过程中的电压、电流往往高过正常值甚多,严重时足以破坏家中的许多电器产品,尤其像是计算机、电视与音响设备等,因为这些家电产品的工作电压相对较低,所能够承受突波的能力也就相对不足。突波吸收器依动作原理、特性可分为下列三类 ─

    一、间隙式突波吸收器:大多适用于避雷功能,吸收电流范围在500A─500KA之间。
    二、半导体式突波吸收器:可分为O Varistor(吸收电流范围200A─20KA)、SiC Varistor(吸收电流范围


100A─10KA)、Se Surge Absober(吸收电流范围10A─1KA)、双向稳压二极管(吸收电流范围1A─50A)。
    三、滤波式突波吸收器:分为CR(电容加电阻,吸收电流范围1A─50A)与CL(电容加电感,吸收电流范围10A─1KA)二种电子电路,这也是音响电源处理器最常见的突波吸收装置。

电源滤波器

    电源滤波器主要是用来消除电源里面的噪声,这些电源噪声会影响音响器材的声音表现,一般说法认为它会使音质、音场定位的效果大打折扣。通常滤波器是利用电容与电感合成一组选择电路(LC),允许特定频率的讯号通过,对于非特定频率的讯号则予以衰减或阻挡。最常被采用者为EMI滤波器,它对于50KHz以上噪声有比较良好的滤除效果,而噪声衰减量的规格值约只有40dB左右。它的缺点是遇上大振幅的突波噪声时,易使电感线圈因饱和而降低其噪声衰减特性,不过当串联多只EMI滤波器使用时效果将可因此改善。这次介绍的电源处理器材中,只要是针对滤波功能设计的产品都是采用这种方式。另外,电源滤波器使用时记得一定要接地,如此才能发挥其效能。

隔离变压器

    隔离变压器一般泛指为防止噪声用变压器的总称。电源在进入各类电器产品之前,虽然会先经过电源变压器,但是高频噪声仍然可以藉由变压器初级与次级线圈间的电容效应、磁性耦合或辐射等方式通过次级,再进入电器产品的线路内。因此,要想防止噪声干扰的最简单又有效之方法,便是使用隔离变压器来加以隔绝。在各种噪声滤除的电源器材中,隔离变压器的效果是最好的,因为隔离变压器除了能消除电源、日光灯激活器、空中各种射频的噪声外,它对于电源开关瞬间突波也有很好的滤除效果,只是滤除频率和前述的「电源滤波器」不尽相同。
    隔离变压器如果以隔离特性来区分,可分为下列三种 ─

    一、绝缘变压器:这是在初级与次级之间加上一层特殊的绝缘体,藉以将初级传导至次级的噪声予以适度衰减。不过,这种方式并无法将所有的噪声隔绝,像是电源的开关动作等通模干扰便无法滤除。

    二、屏蔽变压器:除了具备有绝缘变压器的构造外,在初级与次级线圈外围又利用金箔纸等绝缘材料予以包覆,藉以降低二线圈绕组之间的电容效应。与绝缘变压器作比较起来,屏蔽变压器对高频干扰的特性虽然更优异,但依然还是无法去除通模噪声。

    三、噪声滤除变压器:也就是除了上述的静电屏蔽外,又在最外围加上电磁屏蔽。噪声滤除变压器能有效的隔绝共模干扰,但是对于随市电传导而来的通模干扰,仅有衰减能力。噪声滤除变压器的铁蕊,与一般的电源变压器并不相同,它的时效透磁率经过特别的设计,使其在某一特定频率(数KHz)以上时会骤然下降,所以在这个特定频率以上的噪声会被相对的衰减,频率愈高衰减量愈大。如果能与LC滤波器串联使用,效果将会更佳。在这次介绍试听的器材中,针对隔离作用设计的产品便是此例。

    根据长期研究变压器的坚新电子吴先生表示,各式变压器的效能与铁蕊(Core)形式并无绝对关联,也就是说无论是EI、C、R或环型等各型铁蕊,无关效能的取决。铁蕊的形式只会牵涉到尺寸大小与磁场,像电视机多是采用R-Core的变压器,原因就在于其体积可以做得极为扁平,并同时可使其磁场不至于影响到阴极射线管(CRT)。真正影响效能的是铁蕊的材质,镍钢片的材质愈好则效率也就愈高。

电源稳压器

    电源稳压器的主要作用为提供恒定电压,供给电器产品之用。常见的交流稳压器大略可分为感应式、接头变化式、磁饱和式、相位控制式、线性补偿式等五大类,其中又以相位控制式最为易见,它是利用SCR以及TRIAC等电子组件的独特导通特性,以相位控制方式控制其闸极之导通角度,以达到稳压的目的。它的最大特色是整个控制流程皆为电子电路,另外,由于它的输出波型并不是正弦波,因此需外加滤波器才可使输出波形为正弦波。虽说大部份电器产品(包括Hi-End音响)都有稳压,这次介绍的某些电源处理器更宣称有市电稳压的能力,不过若是以上述严苛角度来评断「稳压」的定义,对不起,它们都没沾上边。

关键与认知

    对音响发烧友而言,各种形式、作动原理的电源处理器材,都只为一个目的而存在 - 那就是如何使音响器材发出更好听的声音。这个目的说难其实一点也不难,说简单也未免太小看电源对音响器材的影响了!虽然电源处理器材多只是由一堆镍钢片、漆包线、电阻、电感、电容与绝缘材质所共同构成,但是这些组件对效率的高低与噪声滤除的效能,都有决定性的影响。当然,除了材质外,其它像是线圈的绕置、镍钢片的固定方式、绝缘材质的位置及数量、组件电路设计与配置等等,也都是优劣的重要关键。我们并不希望见到读者们花了大钱,又没有得到自己预期想要达到的效果,而是应该在看了本期「彻底研究」之后,对电源的问题与相关处理器材有更进一步的认识,再进一步讨论自己是否需要,或是应该选购哪一类电源处理器才是。

线材能改变音质吗

    音响报刊杂志关于线材的文章不少,其中也不乏理论结合实践的精辟之作。然而,也有走极端的——即有不少线材发烧友对其津津乐道,也有人对其全盘否定。其中也不乏所谓音响或对音响评论的“行家”、“专家”对线材作用加以否定,或说线材的作用在音响系统中的作用微乎其微,最多起十分之一的作用。这些言论必然会使读者、特别是初入门的音响爱好者觉得无所适从:究竟应听谁的?!

    本文想揭示两个问题:一、线材在音响系统中的作用究竟有多大,即线材能改变音响的音质吗?二、线材运用的基础(或前提)是什么?

    要回答的第一个问题,又包含两方面的内容:线材的作用是什么?何谓音质?

    常见的音响线材大致有三种:信号线、喇叭线和电源线。其中,信号线和喇叭线的作用是:⑴传输信号;⑵阻抗变换;⑶音色修饰。

    信号线和喇叭线的区别是:信号线传输的是微弱的电信号,其幅度量度单位通常是电压,平均幅度最大几百毫伏至几伏;而喇叭线传输的是功放到喇叭的功率信号,通常用电压也用电流表示其功率信号。

    如果信号线和喇叭线传输的是普通的电信号,那么用普通的导线就符合要求了,测量其指标用电压电流也就足够了。

    但是,信号线喇叭线传输的是频率宽达 20Hz-20kHz的频带信号,其要求说更高了。“20Hz-20kHz的频带信号”有两层含义:(A)频率范围宽,要求线材对各种频率的信号均“一视同仁”,不要压低一些信号而抬高一些信号,更不要无端产生原先没有的新生信号——即由于两个或两个以上不同频率调制混合新的多余信号;(B)乐器(如钢琴)发出的音乐即使是一个单音符,由于含有泛音,不是单一频率信号,而是一个频带,实际的音乐合奏(如交响乐队)的信号“群”,是一个更宽的频带,即音乐频谱,不能产生相移和频率畸变。所谓相移,是指由于线材存在的感抗和容抗,使不同频率的音乐信号经过线材传输后,某些频率或频段产生了相位的超前或滞后。表现在时间轴和听感上是某些频率成分或音乐成分的超前或滞后,比如高音成分的相位滞后(相对于中、低音)听感上是低音收得太快且不同的乐器难以分清其成分或原有的某些频率成分的幅度产生基本忠实地传送原音乐信号的传输线。

    信号线喇叭线的第二个功能是阻抗变换作用。懂得电子技术的人知道,任何音响设备都有其输入\输出阻抗的指标。为了使音响设备之间的连接方便,更重要的是避免各个独立设备的相互影响,通常,CD机等音源和功率放大器总是设计成高输入阻抗(几千欧姆至几兆欧姆)。低输出阻抗的CD机都很容易与任何高输入阻抗的功放连接,而用不着考虑阻抗匹配的问题。也就是说,CD机等音源与功放机之间、前级功放与后级功放之间的配接不存在什么阻抗匹配的问题,而只有音响术语“配接”、“搭配”, 它们之间只有阻抗转换是两部机之间的连接和阻抗从低向高的转换就必须连接电缆——音响线材来完成。因为每部设备不单其输出\输入阻抗不一样,各自的输出\输入电抗(感抗和容抗)也不相同。它们之间的连接线材不同,音乐信号的传输效果也不同,人们从喇叭听到的音响效果也就不同。还应看到,对于喇叭线来说,也有一个阻抗变换的问题。这是因为,虽然功放标示的输出阻抗是一样的(如4欧姆、6欧姆、8欧姆),其实,这样的“阻抗匹配”只是指某频率下(如1KHz处)的阻抗,更由于喇叭运行时随着功放输出音乐的频率不同,喇叭呈现的电抗阻值也不同,实际运行中的功放与音响相对于不同的频率根本不可能有阻抗匹配,两者的配接仍然要靠喇叭线来进行阻抗变换。并且这种阻抗“变换”随着音乐的播放分分秒秒都在进行。可以进一步看出,不同的电缆线材所起的阻抗变换性能和效果就不同,因而音响效果也不一样。

    线材的第三个功能是对音乐的修饰功能。即正确地运用不同的线材,可以对同样的音乐软体(如某CD碟)进行不同音色的修饰,得到诸如“明亮”、“暗淡”、“金属味”、“木质味”、“中气足”、“音场宽广”、“刮耳”、“平淡”等等的修饰评语或风格评语。

    对于线材的作用及其特性,许多文章是从以下几方面进行揭示讨论的:⑴线材金属导体所用的材料及其形状,以及其决定的特性;⑵线材的编织方法及其带来的效果;⑶线材所用的绝缘体材料,及其特性;⑷线材所用的插头的特点;⑸由上述几方面的材料及编织方法生产的线材用仪器测量得到的电阻、电容、电感的数值,以及频率特性等指标,及其对应的实际的音响效果。这些文章从另一些侧面充分地反映了线材的作用和特点,为避免重复地人云亦云,不再在这里赘述。其实,这些文章的中心都包含了对音响信号良好传输这个内容。而线材在音响系统中的“阻抗变换作用”,则是本人的观点了。当然,它并非真的会自动进行阻抗变换,但是,线材在两部机中间的阻抗过渡、“承上启下”作用的连接作用直接影响音响的音质。

    有了以上的观点,再来讲讲音质的含义是什么。“音质”这个词,一般笼统的意义是声音的品质。但是,在音响技术中它包含了三方面的内容:⑴声音的音高,即音频的强度和幅度;⑵声音的音调,即音频的频率或每秒变化的次数;⑶声音的音色,即音频泛音或谐波成分。谈论某音响的音质好坏,主要是衡量声音的上述三方面是否达到一定的水准:即相对于某一频率或频段,音高是否具有一定的强度,并且在要求的频率范围内、同一音量下,各频点的幅度是否均匀、均衡、饱满,频率响应曲线是否平直:声音的音准是否准确,既忠实地放映了音源频率或成分的原来面目,频率的畸变和相移又符合要求;声音的泛音适中,谐波较丰富,听起来音色就优美动听。

    其实,上面已讲到,一定品质的线材与音响器材的配合,可以准确地传输音频信号,不致引起有损音质的失真以及相移和频率畸变,并且可以修饰音色,使音乐更动听悦耳。所以可以肯定地说,线材确实可以改变音响的音质。

    现在讲讲第二个问题:线材改变音质可以达到什么程度?线材得到充分运用的基础和前提是什么?为什么有的人感到线材的作用不大?

    很多音响爱好者、音响发烧友都用过线材,有的人也换过不少的信号线和喇叭线,以及电源线。为什么有人觉得效果不大,有的人甚至有“跟风”、“上当”的感觉呢?问题究竟出在什么地方呢?问题很简单,就出在系统的电源没搞好上。具体地讲,是各个音响设备的内部交直流电源和设备所用的外电供电电源没搞好造成的。

    所谓设备的内部电源没搞好,多出现在中低价位的机器上。例如,由于单机价格便宜,为了省料或设计不当,内部电源设计简陋,采用一路电源供给设备里的多睡电路,造成各个电路之间的有用无用信号通过电源互相串扰,产生交叉调制,使信号劣化,噪声增加甚至掩盖了有用信号,并且音乐的有效频带变窄。这时,你就是换上任何名贵的线材都效果很不明显。还有,使用品质一般或劣质的电容,电源变压器容量不够或漏磁,随机电源线的线径小材质差,都是属于内部电源不好,直接影响音质和换线的效果。内部电源品质不高,对于具有电子方面知识和有动手能力者,可以通过摩机来改变其电源和其他方面的品质。对于不会摩机者,就只能选用品质过得去、价线又适中的Hi-Fi设备了。所谓外部供电电源没搞好,则对中低价位的设备,特别对高级音响都有影响。搞好外部电源,包括给音响设备专门敷设专用电源线,电源线的线材材质、线径、编织方法、长度、如何安装、从哪里安装很有学问,对不同的设备有不同的效果。还有,对电源插座、开关、接插件都有不同的要求。尤其对地线,对音响的效果影响很大,特别是使用电源滤波设备的如隔离电源、滤波电源时,地线的要求较高。还要特别强调的是,内外电源都很重要,哪一个环节都要重视,比如保险丝及其触点插头是否接触良好等。在实践中,就经常看到有人非名牌名贵的音响设备不买,非贵价的线材不买,但电源和环境跟不上,名贵设备出来的声音不好听,音响也就只能变成炫耀价位、身家的摆设了。

    使用购买线材还存在这样的误区:只相信某种外国线材,不论什么场合都使用。其实即使是相同的音响设备,在不同的空间和电源环境,应使用不同的线材。比如,放音环境聆听者与喇叭较近的,应使用音场相对广阔,听感“散”一点的线材,以化解声音直射聆听者后墙再反射,产生“直冲”、驻波太强的不良效果。如果环境空间广阔,吸音设计适当,可以运用各种摆位法,则应运用聚焦、定位性能好、中气足的线材为好。还要告诫发烧友的是,你试听了一种线材之后,有些人会被某种音色所深深地吸引,马上将其买下。听了一段时间后,又觉得哪方面不妥,这是经验教训。所以,在初接触了一类线材并初步试听后,不要轻易下结论,应用不同风格、不同题材的软件反复试听,经过多天后才予以评价下结论。总之,线材的不同环境运用应多加试验,不是一次就能成功的。如果能一次成功,玩音响就显得太容易了,也就不可能有那么多人对音响乐此不疲,去不断探索研究了。

    由此可以认为:线材在Hi-Fi系统里边的作用是很大的,决不是仅起十分之一的作用。特别器材的质素越高(不一定是价钱越高)、潜质越高,其所起的作用越大。可以说,线材与你的音响系统配搭对了,其作用不单单是“锦上添花”的作用,而是让你感到百听不厌很有韵味,有音质上了台阶的感受!关键你的方法是否对头,你是否有不断实践不断研究的精神。至于你的线材的投入占系统总价的多少,则视所用设备、环境、音质音色偏好的不同具体而定,大约占1/10~1/5的比例。当然,线材也不是万能的灵丹妙药,正如上述,至少和你所用音响的质素,电源的基础等许多因素有关。

小空间如何得到饱满宽广的声音

    小功率、小喇叭、小空间,却妄想得到饱满的音像与宽广的音场、低频与中频的量感也很丰富?想骗谁!如果真能这样,那幺大功率、大喇叭、大空间起不是都白搭了?如果您照我的方法做,我保证您一定可以在小空间内,利用小功率扩大机与小喇叭来得到中频与低频都很饱满的声音,而且,高频也不会刺耳。总体来说,那将会是一种中、低频饱满、高频清楚而不刺耳、音像、定位历历在目、整体平衡性相当好的声音。

软调空间加喇叭摆位就可以

    或许有人会开始怀疑,我刘某人不知道又要玩弄什幺把戏?是否要我们花大钱整治空间、更换昂贵的器材,否则怎幺能够得到那幺好的声音。我像您保证,您不须要更换器材,也不须要花大钱就能够得到我所说的效果。您所要做的就是复习我以前所讲过的“软调空间”以及“喇叭摆位八法”。然后,再花一点点小钱就大功告成。
先说这一点点小钱是多少,要怎幺花?这一点点小钱我估计在5万元台币以下(以五坪小空间来算)。花在哪里?花在请木工师父将房间的四面墙壁钉上石膏板或希酸钙板。为什幺要钉石膏板或希酸钙板?因为在四面水泥墙上再钉一层石膏板或希酸钙板之后,会让您的空间由硬调子变为软调子。而软调子空间是让声音好听的第一步。

    请木工师父钉板子要多少钱呢?以目前的行情而论,钉石膏板一尺宽约800元台币(高度都是固定8尺来算),钉希酸钙板比较贵,一尺约1,100-1,200元台币。这二种板有什幺不同呢?石膏板怕潮,希酸钙板不怕。二者都是防火材料。那种板对声音比较好?老实说,我只用过石膏板,所以无法给您答案。我想,如果府上不是淹水区,您用石膏板就可以了。石膏板要怎幺钉?很简单,木工师父会先在水泥墙上以角材钉框,然后再覆上石膏板。要注意的是石膏板与水泥墙之间的空隙要铺比较重磅的玻璃纤维棉。铺上玻璃纤维棉的用意是要吸收空腔里的振动声波,您不必塞得满满的,只要松松的铺上一层就可以。

    四面墙应该至少一面会有窗,一面会有门。反正在钉石膏板时就是避开门、窗去钉就是了,木工师父会帮您钉的很美观才对。钉完之后,看您喜欢什幺颜色,再请油漆工或木工师父代劳上漆,这样就大功告成了。当然,如果您预算足够,最好是将窗子加强,再做一层铝窗以隔绝噪音,甚至换过隔音效果比较好的气密窗也行。要知道,户外噪音强度如果能够降低10分贝,胜过将100瓦扩大机换成1,000瓦。就这么简单,我们就可以将原本硬调子的空间转变成软调子。至于天花板与地板,就暂时维持原状,不必去管他。当然,如果您愿意照“刘氏好声歌”去做,那将会更好。不过,这可不在5万元台币预算之内。

长边摆法加近音场正三角形摆法

    软调空间转换达成,接着我们要复习“喇叭摆位八法”。这次,我们要用的是近音场的“正三角形摆位法”。首先我要说明正三角形摆法的好处。通常,我们会用正三角形摆法,就是想避开空间因素的影响,以及想要靠近喇叭,节省扩大机的功率这二个原因。先说避开空间因素的影响。我们都知道任何一个房间中都会有驻波,小空间尤然,而要消除驻波要不是一件容易的事。再者,小空间中从二侧墙反射过来的反射音既多且强,这会产生定位飘移以及声音刺耳的副作用。如果我们把喇叭往房间中央摆,让二支喇叭远离侧墙(请考虑长边摆法加上正三角形摆法),这样一来侧墙的反射音就会大量减少。再来说到节省功率。您知道吗?如果我们想要让声音听起来一倍大声,那幺我们扩大机的输出功率就要大十倍才行。一部50瓦的扩大机与500瓦的扩大机价差有多少?还有,声音的强度是与“距离的平方成反比”。想想看,如果我们能够更接近喇叭来听音乐,那幺,我们岂不是可以用比较小的扩大机听到一样强而有力的声音强度(跟比较远距,更大功率相比)。

不必担心,音场既实体且宽广

    在此,读者们或许会有一个疑虑:聆听位置距离喇叭那幺近,耳朵所听到的岂不都是二个喇叭分开来的声音?绝对不会,您所听到的将会是喇叭消失无踪,整个音场在喇叭后面再生的声音。不过,在此我要请读者们特别注意:所谓正三角形摆法并不是要您一定将聆听位置与喇叭摆成正三角形,而是以正三角形为出发点去摆,通常我会倾向聆听位置离喇叭更近的摆法。换句话说,就是将喇叭摆得更开一些,人离喇叭更近一些,这样通常可以求得更好的音场。而且,不要担心音场会小小的。相反的,这种摆法所呈现的音场可能会比您原来的还要大。就是这幺简单吗?花一点小钱让空间转变成软调,然后再以近音场的正三角形摆法摆喇叭,凭这二个动作就可以在小空间里,用小功率扩大机、小喇叭求得饱满的中频与低频?而且高频不会刺耳?整体声音会很平衡?没错!甚至您会得到结实庞大、密度比以前还高的音像。至于定位感,无疑将会更好。事实上,我在杂志社的聆听室内就只用一对B & W CDM 7喇叭、一部Primare A-20综合扩大机加一部Sphinx Myth 9 CD唱盘,这样就得到前面我所说的声音。

不要当音响冤大头

    长期以来,论坛一直强调聆听空间以及喇叭摆位的重要性。不过我们也知道许多读者根本懒得动手去试试看,而宁愿花大钱去更换器材或线材。其实我们并不反对您换器材,不过我们认为您应该在换器材之前(之后当然也需要),先试试各种不同的喇叭摆位,它一定会为您带来不同的声音。如果喇叭摆位试过,能够再将自己的硬调空间转换成软调(像我所言花小钱就可以做到),这样声音一定没有不好听的道理。我深信,只要您肯动手去摆喇叭,肯动脑去思考,您的声音一定会越来越好听。反之,即使您用了几百万的器材,也只是别人背后指指点点的音响冤大头而已。

发烧的入门之道

  不经不觉在这发烧漫淡的栏目已写了不短的日子。由于笔者一向醉心于音响技术,和大家谈发烧经总是集中在理论和技术层面,这样往往一谈到一些大道理时,便理所当然地都把读者看成同行人,谈的东西一般需要有一定根底才能理解,于是不止一次编辑向我发出要求,希望我写的东西能尽量深入浅出,对发烧初哥多加照顾。最近有读者向我询问,他把我的第一篇文章是谈电源的,读了很多遍,但仍是不明白,皆因他对音乐音响有浓厚的兴趣,对很多器材及各种玩法都充满好奇,唯独物理和电学方面的知识不够,故欲改进而不知从何入手。他的提问对我很有启发性,今天的年青人当面对计算机软件时可能会得心应手,但被问到一些基础知识时却会哑口无言。我想要推广发烧的乐趣,圈内人士确需要多做一些给入门者引导的工作,而我们拿笔的就更有责任把道理尽量解释得浅白易明。

    返本归源,什么是发烧之道?我想这不能简单地等同是有能力或愿意拥有昂贵的音响器材。要知道,只胡乱地把一大堆贵价的东西接上,往往出来的只是一些很平凡的效果。我想发烧需要一些基本的条件,有客观的,如有一定水准表现的器材和合理的聆听环境,有主观的,如对音乐的热爱,对音响完美的追求,而最重要的是掌握一定的调音校声的本领,和一双能与此相辅相成的耳朵(鉴听能力)。谈到调音校声本领,就不得不谈到一个专用名词TWEAK,在GORDON HOLT的经典力作“THE AUDIO GLOSSARY”中,TWEAK解释为把东西微调到完美的极至(to fine tune something to the nth degree of perfection)。这说得很对,发烧友的冲动源于对完美极至的追求。这里我们可以把 TWEAK 解释为把回放系统或聆听环境加进任何改变而导致你对音乐享受的增加。这些改变可以是把音箱在室内不断左右前后推移去寻找一个理想的位置,也可以是打开机器进行摩机,如电源部份换大水塘,或更换各种交连电容。

    把音箱推前移后,可能只花几分钟时间,但如在高手主理下,出来的效果会是惊人的。因为高手是了解这套回放器材和聆听环境间出现矛盾和不协调的症结所在,移到新的位置后面是有一定的理论根据的,譬如是用以压抑某个频率的响应波 ,或用以破坏某个初次反射面的作用等。要摩机,所花的时间更多更长,动辄以小时计。当然前者可能只用几分钟而不用花任何金钱,后者要用上几个小时,而所花金钱则可以丰俭由人。这两者不能简单以经济效益来衡量,因为比较的另一个重要指针,这就是改变的幅度,至今没有一个客观公认的基准。但两者都有一个共同点,这就是发烧友在过程中所得到的兴趣和享受,是非笔墨所能形容的,再者,在经历各种改变的过程,是一种很好的学习,所得到的经验对提高自身的鉴听能力很有帮助。

    好了,既然一位读者的提问,引发了我写这篇文章,我便力图更显浅地去解释他的疑问;电源问题。我以前已经提过,对电源的认识的确是发烧友的一项必不可少的基本功,因为这不花钱的TWEAKING带来的效益太大,太明显了。

    提出关注电源极性的影响的,据我记忆所及应是在1981年ENID LUMLEY在TAS发表的文章,之后在主流Hi Fi杂志和机电工程师之间断断续续的进行过争议。可是到今天大部份人已认同了电源极性的影响,甚至有些器材在说明书上都有提及电源极性对声音及画面所可能带来的影响。

    记得十多年前,有一班前辈就懂得用耳朵在鉴别每件器材的电源极性,这可以说,当年闹过不少是非,因为电源极性的影响,因器材而异,有些很明显,有些可以是根本察觉不到,由于当年没有人系统地去解释,金耳朵以此大吹法螺,引起了不少无谓的争端,现在回想起来,会觉得好笑;可是你可曾理解到当年一些耳朵没有**到那么好的发烧友所曾面对过因自己听不到分别而感受到的苦恼?到今天,一切都可以解释的,有些器材,更换电源极性,变化很大,是有原因的;另一些器材,更换电源极性,没有任何分别,也是有原因的。问题是,当年的大师辈,面对根本分别不到的情况时,奈于面子,便胡乱硬说某个改变是正确,而声音又怎样怎样变化,旁边一些“擦鞋仔”推波助澜,结果是Hi Fi圈风云变突起。

    今天,我们可幸福得多了,要练就这基本功,你只要买一件廉价的道具就可以了。首先为求显浅,容我多说几句有关电的基本常识。目前我们接触到作为能源的电,有直流(DC)及交流(AC)两种。我们日常用的干电池,它的极性是不变的,正端永远是正端,负端永远是负端,这种供电方式我们叫它做直流(DC),而一般干电池的电压很低,电压的单位叫Volt(伏特),干电池一般是1.5V,汽车的电池是12V或24V,电压一般要到 80V左右才开始对人类安全构成威胁。另一种我们家里各种电器使用的电源,一般叫市电,香港俗称湿电,电压很高,香港是220V,而它的极性不断改变的,即电线的一端不断地正负交替,也因为这样,这种供电方式叫交流电(AC),交流电极性每秒钟内变化若干次,这次数便被称为频率,香港市电是50频的,就是说它每秒钟正负交替50次。由于效率的关系,要输送电力,都是以高压交流形式进行的。而大部份电子器材,它机内实际用电却是以直流进行,于是每部器材都需要把高压的市电变成低压的直流。要实现这一点,每台电子器材都需要设置一个变压器(香港俗称火牛)和一组整流电路。变压器的作用是把市电的220V交流电压改变到一个合适的工作电压,通常是降低,但在胆机中和电视机中也有升高的。而整流电路就是把交流电变成直流电。

    现在谈交流市电的极性,大家不要混淆,这里不像直流电那样,谈它是属正还是负,因为先前已说过它是不停交替地改变正负的。这里说的是Polarity,一般称为极性,但不要习非成是地跟一些发烧友学坏师,称之为Phase(相位)。相位是电声学的一个很重要的东西,但并不是这里谈的。对初哥来说,极性和相位同样深奥难明。可是在这十多年间我不断听到不少资深发烧友把电源极性误称为相位,这就贻笑大方了。

    这里说的电源极性,其实是指供电引线的属性。香港的一般家用市电,大部份是单相的(single phase),当然小部份也有用上三相的(3 phase),这些发烧友暂时不需管。以目前的用电安全条例规限,一般电器都要用上三脚插,我们把三脚插或座拿来研究,不难发现,三脚中在品字形上方的有E的标记,E代表地线EARTH,是和大地相连接,作用是在电器万一漏电时对使用者起安全保护。另一脚是L(LIVE),是带电的,叫活线,也有俗称火线,在国外也有称之为热(Hot)端,它一般带有距离地线接近供电标称的220V电压,我们现在使用一切入墙开关都是以开关活线的。另一脚是N(NEUTRAL),正名是回路线,国外也有人称它为冷(Cold)端。回路线一般和地线间不带有电压,但实际上由于感应作用,我们还可以量出几伏,十几伏甚至几十伏的电压。L线和N线不难分别,只要用测电笔(俗称他笔)分别接触它们,测电笔亮起氖胆的就是L线。

    需要注意供电极性,究其原因是在现实生活中根本没有变压器在绝缘方面是完美的。先前说过每台电子器材都用变压器改变电压,变压器的构造是在一个铁芯上有两个绕组,一个叫初级,一个叫次级。市电一般流通初级绕组。由于变压器的不完美,微量漏电是不可避免的,这微量漏电对人体不构成安全问题,但对音频讯号而言,有时会有很大影响的。又由于绕组是由内至外,在内的较接近铁芯,也较易漏电,于是初级绕组较近铁芯的一端,当接上L线或N线时,漏电表现就有很大分别。变压器的铁芯一般和器材的底盘和机壳连接,而底盘同时是音频讯号的负端,故当不同的漏电到底盘,就会不同程度上干扰音频讯号,也就是改变了声音。过去一度被神化的谜现在解开了,如果一台机器的变压器漏电高,那改变电源极性带来的声音改变就大,相反如果漏电低,甚至测不到漏电,那改变带来的声音变化就小,甚至听不到。

    明白了这道理,要分辨电源极性就简单得多了,初哥也不用因耳朵还未修成正道而烦恼。你只需要一枝测电笔和一个数字万用表。在鸭寮街,这用几十块钱就可办到。现在有一款巴掌大小的微型万用表,四、五十元有交易,这就犯不 多花钱买一些巧立名目的东西。我在Internet上就见过一种叫Polarity Meter的东西,叫价三十美元。

    测试很简单,只需把万用表拨到AC 250V档,将电表测针一端接地线﹙E﹚,另一端接机壳或底盘,为方便计,请先用三脚转两脚的电源adapter,这是为了使待测器材暂时不接E线;一切妥当,开机,看看电表读数,然后关机,把电源插反接,再开机,再看电表读数。电表读数小的接法,就是正确的接法。跟 用测电笔确定火线位置,再在接火线的插的一端做个标记,这样测试便完成了。 入门的发烧友,你不妨把你的所有的影音器材都测试一下,这样不用花多少钱,你会看到听到所带来画面和声音的改善。

如何选择器材承架

    不少发烧友投资相当多金钱到音响系统去,但就是疏忽,或不愿意花精神选择较佳的承架,导致音响效果未能合符身价。

    一款合符标准的音响器材承架,并不一定在乎它有多重,而是侧重于结构是否扎实。这不单止要求其垂直方向不能有疏松现象,同样重要的是,水平方向也不可有任何摆动,否则即使承架再重,声音必定含糊,缺乏弹跳力。要知道,尽管是解码器,没有黑胶唱盘或CD盘那么让人了解避震的重要性,查实其精密电路一样需要稳定不起震动的理想工作环境。倘若不信,可试为解码器加上钉脚,无论钉脚质量是高是低或是否合适使用,我们会即时听到用钉与不同钉的分别。这个当然,解码器本身的塑料脚,由于被不同物质的钉脚所取代,效果不一,声音给改变了也是原因之一。

    经验告诉我们,将器材的机脚置于承板下为垂直柱脚的位置上,声音愈见稳定,这是由于该处结构最为扎实,谐震比承板中央地方较少,音染自然低,舞台感更明确。

    一般相信,不同物料制造承架,即使撇除结构模式不论,声音都不一样,这是正确的。这是由于不同物质,其结构不同,全频谐震,自不一样,对外来震动(包括直接或本自空气)的反应也各有不同,间接影响了承于其上,受其不同震动的影响,其情况一如使用不同钉脚,声音便发生相应的变化。故此严格来说,纯木制花梨架,金属柱配木板或花岗石板,效果都不一样。其中的声音差异往往可以用线材或钉脚加以调整,达到更合符所需的要求,但总体而论,承架必需结构扎实,是为大原则。

]承器材用的钉的垫有何用途?

    自从一款被定名为Tip Tocs的铜钉,在香港市场发售后,钉脚这种利用物理退交方式导走谐震的角色,就一直引用至今,普通发烧友家里几乎都安放有几套不同的品种。当中有木、金属、宝石(石头?),甚至软胶配合铜材等等物质制成的钉或垫。像一些应用软性橡胶制作的承机脚垫,无疑是可以吸收震荡,但承于其上的器材像放在一张弹簧睡床上,显出下盘不稳,将恶声连带分析力及高频延伸一起带走;就是低音也显得乏力。今天推出的音响器材,质量多不坏,像这类好处与缺点一样的脚垫,再无用武之地,价值已失。

    有朋友喜欢木制的钉脚,亦不呈半球体或立方体状物。据说音质非常优美,即所谓木声也。事关小提琴、古典结他等等都以木片来制作(那么金管乐器又如何?),但无论如何,我们无需过分批评之类东西分析力不及铜钉,毕竟器材讲搭配,口味也因人而异。论到音响特性,想将音响舞台中一举一动敏锐而灵巧地展现出来,铜钉甚至比钢钉更为理想。

    没错,纯铜钉质地较软,用手锯已可切割铜料,声音较钢钉醇一点、厚道一点、低音亦浓一些,就是跃动感、弹跳力不及钢钉。市面上有些铜钉由两种不同硬度的铜材打嵌而成,其中空芯部分,填充一种带阻尼特性的软性物料,吸收器材或铜钉本身卸之不去,残留下来的余震。亦有些同类型产品,在钉身外圈挖一条幼细的坑槽,然后加上一条橡胶圈,实行内外夹攻,进一步吸收谐震,成效相当显著,音响画面透明度更高,全频动态更为活跃。像木结他低音弦这类难以重播的乐器,都有相应的声音改进。

    事实上,各类型钉皆标榜着改善(也包括了改变)音响效果,然而钉、垫顶部与器材底部,都没可能完全光滑,较为精糙,致令二者接触时不能百分百呈紧密状态,效果必定打上折扣。但总体而论,还是利多于弊。

    就物理性而论,三颗钉尖那么小的面积,却承受了器材的总重量,可想而知其质量相当之高,基于面积强,从上而下的重力与谐震,只会透过钉尖顺利导向器材承架去。钉尖的秘密源之于此。在器材底部摆设钉脚亦须讲究技巧,最重要的一至两枚应放在变压器。CD碟仓的底下,因为这些地方具最强烈的震动。余下的钉尖只要能令整件器材保持平衡即可。
作者: zgmfx10akira    时间: 2012-4-30 15:43
上面少数地方不是很准确,试修改如下:

DVD-R
DVD家族中的一员,为可一次写入多次读出数据的DVD,DVD-R可以是单层的(4.7 GB),也可以是双层的(9.4GB)。

DVD-RW
由日本先锋,索尼等公司联合推出的一种存贮容量为4.7GB的可擦除和可重写的DVD光盘,与DVD-RAM类似,理论擦写次数超过1000次。可以录制2小时DVD质量的视频。目前尚在研制容量达12GB,从而可录入5小时高质量电视节目的DVD-RW。

增加几个:

DVD-RAM
DVD家族的一员,由松下研制出,和SONY的MD盘在技术上非常类似,都属于磁光存储技术,而其他都属于光存储技术。DVD-RAM是反复可擦写的,读写速度非常快,寿命非常长,理论可擦写次数可达十万次。DVD-RAM有的有封盒,有的表面有硬质镀膜,很难划伤。DVD-RAM不可以在绝大多数DVD-ROM和DVD+/-RW光驱上读取,只能在兼容DVD-RAM的光驱读取。

DVD+R
DVD家族的一员,是可一次写入多次读出数据的DVD,和DVD-R类似,由PHILIPS公司研制出。技术上比DVD-R 稍先进,速度更快,但对于早期的DVD-ROM不如DVD-R好读。

DVD+RW
DVD家族的一员,类似DVD-RW,是可以反复擦写的DVD,理论擦写次数超过1000次。由PHILIPS公司研制出,速度和兼容性比DVD-RW更好,不需要预格式化。
作者: zgmfx10akira    时间: 2012-4-30 15:43
能使音响效果更好的小秘诀

1.RTFM是“读说明书”(Readthe Maruel)的缩写,虽然从接线到音箱摆位,似乎所有的步骤都可以自己搞定,但除非你读了说明书,不然你的作法有可能降低音响的表现力,甚至弄坏设备。说明书不管是写得干巴巴的还是热情洋溢的,都应先读一下。

2.一个合适的机架是必要的。每台机一格。机架能确保机器免受震动,而且将每台机之间分隔开一定距离,特别有利于散热。

3.如果你非要把机器一个一个摞起来,那么就把功放放在最上面,因为功放产生的热量最多,最需要散热。

4.考虑到将来你可能要再买别的器材。买机架时应买层数多一些的,以免重复投资。

5.如果机架有轮子,清扫机架下面的地板会很方便,但如果机架有脚钉则可以固定,声音效果会更好,选择合适的机架,最好兼有两方面优点。

6.检查机架是否可以承重,以便灌沙或加上特制的金属增加重量以防震,在机架中空的结构中(如支柱)灌沙,以防音量大时发出响声。

7.机架的选择也要注意,玻璃的很美观,但中密度纤维板(MDF)更好,最好有脚钉或是有阻尼胶,但如果你用的是玻璃架又有小孩子的话,就要固定得更牢固一些。

8.还有其它的方法令你的设备受益。把CD机放在脚钉上(如Audioquest生产的脚钉)、一个特制的平台上、或木屑制成的板甚至大理石板都有助于减少震动。

9.唱机更容易产生振动。如果是木地板的房间,地板也传导震动,试考虑将机架固定在墙上,特别是你早上起来想一早就听摇滚的时候。

10.音箱的支架也有讲究。如果是小厅堂,一般用书架式音箱,支架非常重要,应买最好的架子,越稳固、越坚硬越好。

11.脚钉的水平要调节好,之后用板手固定(一般都附在器材里了),注意不要拧得过紧,对有些质量不很好的螺钉,拧得过紧会造成滑牙。

12.有的音频线是有方向性的,注意按插头上的箭头所指方向接插,例如:CD机的信号输入功放,功放的信号输入音箱。

13.可以在木地板上先拧入十字螺钉,再把脚钉钉插在螺钉上,要注意调节水平。

14.很多音响,不论安装在地上还是架子上,都受益于稳固的地面。

15.小型音箱是用脚钉还是用阻尼胶装在架子上,最好按厂家的建议办,但可先试验一下。

16.如果要把音箱装在墙上,墙壁必须稳固,高音单元的位置应和你平时听音时耳朵的位置一样高。

17.不要在音箱上放盆栽植物,台灯或瓷器雕像等。它们中有的可能会随音乐而震动,令人分心。

18。如果在室内,音箱离墙太近会使低音不足,如果在室外,则会使低音过重。无论如何,不要把音箱放在成角的地方,这样会使低音浑浊。

19.一条通用的规则是,音箱之间的距离不应该比音箱到听音者的距离还要远。但多数音箱之间需要至少1.5—2米的距离以产生良好的声像位置,如果距离过远会产生中空效应。

20.调整音箱的方向,直至声像为三维立体为止。从两只音箱的前面板引出的垂直线应在你听音的位置交叉。

21.检查两只音箱的倾斜度是否一样,你能看到的左右音箱的表面积应该一样多。

22.电源很重要。最理想的是每台机有自己单独的插座,实在不行用质量好的拖板也比插上去摇摇晃晃的三脚插座好。

23.有人以为从电箱里给高保真音响专门引一条电源线就会使音响用的电源比别的机用电源更纯净,其实不然,从电厂到任一路的电线,到每户的电热水壶,都对电源造成影响。

24.先把线接好再开机,这样可以防止音箱的“扑”声。注意开功放前,先把音量关到最小。

25.开机前的“煲机”是必要的。它有助于元件达到工作点温度,并使机械部份运作灵活。功放在通电至少24小时后才达到最位状态,CD也要重复播放、随机播放差不多同样的时间。

26.音箱也要“煲机”。把一边的音箱正接,一边反接(电缆正极接音箱负极),然后将两只音箱面对面,它们发出的声音就会因反相而抵消。用这种方法可以使音箱更快达到最佳状态。

27.“煲机”之后检查一下音箱后面的接线,它们可能因为音箱的震动而变松,随着音乐“滋滋”作响。

28.不用时不要断电。这样就可以随时使用,再也不用预热。机上一般都有“Standby(待命)按钮,除了胆机之外,其它机在这种状态下仅消耗很少的电。

29.线材的作用也很重要,不要用随便配在机器里的过机线,有的名牌机的
过机线的确不错,但只是很少的例外情况才会这样,大多数质量都比较差,500英镑或更贵的系统配40英镑的线材,就可以说物有所值了。

30.如果功放和音源之间距离不过1米,就尽量买短的过机线,这样既省钱又改善音质。多数厂家都有0.5米的过机线卖。

31.如果是用双线分音连接的话,用完全相同的两对线或专门配的两对线,2~3英镑/米已经很好了。有人认为高音用稍细的线而低音用稍粗的线会令效果更好,  我们认为用同样的线更好。

32.如果音箱用弹簧夹接线的,音箱线要多留10~15厘米,每6个月就要把被氧化的接头处的线剪掉,重剥线皮接线。

33.两只音箱,即使一只离功放1米远,另一只离功放5米远,音箱线也要一样长,多余的线松松地放着,不要盘起来。

34.过机线的长度越短越好,俗话说:“多一个香炉多一只鬼。”线越短,对音质的影响越少。

35.很少音箱会配音箱线,买2~3英镑/米的线已经很好了,零售商还可以提供不同颜色的插头,确保接线无误。

36.如果需要长距离的过机线,应选取专用的那种。

37.如果用脚钉架在混凝土地面上,站到架子上去看看它是否晃动,要确保它不晃。

38.信号线藏在机器后面,使整套音响看上去美观整洁。把信号线和电源线分开,以免造成干扰,如果没法分开,要成直角交叉。

39.有些机架上有专门的“电缆通道”用来固定电缆,不过用附在机器上的绑电源线用的软线就可以了。

40.接好线后,一般不用怎么维护,平时抹一下灰尘就可以了——最好用皮质的抹布,遇到顽固污渍按说明书上的指示去清除即可。

41.每隔几个月,拔下所有的过机线再重接一次可起到清洁接头的作用。如果接头很脏,可买一支专用的接头清洁剂,注意一定要先拔掉电源再做以上的一切。

42.如果你打算开晚会,最好先把所有的机器藏起来。因为有的人会多手多脚地试验音响最大能有多大音量,还有人会不小心洒点酒在功放里,都会使你破财。

43.你想增加别的音源,但功放的输入已经不够了怎么办?其实,别看功放后面写着“CD、TAPE、TUNER”,除了唱机插孔是专用的,其它都是一样的线路输入,甚至可以接受计算机输出的音频信号。

44.如果电源插座不够,很多厂家如QEDTANDY有扩展电源可以解决这个问题。

45.CD的寿命比LP要长,但也要小心保存。听完放回盒中,不要拿来做饮料托盘,用一块软布擦拭碟面的灰尘,以放射方向擦,不要绕圈擦。

46.如果你抽烟或周围环境灰尘较大,CD的激光头会变脏,用一种带小刷子的清洁碟清洁,有时小刷子上要滴上专门的清洁剂,有的碟上甚至有声音指示你清洁的步骤。

47.几乎所有的音箱去掉防尘罩后音色都会好一些,有的音箱高音单元有金属罩保护,使用阻尼胶除去罩子,不会损坏罩子。

48.有一种使用“特殊的绿墨水”(在一种象记号笔一样的笔中),涂在CD碟的边缘,减少光散射的方法,或是在运行中突然定住CD碟,以放松它表面的物质在制造时形成的张力,试一试这些,如果你听到有什么不同,正好。

49.一只音箱不响很可能是因为线松了,试一试两个声道互换一下,或试一试接另一条电缆。如果叫专业人员来维修收费是很高的,所以能自己解决就自己解决。

50.还有200镑可用来改进设备,不知该怎么花?这里有个全球通用的答案——买一张碟,自己欣赏!
作者: zgmfx10akira    时间: 2012-4-30 15:43
音响及录音器材的线材与接头之介绍

器材与器材间要达成连络;传输;沟通等,都必须仰赖其连接的工具,这就是线材与接头。它在整个录音的过程中占著非常重要的角色,但也是常被忽略的东西,它可能因一时的疏失而造成录音的错误,如果是发生在一个现场的录音,就算拥有再好的器材,结果仍可是无法补偿的。 而由于规格的不同;器材的特性,因此种类也是非常繁琐,我们就常见的种类及型式作一简单的介绍。

线材 Cable

(1)Microphone Cable∶麦克风使用的线材,有两芯;三芯;四芯;五芯不等,较专业的麦克风多半使用三芯以上的线材,分别接到 XLR 接头的 Ground;+;- 三个接点。
 
(2)Coxial Cable∶同轴电缆线,是一般 RCA 接头最常使用的线材,而 75 Ohm 的同轴电缆线也是 S/PDIF 数位式讯号的使用线材。
 
(3)Multicable∶多个讯号线包裹在同一个保护管内,多半是连接系统内部使用,以减少单一独立线材的数量。
 
(4)Optical Cable∶光纤,许多 CD 或 MD 等录放音器材常使用的数位讯号传输线材,ADAT 亦是使用此种线材来做数位多轨录音传输工具的代表。
 
(5)MIDI Cable∶使用在 MIDI 应用上的线材,通常为五芯线,传送有关 MIDI 上的信息。
 
(6)Digital Cable∶AES/EBU 110 ohm的专业数位传输规格线材(IEC 958 Type 1),多为三芯,使用XLR式的接头来连接。
 
(7)Speaker Cable∶通常为两蕊线,在运用上亦有多种不同的规格。
 
(8)Patch Cable∶通常为三蕊线,运用于Patch Bay上亦有Bantam和TT等不同的规格。

接头 Connector


(1)XLR∶俗称的 Cannon 头,此种接头是由三个接点所组成,分别为 Ground(Sleeve);Positive(+);Negative(-),常使用在麦克风;录音器材上。
 
(2)RCA∶在中国一般俗称的莲花头(因某些型式的 RCA 接头外观看似莲花瓣),此种接头是由两个接点所组成,分别为 Positive(+);Ground(Sleeve),使用同轴电缆连接,常使用在一般家用音响器材上。

 
(3)TRS∶一般俗称的立体声接头,此种接头是由三个接点所组成分别为 Tip(+);Ring(-);Sleeve(Ground),常使用在录音器材上。


(4)TS∶俗称的单音(声)接头,此种接头是由两个接点所组成,分别为 Tip(+);Sleeve(Ground)。
 
(5)MIDI∶使用在MIDI应用上的接头,有五个针脚,传送有关MIDI上的信息。
 
(6)Combine∶一种特殊的插座,可选择使用于 XLR 及 TRS 两种规格。
 

(7)Speaker∶香蕉头,可使用接头上之旋盖锁紧于备有此接座之音箱喇叭上。
 
(8)Adapter∶各式转换接头,运用于各种不同接头间之转换。
作者: zgmfx10akira    时间: 2012-4-30 15:43
談阻抗

阻抗是音響圈中最常看到的字眼了,但是它到底意所何指呢?許多人在看到喇叭標示的阻抗值是四或八歐姆的時候,會直覺地拿起三用電表往喇叭的二個接線端子一量,看看到底是不是正確,可惜的是絕大部份的人都失望了,因為用三用電表上的電阻檔量出來的結果並沒有和喇叭上面所標示的一致。原因呢?因為你誤會了,你搞錯了。

    阻抗與電阻不是完全一致的東。在國中的物理課本上,我們第一次接觸到有關電學方面的理論,其中提到了有關電壓、電流、電阻以及電功率之間的原理和數學關係。絕大部份沒有繼續進修電學方面的課程或從事於電子專業的人士,其畢生的電學常識乃盡粹於斯,這還是當年上課沒打瞌睡,經努力、認真、用功學習後才能擁有的輝煌成果,難怪你會把阻抗當成電阻了。

    阻抗從字面上看就與電阻不一樣,其中只有一個阻字是相同的,而另一個抗字呢?簡單地說,阻抗就是電阻加電抗,所以才叫阻抗;周延一點地說,阻抗就是電阻、電容抗及電感抗在向量上的和。在直流電的世界中,物體對電流阻礙的作用叫做電阻,世界上所有的物質都有電阻,只是電阻值的大小差異而已。電阻小的物質稱作良導體,電阻很大的物質稱作非導體,而最近在高科技領域中稱的超導體,則是一種電阻值幾近於零的東西。但是在交流電的領域中則除了電阻會阻礙電流以外,電容及電感也會阻礙電流的流動,這種作用就稱之為電抗,意即抵抗電流的作用。電容及電感的電抗分別稱作電容抗及電感抗,簡稱容抗及感抗。它們的計量單位與電阻一樣是歐姆,而其值的大小則和交流電的頻率有關係,頻率愈高則容抗愈小感抗愈大,頻率愈低則容抗愈大而感抗愈小。此外電容抗和電感抗還有相位角度的問題,具有向量上的關係式,因此才會說:阻抗是電阻與電抗在向量上的和。

    一般音響器材常見被提到阻抗的地方有喇叭的阻抗,前後級擴大機的輸入阻抗,前級的輸出阻抗,(後級通常不稱輸出阻抗,而稱輸出內阻),信號導線的傳輸阻抗(或稱特性阻抗)等。若說到器材內部電子線路及零件的各部份阻抗那就更琳瑯滿目複雜多多了,非三言兩語可說明清楚。在此我們專只約略介紹有關音響器材標示的阻抗具有什麼樣的實質意義。

    由於阻抗的單位仍是歐姆,也同樣適用歐姆定律,因此一言以蔽之,在相同電壓下,阻抗愈高將流過愈少的電流,阻抗愈低會流過愈多的電流。光是這麼簡單一句話,你可知道多少音響器材的搭配學問盡在其中嗎?

    先從喇叭的阻抗談起。最常見到的喇叭阻抗的標示值是八歐姆,也有很多是四歐姆,這代表了什麼呢?這代表了這對喇叭在工廠測試規則時,當輸入1KHz的正弦波信號,它呈現的阻抗值是四或八歐姆;或是是在喇叭的工作頻率響應範圍內,一個平均的阻抗值。它可不是一個固定值,而是隨著頻率的不同而不同,甚至可能會起伏得很可怕,可能在某頻率高到十幾廿幾歐姆,也可能在某頻率低到一歐姆或以下(這種喇叭通常被視為後級的殺手,當年以Apogee最為著名)。好,讓我們來腦力激盪一下;當後級輸出一個固定電壓給喇叭時,依照歐姆定律,四歐姆的喇叭會比八歐姆的喇叭多流過一倍的電流,因此如果你會計算功率的話,你就會明白為何坊間會傳言一部八歐姆輸出一百瓦的晶體後級,在接上四歐姆喇叭時會自動變為二百瓦的道理。

    可是你先別高興,以為佔到了便宜,天下沒有白吃的午餐,當喇叭的阻抗值一路下降時,後級輸出一個固定電壓,它流過的電流就會愈來愈大,你確定你的後級能輸出這麼大的電流嗎?你知道喇叭阻抗一路下降的結果到後來就有點像是把喇叭線直接短路的意思,所以阻抗值有時會低至一歐姆的Apogee喇叭被稱作後級殺手的原因,你明白了吧!所有的電晶體後級擴大機,其輸出電流的能力均有其設計上的限制,超出此範圍,機器就要燒掉了。這也就是為什麼一般人常說的:後級的功率不用大,但輸出電流要大的似是若非的道理(這個問題以後我們會詳細討論)。

 同理,如果有一對喇叭的阻抗很高,像早期15的RogersLS 3/5A,那擴大機的輸出功率豈不自動減半?沒錯!如果這對喇叭的效率又很低的話,你要它發出高音壓來,能不動用高功率擴大機嗎?江湖有傳言:上揚唱片在台北市中山北路的門市有一對15的Rogers LS 3/5A,作為背景音樂之用。推它的擴大機是一部日本早期的Technics綜合擴大機而已,但包括劉老總及賴主編在內,均盛讚它好聲,你言如何?早期日本擴大機給人的印象就是功率標示很高,但輸出電流能力則令人頗有微詞,君不見小小一套床頭音響組合動不動就是300W嗎?可是KRELL的300W後級你想一個人扛是扛不動的。這種高電壓低電流的日本擴大機一遇上現在滿街都是的低阻抗喇叭,一下子就軟腳了,但是如果碰上了高阻抗喇叭,例如……,會不會就成了名符其實的當哈利遇上莎莉呢?搭配之妙啊!豈可等閒視之。

    接下來來看擴大機的輸出入阻抗。一般我們常耳聞的說法是:擴大機的輸入阻抗是愈高愈好,而輸出阻抗是愈低愈好。為什麼呢?因為輸入阻抗高了,從訊號源來的訊號功率強度就可以不必那麼大。這麼說也許還有讀者不甚瞭解,讓我們再回想一下歐姆定律;假設訊源輸出不甚瞭解,讓我們再回想一下歐姆定律;假設訊源輸出一個固定電壓,傳送往下一級,如果這一級的輸入阻抗高,是不是由訊源所提供的訊號電流就可以降低?如果輸入阻抗非常非常的高,則幾乎不會消耗訊號電流(當然還是會有)就可以驅動這一級電路工作,換句話說就是幾乎只要有訊號電壓,電路就可以正常工作;但是對於低輸入阻抗的電路呢?就正好相反了,它必須要求訊號能源能提供較為大量的訊號電流,因為在同一個電壓下,低輸入阻抗會流進較大的訊號電流,如果訊源提供的電流強度不足以滿足下一級電路的需求,它就不能完美地驅動下一級電路。而訊源的電壓和電流的乘積就是訊源的功率了。

   另外何謂低輸出阻抗呢?它有什麼好處呢?通常低輸出阻抗被提到地方大半是指前級擴大機的輸出阻抗,後級通常是稱作輸出內阻的。前級的低輸出阻抗有幾個好處:一.一般會強調低輸出阻抗即表示了它有較大的電流輸出能力,容易搭配一些低輸入阻抗的器材(後級)。二.低輸出阻抗可以驅動長的訊號線及電容量較大的負載,以音響用前級為例;前級的輸出阻抗在與訊號線結合後,輸出阻抗加上訊號線本身固有的電阻與電容會形成一個RC濾波的網路,當輸出阻抗愈高時,則經過訊號線後的訊號,其高頻端的滾降點就會越低,反之則愈高。你應該不會希望高頻滾降點移進耳朵聽得到的音頻範圍吧?所以遇上電容量大的訊號線,你還是選一部輸出阻抗低一點的前級較為保險。這也是為什麼每一種訊號線會有不同聲音部份原因。

    有了以上大略的說明,你應該可以明白;所謂擴大機輸入阻抗愈高愈好,輸出阻抗愈低愈好,其主要理由即在此一在與其它器材互相搭配時,其匹配性比較高。

 那麼照此說來,我們就把每一部擴大機不論是前級或是後級的輸入阻抗都設計得很高,輸出阻抗都設計得很低,不是就完美無缺了嗎?讓我們再從輸入阻抗看起,由於高輸入阻抗所需的訊號電流較少,可知連接其上的訊號線中流動的電流必較小,因此對於訊號線品質的要求就可以不必那麼高,因為少了一個電流的干擾因素在內,這也是高輸入阻抗帶來的另一個優點。但是高輸入阻抗的優點既然這麼多,為什麼市面上找得到的高輸入阻抗前級或後級竟寥寥可數呢?讓我偷偷問你,你有沒有用過收音機?你知道收音機的訊號是從哪兒來的嗎?從空中來,你答對了。從空中來,你可知道空中存在有多少的電磁波?多到集合你全家老小的手指頭加腳指頭都數不完,這些可都不是你想要的音樂訊號哦!當空中的這些電磁波被作用有點像天線的訊號線拾取後,雖然只是一點點的雜訊電壓,但是一個高輸入阻抗電路卻能輕易地將其放大(正是其優點),於是乎,當有人抓了一把沙子放進你熱騰騰的大滷麵時,你還以為是黑胡椒粉呢!

    易感染雜訊,就是音響器材在設計輸入阻抗時,明知高輸入阻抗的諸多優點,但也不能任意設計得很高的主要原因,膽敢設計成高輸入阻抗者,必有其對抗雜訊干擾的過人之處,Cello有一款前級名為Encore IM,其標稱輸入阻抗即高達IM,為HI-END音響界最有名的高輸入阻抗前級。但這個紀綠最近被日本SONY公司所出品的一款輸入阻抗高達2M 的前級給突破了。

 雖然Cello的1M前級在音響界已是不得了的事情,但就電路的輸入阻抗而言,還不算太高啦。隨便一個FET做為輸入級的IC它的輸入阻抗都可以高達百萬M,就像前陣子有點紅的BUF-03這顆適合作為緩衝器的IC它的輸入阻抗就有這麼高呢!常見的前級的輸入阻抗,在早期真空管的時代,由於真空管本身的輸入阻抗就比較高,因此大都設計成500K或250K,晶體前級則大多數是100K或50K。近來則輸入阻抗有愈設計愈低的趨勢,20K、10K也已經很常見了。

    後級的輸入阻抗則大部份是47K,高一個的有100K,20K,10K的也所在多有。最近德國著名的HI-END音響廠家MBL,所推出的旗艦後級MBL9010輸入阻抗是多少呢?5K!沒有少寫一個零,就是5K。好像說了半天,高輸入阻抗有多少多少的好處,就是有人不來這一套,至於好不好聲呢?就請自行參閱相關的評論報導吧!

    那麼低阻抗輸入有什麼優點呢?首先當然感染雜訊的問題會降得很低,可以大幅提高信號雜音比,使得音樂的純度提高,音質就比較好。另外低的,輸入阻抗有較好的相位特性,這一點是比較少有人提出來討論的,一般常見被提出來的是頻寬特性,總諧波失真特性等,而相信失真則很少被提及(至少在所有公開的性能規格中),MBL的看法是高輸入阻抗與訊號線的電容量所引起的相位失真較大,而這對聲音的影響將很深。因此MBL 9010採用低的輸入阻抗,以較低的相位失真來求得在音質上的完美,當然在這個時候,你必須採用一部擁有更低阻抗輸出的前級來搭配了。

    前面提及了也有知名廠家採用低阻抗的輸入,這是肇因於現今大多數市售前級的輸出阻抗均已相當的低,因此在後級的輸入阻抗部份就可以酌情降低。假如你前級的輸出阻抗高於後級的輸入阻抗,這是不能匹配的,切記!切記!

    至於說前級的輸入阻抗呢?以目前大部份市售品前級的設計而,言輸入阻抗就由音量控制器給決定了。絕大多數的設計都是輸入的訊號經過訊源選擇後就經由音量控制的可變電阻作分壓,再進入主放大線路,所以這個音量控制的可變電阻值就成了輸入阻抗了。另外一些前級的設計是輸入訊號先進入一個緩衝級,輸入阻抗就由這個緩衝級的輸入阻抗來決定,由於緩衝級電路的輸入阻抗極高,因此,輸入阻抗值極高的前級,其接受訊號的前端部份,可能就有輸入緩衝級的設計。但是,輸入緩衝級的阻抗也可以不必一定得設計得很高,例如MBL 6010前級的輸入部份就設有輸入緩衝級,而其設定的輸入阻抗值則是47K。

    一如前面所述,前級的輸出阻抗如果能夠低的話,則後級的輸入阻抗就可以不必設計得那麼高,那麼同理,如們我們所使用的訊源的輸出阻抗也夠低的話,那麼前級的輸入阻抗有必要那麼高嗎?今天有很多音響迷的系統之中,只有數位訊源一種而已,而如今的數位音源由於本身內部已經具有類比放大的電路,而且有愈來愈多廠家將類比訊號的輸出阻抗做得極低。最有名的例子就是Theta,其在類比訊號輸出的地方加了一個高迴轉率、高輸出電流、低輸阻抗的輸出緩衝級BUF-03,這顆IC的輸出阻抗低至只有2,由此看來,其搭配的前級的輸入阻抗有必要很高嗎?
作者: zgmfx10akira    时间: 2012-4-30 15:44
什么是A/D、D/A

随着数字技术,特别是信息技术的飞速发展与普及,在现代控制、通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。由于系统的实际对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别、处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析、处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路--模数和数模转换器。
将模拟信号转换成数字信号的电路,称为模数转换器(简称A/D转换器或ADC,Analog to Digital Converter);将数字信号转换为模拟信号的电路称为数模转换器(简称D/A转换器或DAC,Digital to Analog Converter);A/D转换器和D/A转换器已成为信息系统中不可缺少的接口电路。
为确保系统处理结果的精确度,A/D转换器和D/A转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,A/D与D/A转换器还要求具有较高的转换速度。转换精度与转换速度是衡量A/D与D/A转换器的重要技术指标。随着集成技术的发展,现已研制和生产出许多单片的和混合集成型的A/D和D/A转换器,它们具有愈来愈先进的技术指标。

二、D/A和A/D转换器的相关性能参数:

D/A转换器是把数字量转换成模拟量的线性电路器件,已做成集成芯片。由于实现这种转换的原理和电路结构及工艺技术有所不同,因而出现各种各样的D/A转换器。目前,国外市场已有上百种产品出售,他们在转换速度、转换精度、分辨率以及使用价值上都各具特色。

D/A转换器的主要参数:

衡量一个D/A转换器的性能的主要参数有:
(1)分辨率
是指D/A转换器能够转换的二进制数的位数,位数多分辨率也就越高。
(2)转换时间
指数字量输入到完成转换,输出达到最终值并稳定为止所需的时间。电流型D/A转换较快,一般在几ns到几百ns之间。电压型D/A转换较慢,取决于运算放大器的响应时间。
(3)精度
指D/A转换器实际输出电压与理论值之间的误差,一般采用数字量的最低有效位作为衡量单位。
(4)线性度
当数字量变化时,D/A转换器输出的模拟量按比例关系变化的程度。理想的D/A转换器是线性的,但是实际上是有误差的,模拟输出偏离理想输出的最大值称为线性误差。
A/D转换器的功能是把模拟量变换成数字量。由于实现这种转换的工作原理和采用工艺技术不同,因此生产出种类繁多的A/D转换芯片。A/D转换器按分辨率分为4位、6位、8位、10位、14位、16位和BCD码的31/2位、51/2位等。按照转换速度可分为超高速(转换时间≤330ns),次超高速(330~3.3μS),高速(转换时间3.3~333μS),低速(转换时间>330μS)等。A/D转换器按照转换原理可分为直接A/D转换器和间接A/D转换器。所谓直接A/D转换器,是把模拟信号直接转换成数字信号,如逐次逼近型,并联比较型等。其中逐次逼近型A/D转换器,易于用集成工艺实现,且能达到较高的分辨率和速度,故目前集成化A/D芯片采用逐次逼近型者多;间接A/D转换器是先把模拟量转换成中间量,然后再转换成数字量,如电压/时间转换型(积分型),电压/频率转换型,电压/脉宽转换型等。其中积分型A/D转换器电路简单,抗干扰能力强,切能作到高分辨率,但转换速度较慢。有些转换器还将多路开关、基准电压源、时钟电路、译码器和转换电路集成在一个芯片内,已超出了单纯A/D转换功能,使用十分方便。
作者: zgmfx10akira    时间: 2012-4-30 15:56
关于THX

      THX认证的影片,音效好是肯定的,但你必须有带THX认证的功放,否则这音效也出不来。
THX由英文Tomlison Holman’s Experiment而来,其中文含义是汤姆利森.荷乐曼的实验,简记THX。THX还有另一层意思是为了记念美国卢卡斯电影(Lucas film)公司的被誉为20世纪人类奇才的电影制作人卢卡斯,他导演的第一部电影《THX 1138》中也有THX。

  八十年代,美国大导演乔治.卢卡斯摄科幻巨片星球大战(Star War),星片中运用了丰富的音响效果,可在电影院中一听,却与录音室混音台上得到的效果大有径庭,为此乔请George Lucas电影制作公司的专业音响工程师汤姆利森.荷乐曼出来解决这之间的音响效果差别问题,经二年多潜心研究,汤姆利森.荷乐曼总于找出了影响音响效果的干扰因素,并对这些因素进行针对性处理,这些处理的数据和程序就是THX标准。

  在THX影院系统中,对声音的编码和解码仍然是采用杜比定向逻辑技术,只是在得到杜比定向逻辑解码后的环绕声信号,还要进行一整套的再处理过程,这样形式了THX。

  THX环绕声解码器具有下列七大优点:

  (1)极宽的频率响应特性。THX规定前方声道的低音延伸到20Hz,高崐端没有限制,频响几乎延伸到听觉的极限。

  (2)清晰、优异的对白,THX特别强话人物语音效果,要求对白能够清晰崐地表达出来,电影中人物的对话占了重要的份量。

  (3)大动态范围、低失真。一般要求声压级能够达到105dB,此时若有崐失真是很难能够忍受的,这样才能达到影院所有的震撼力效果。

  (4)良好的前后声道音色的匹配,如果前后声道的音色不一致,就会有一种崐虚假感。

  (5)特殊音响效果的精确定位,这一点在播放枪战片、空战片时体会尤为深崐刻。

  (6)现场被音场充分包围。

  (7)优异的音乐再生能力。THX不只是可以用来为看电影,还要求在听音崐乐时也有高质量表现,甚至是顶级的再现。
作者: zgmfx10akira    时间: 2012-4-30 15:56
关于音箱的鉴别与选择 ?
作者:周毅
音箱作为声频的终端器材,仿佛人的嗓门,在很大程度上决定了一套音响的好坏。打个比方:很难想像一个体壮如牛但嗓门先天不足、五音不全的人能唱出美妙的歌?因而可以毫不夸张地说:选择一对好的音箱是一套音响成功的关键所在,来不得半点马虎。然而纵观当今音响市场,成品音箱品牌不下数百种,其中不乏著名的国际品牌:如美国的BOSE(博士)、JBL、INFINITY(燕飞利仕)、Westlake Audio(西湖)、PolkAudio(音乐之声);英国的ATC(皇牌)、B&W、Tannoy(天朗)、MonitorAudio(猛牌)、KEF、HARBETH(雨后初晴);丹麦的AVANCE(皇冠)、DYNAUDIO(丹拿)、DALI(丹尼)、Jamo(尊宝);德国的Heco(德高)、Maagnat(密力)、ELAC(意力);法国的梦幻之声(VISIONACOUSTIQUE)、JMLab(劲浪);国产精品有美之声战神系列、金琅、惠威、新德克、福音、小旋风等等,林林总总、不胜枚举。质量参差不齐,价格天差地别。即便是同品牌同系列的音箱,往往音质高出一丁点,价格就会成几何积数倍上升。这正是因为自人类发明电子声频工程以来,唯音箱进步最慢、技术最薄弱。据英国《发烧天书》记载:一部成名多年的英国老牌长青树音相Rogersls 3/5自六十年代推出,畅销近四十年,其音色这纯正优雅,至今仍为众多资深Hi-Fi发烧友视为炙手可热的抢手货。在音响科技高度发展的今天,实在有些令人费解。所以您可千万别小看了音箱的打造,别以为音箱只不过是把几个喇叭与几个Hi-Fi或Hi-END箱。音箱的学问大了,大到没法用书写,各家各派众说纷纭。正如医学界的中医与西医之争,或如医治一些疑难杂症:说得明白的治不好病,治得好病的却说不明白。然而对消费者而言,我们只要学会如何鉴别与挑选就成。那么有没有一种通俗简便的方法,让毫无经验的大多数消费者不是凭贵价、不是碰运气,而是凭借在下为您总结的音箱试听“七要点”来学会判断一对音箱的好坏呢?回答是肯定的,下面且听我为您仔细道来:

1.试听前对音箱的初步了解

对于一对音箱的最初了解,可用“观、掂、敲、认”的步骤来鉴别:即一观工艺,二掂重量、三敲箱体、四认铭牌。观工艺就是从音箱外表的第一部象来判断该次和品质优劣:用天然原木精工打造的音箱当然最好,许多天价级的世界名牌至尊音箱,包括意大利的Chario(卓丽)、Guarneri Homage(名琴)等,但此类好箱因环保、资源匮乏加工工艺难度大,时间长等因素,绝不会普及得象随处可见的“飘柔”洗发水,价格肯定没法低。故常见的音箱均是以MDF中密度纤维板表面敷以一层薄薄的木皮做装饰:敷真木皮精工外饰的音箱,尤其是如酸枝、雀眼、花梨、胡桃、桢楠、红橡等珍稀木皮,其天然木纹视觉效果极好,手感滑腻舒适。尤其以对称蝴蝶花纹真木皮经多层涂复打磨钢琴亮漆者,大多均可视为中高档精品音箱,仿冒品极少。用PVC(沙比利)塑料贴皮的箱子属大路货,虽做工精细,最好也只能算中低档货色。而以本纹纸贴面装饰的箱子虽然看上去极时应多注意箱体背后的贴皮接缝和喇叭安装位挖扎工艺是否精确到位。假冒伪劣产品一般都不会注意这些细节,因而稍加用心即可正确判断。

二是掂重量:好的音箱大多是以18~25mm的优质MDF粒子板打造、高档旗舰级音箱则是以紫檀、黄柚之类的超重实木或多层复合胶合板来打造,所以重量非常惊人。往往一对音箱净重就达五六十公斤。中低档大路货多半采用质地松软的刨花板,仿冒伪劣产品更采用质量低劣的纸胶板,故重量一般较轻。音响界常有“内行看质量、外行掂重量”之说,重的音箱肯定比轻的音箱要好些。但要警惕不良商家在音体底部灌沙石水泥增重以欺骗消费者。

三是敲箱体:用指节敲击箱体上下左右前后障板,箱体各面均发出沉实而轻微的脆响,感觉板材质地坚硬厚实、内部有多根加强筋支撑,箱体结构合理、结实,有多种隔音和防驻波的措施等效果。该种箱体加工成本高、难度大,因而很少有假冒伪劣产品。如用指节敲击箱体发出“噗、噗”的空响,说明板材太薄,材质质量太差,结构不合理。且内部没有吸音材料或加强筋维系,从而导致箱体内有大量漫反射和驻波形成。选购这种音箱,绝不可能获得好的重放效果。

四是认铭牌:真正好的音箱都有一快制作精良的镀金或镀铬铭牌标记,铭牌上一般都有镌有鲜明的商标、公司、名称、产地、相应指标等。进口箱则有英文如:Made in xxx或Manufacture及相应商标、音箱指标等。如果仅有Designin……(XX设计)或含糊其词地只标一个国名,甚至除了简单且极不严谨的几项基本指标外既看不出产地,也看不出厂家,商标也没有注册标记。这类三无产品多数均有仿冒、伪劣之嫌。名牌音箱十分注重品牌形像和企业知名度,因而所贴铭牌标记十分规范、精致,各项指标及企业名称、产地一应俱全。有的铭牌甚至是用薄金属镀24K真金制成,上面的字体还有凹凸感。产品不仅有出厂日期,有生产序号,甚至还有配对序号和随箱身份证。对于这类音箱,只要价格合理,一般都可以放心选用。

2.从技术指标为判断音箱的优劣

上面提到,成品音箱背后一般都贴有一张技术指标签:内容不外乎音箱的频率范围、灵敏度、承载功率及阻抗几项。其中灵敏率是音箱最重要的指标,在很大程度上决定了该箱应该选配什么样的功放,需要多大的功率去推等等。大多数鉴听级家用音箱的灵敏度均在86-92dB之间,对同一台功放而言,在同等音量下(如音量旋至10点钟),灵敏度越高就意味着声音越大,音箱对功放的功率索取和要求就会越低。这就是人们常说的:这对音箱好推些。很多商用OK厅用的专业音箱灵敏度都超过100dB,难怪许多人感觉去OK厅唱卡拉OK时声音非常靓,且毫不费力就能获得很大的音量。但您可千万别以为灵敏度越高越好,事实上,灵敏度超过92dB的喇叭都是振盆比较轻、薄的金属盆、PP盆之类,会导致功驾驭喇叭的控制力受损,从而导致音质偏薄、偏靓、偏夸张、偏硬朗,少了许多音乐的细节和韵味。不大适合作Hi-Fi鉴听用。而许多声音厚实柔和且充满音乐味的名牌音箱通常灵敏度都比较低,如英国皇牌ATC、意大利名琴、卓丽等顶级喇叭的灵敏度仅82dB。这类音箱往往极难伺候,需要输出电流极大的巨无霸功放方可让其工作在理想线性区域,代价绝不会小。

另一个最重要的指标就是频率范围。例如国产精品新德克指南针一号书架箱的频率范围是60Hz~20KHz±2.5dB,60Hz表示音箱在低频方向的伸展值。这个数字越低,音箱的低频响应就越好:20KHz表示该音箱可达到的高频延伸值。该数字越高,表明该音频特性越好。而后缀的±2.5dB则表示上述该段频率范围的失真度大小,失真度越小,频率响应曲线就会比较平坦。一些音箱标注的失真度是±3dB,其频率范围应会变得宽一些。有的音箱不标明该指标,频率延展范围就会变得很宽。例如上述指南针一号箱如果不注明失真度控制在正负 2.5分贝范围内,频率范围就可以标成40Hz~23KHz。需要指出的是,不标注失真度的频率范围是没有意义的。如果厂家明知故犯,只能涉嫌其居心不良,有意欺蒙消费者,同时也说明该音箱指标不规范,厂家对自己的产品缺乏信心,很难让人放心选购。

承载功率是音箱的一项参考指标,用多少瓦来表示,该指标并不能说明音箱质量的好坏,只是为选配功率放大器提供参考依据:譬如说一对音箱的承载功率标注为10~200W,即说要推动该音箱所需的功放至少要具备10W以上的输出功率,但忌用大于200W以上的放大器作满功率输出。否则可能有烧箱之虑。一般而言,家用音箱绝不会有推不动之虑,只有好不好推,推好推坏的问题,200瓦以下的承载功率对一般家庭的使用已是大大有余了,不刻意追求过高。

音箱还有一个指标是阻抗值,一般以8Ω为其标称值,绝大多数二分频书架箱的阻抗值均为8Ω,多单元多分频的座地式音箱也有6Ω、4Ω的。阻抗值越小,需要推动的电流就越大,要求的功放功率也相应高一些。以笔者意见,家用音箱最好选8Ω阻抗的较为好配功放些

3.好的音箱应该具有明显的个性

在现代音响器材中,音箱可谓最古老而神奇的成员。有人说它具有“灵性”和“生命”,说它是一个国家民族风格和历史与文化的沉淀物。的确,以名牌音箱而言,不同国度,不同民族所打造的音箱无不烙上生产国国民的文化素养、天生秉赋和性格牲征。尤其品质愈高,愈上档次的音箱,这种个性特征就会越明显。其次,对使用者而言,同样优秀但个性不同的音箱,还存在着对不对口味,喜不喜好某种风格的问题。所谓“萝卜白菜,各有所爱”,有些人喜欢风风火火、热情奔放的大豪风范,有人钟情温文尔雅、清逸憩淡的隐士性格:有人爱好场面恢宏的交响乐、重金属打击乐、摇滚乐:有人偏乐于小格流水般的田园古典乐、悠雅宛约的独奏乐,以及甜润厚重的人声重放……能按自己的品味选中理想中的音箱固然是件美事。倘若不明究理,人云亦云地选了对与自己口味相勃的音箱,那就非常令人扫兴!毕竟这笔投资不菲。所以笔者建议您在选购之前不妨多了解、多试听、多跑跑正宗的音响精品店、听听朋友的意见、听听专家的意见。同时还要明确自己到底喜欢什么风格?不妨多问自己几回,咱这音箱究竟买来干什么?听音乐?看影碟?唱OK?还是……

就音箱本身的风格而言,时下音响业界流行所谓美国声、英国声、欧陆声等等,美国音箱侧重于强劲的力度和庞大的动态,特别是美国西部出产的音箱:如JBL、BOSE、Genesis(创世纪)等。往往表现出一种洒脱豪放、粗犷大度的音色个性。这也许与美国西部牛仔们在北美草原纵马狂奔的豪迈气质不无关系。美国地域辽阔,西海岸山川崎峻、林木葱茏、丽日蓝天、物产丰饶。加上西部牛仔们狂放不羁的性格和好莱坞文化艺术的渗透,使西部出产的音箱音色鲜明靓丽、声音干净利落、大开大阖,豪迈粗犷中透出一种举重若轻的潇酒与自信。各类指标的富余量都非常大,特别适合摇滚、爵士及重金属打击乐、专业OK厅等场合。但在小提琴独奏、古典弦乐方面音乐味稍淡。然而在美国东部地区生产的音箱却因地理环境因素而更多地受到英国和欧陆文明的影响。加上著名的费城交响乐团崇尚古典交响乐,每年都会以大量的演出影响着地域文化。故而东部地区生产的音箱诸如INFINITY(燕飞利仕)、Westlake Audio(西湖)等品牌,则兼有柔和细腻与宽广明亮之风格。无论音乐的解析力、速度感、音场定位与松香味都明显区别于西部音箱而在欧州和远东地区大受青睐。

英国音箱具有典型的欧洲皇家血统,音色柔美甜润,造型端庄素雅,华而不艳,天然木皮中透出一种温文尔雅的贵族绅士风度。数款世界级的老爷车音箱——Rogers(乐爵士)、Spendor(思奔达)、HARBETH(雨后初晴)就诞生于此。加上日不落帝国昔日的辉煌和中世纪文明的潜移默化,更兼伦敦潮湿多雾的地理环境和小桥流水般的田园牧歌,造就了英国声温柔、甜憩、细腻、稳重、斯文谈定。在家用Hi-Fi 甚至Hi-END领域中地位非常高,最适合表现古典弦乐和人声重放。可惜在表现大动态爆棚场面及低频量感方面效果稍逊。

德国音箱则充分体现了日尔漫民族一丝不苟、严谨自律的敬业精神。音色自然、中性平和,干净清爽。尤以做工精湛而享誉业界,令人叹为观止。但严格来讲,德国箱音色稍偏冷艳硬朗,比较适合于流行音乐的重放。

其它如法国、丹麦、意大利、瑞典、挪威等欧陆之声,则无处不渗透着法国人的机智浪漫、意大利文艺复兴的艺术氛围,北欧人的活泼开朗和极其精美的传统手工艺:音色纯正自然、中高频略显夸张,但极富音乐味。且有很不错的兼容性,是家用Hi-Fi/AV兼用型的上上之选。

至于国产精品音箱,本应也有“中国声”之说,最近有许多专家学者也在撰文炒作。可惜中国的音响业起步较晚,包括大多数在Hi-Fi发烧圈已有些名气的厂家也是在九十年代中期才开始介入真正意义的高保真音响,目前倘未完成“理论与实践”的原始资本积累阶段,故而很难用什么“声”来形成自己独有的风格。然而短短的几年,国产精品音箱已有了质的飞跃,笔者窃以为极少数国产精品已形成自己的风格雏型,但也只能用类似某国名牌而论,如惠威颇似美国声,而美之声战神系列和新德克经典系列,指南针系列更让人想到英国声(但也许爆棚和速度部份经英国正宗货色略强)。而小旋风、金琅则多多少少染了点欧陆风情:唯有张百良先生精心酿造的“苍海龙呤”书架箱风味独到,音色平和中性,细腻高雅,温柔而又不失豪放,外观更是以中国传统土漆经多层打磨,古色古香、浑然天成,还真让人感觉到有点“中国声”的味道呢。相信以华夏五千年的文明史,又有夏商至盛唐的扁钟古韵和鸿篇巨制的宫延音乐为其基础,更兼中国人特有的含蓄、内蕴、丰富多彩的感情和儒释道之“中庸之道”、“合二为一”、“无为而治”等传统文化精髓夜陶,相信不久的将来,定会有世界公认的“中国声”应用而生。

4. 好的音箱应该是很耐听的

不知您有没有过这样的体会:当您兴致勃勃地打开音响欣赏音乐时,初听尚觉音色不错,声音够威猛,尤其中高频明亮动人,低频也令人满意。但多听一会儿就感觉不舒服了,特“累”人,不得不关机走了。这种让人人感觉“累”的音箱留不住客人,因为它让人感觉“很吵”,吵得人心烦。音箱“吵”人说明该箱的失真较大,不耐听。肯定不会是好音箱。

聆听品质优良的好音箱,仿佛是在品尝深埋地底三十年陈的花雕女儿线般主人倍感绵甜劲爽、回啤酒悠长。那种“甜甜的”、“暖暖的”音乐韵味会让您忘了时间、空间、甚至忘了自身的存在而陶醉于音乐的海洋中,无论听多久都不会厌烦。

好的音箱失真度特低。因而无论音量大小都会令您听起来非常入耳。即便是把音量开到满功率,音箱爆得惊天动地,低频滚滚如仲夏沉雷,也只会让您感到贴近自然的逼真甚至恐怖的震憾力,但绝不会发出令您掩耳逃生的破响。

一般而言:声音单薄、音色偏冷偏硬、速度过“快”的音箱都不耐听。可以肯定它们都是箱体音薄、吸音处理不力、分频器过余简化、喇叭档次较低造成的。自然称不上好音箱。好音箱是非常耐听的,它不仅能留着客人,而且聆听时间越长、煲得越熟、音色就越入耳。难怪那么多音响爱好者对此乐此不惫到痴迷的高烧地步!

5. 好的音箱能听到音乐背景中最细微的讯息

音箱对音乐细节的表达程度决定了音箱的解析力。解析力高的箱子,可以包含巨大的音乐资讯量,特别是音乐背景的资讯量。从而让人们能透过主题单元不听到更多的音乐细节、谐波余韵和多角度、多方位、多元化、多层次的音乐声场。试听台湾点将唱片《民歌蔡琴》(片号DJCD-96108)第一首“被遗忘的时光”,开始的几句是无伴奏清唱:“是谁在敲打我窗,是谁在撩动琴弦,那一段被遗忘的时光,渐渐地回升出我的心无坎 ……”好的音箱在表现这段时,歌声虽为清唱,但细节绝不单调,其间3秒、9秒、12秒、17秒句间的换气声,开启口唇的齿音及人声的尾音残响,清晰得仿佛蔡琴就在您的耳畔对您悄悄地呤唱。分辨率高的音箱,甚至能让您听到乐队演出时翻动乐谱、演奏人员的脚步在地上轻轻滑动的细微声响。千万别以为笔者是在神吹,只要CD录得好,重放的设备够档次,一切都是可能的。

好的音箱可以忠实地反映和再现光盘上录制的各种信号源,既可以爆到七彩,也能纤细到空气中的一丝颤抖也无可遁形。所以,挑选音箱前准备一张音乐资讯量大且平日里听得耳熟能详的CD,譬如台湾飞碟唱片录制的朱哲琴的《央金玛》(片号YT-84)就是一张音乐资讯量大得惊人的试机碟。聆听该碟,您可以透过朱哲琴那晶滢剔透的特异吟唱分辨出背景中珠穆朗玛呼啸的雪风,喜玛拉雅人推开柴扉,踏着清晨吱吱作响的新雪开始一天的劳作。甚至可以极清晰地听到不远处几只撒欢的藏北风谷画。分辨率不好的音箱是不可能提供如此丰盛的音乐大餐的。

当然,在试听音箱分辨率时应慎用特别爆棚的讯号源,如人工电子合成的劲爆电影大片、强烈震憾的重金属摇滚乐、打击乐等,这类音乐固然能给人留下极深的感常受,但巨大的响度会掩盖器材许多先天的不足。同时也千万别将音量开到震耳欲聋,因为人耳对声音的响度承受是有严格限制的,一旦声音超过限度,吸觉就会变得迟钝,甚至难以忍受片刻。根本就谈不上判断什么音乐细节方面的事了。

6. 好的音箱能让您听出准确的声像定位

所谓声像定位就是指演奏中的每一样乐器在什么位置上发音。譬如一场大型交响乐会,声像定位好的音箱会让您感觉到如下图所示的乐团陈列:第一小提琴、第二小提琴群一般位于舞台左侧,钢琴、竖琴居左后,舞台右侧一般是大提琴阵,稍后为低音提琴阵。舞台居中分别是中提琴阵、长笛、双簧管、园号、大管、长号、小号、打击乐及定音鼓等。

好的音箱可以极精确地再现层次分明的声场定位,即使你不是发烧友,在行家的指点下同样能听出各种乐器的声音发自您眼前虚拟的舞台的前后左右等不同位置,而绝非仅仅是从两只音箱点声源中发出的各种声音的混合旋律。更好的音箱,在经严格声学处理、大小适中的专业试音室中试听,您甚至可以确切地感受到音乐演奏会上的那种特有的空间立体感和现场感!

当然,就一般消费者而言,不可能有如此好的专业试音室供您试听,只能在音响店随意摆出的恶劣声学环境下选择音箱。不过这也不要紧,事先带上几张知道音乐器摆位的CD,如由捷克电台交响乐团奏、艾德里安.利珀指挥的殷承宗钢琴协奏曲《黄河》:演奏现场录音从舞台面看:钢琴是摆在舞台前排正中偏左、右侧是大提琴、右后为低音提琴、中后为管乐号乐、左后为小提琴群等等。如果您坐在音箱正前方重放该录音,也应该感觉到同现场院非常接近的音场定位效果。即钢琴声绝对位于中间偏左侧。好的音箱应该能听出当钢琴独奏时琴声的高音部偏左而低音部居中,同时会感觉殷承宗的双手在钢琴左边和右边位置来回跳动而产生出的无比美妙的声像移动。差的音箱可能会同时听到音箱两边都有钢琴,或者本该属于右边音箱发生的低音提琴变成中间或左边发声,造成一遍混乱的声场。这种音箱专业的说法叫着相位特性差或相位错乱,肯定是不可取的。

再如试听CD人声碟时,人声从左右音箱发出,但给您的实际感觉却是演唱者站在音箱中间一个其实根本就不存在音箱的位置上唱歌。这种现象就叫着空间声源结像。好的音箱,这样的声源结像几乎人人都可以感觉得到。极品音箱可让您在闭目聆听时感觉这人就在离您不远的正前方演唱,甚至可以让你感觉出人物的高度,演唱的口形大小。这也是所谓的“定位”,听起来似乎有些“玄”,事实上,能听出声源正确“定位”的音箱就是高度保真的音箱,当然称得上是好音箱了。

7. Hi-Fi音条与AV音箱并没有冲突

随着家庭影院的持续升温,不少朋友在选购音箱时常打来电话咨询笔者,说时下市面上出现了许多专门为配置“家庭影院”而设计生产的音箱,有些甚至是世界著名厂商专门为中国的“家庭影院”度身定造的。那么这些专门设计的AV音箱是否采用了什么新技术、新工艺,它们与传统意义上Hi-Fi音乐箱是否不同,两者区别有多大?许多朋友都表明自己选择的音箱应该是既能欣赏音乐,又能看看大片,同时偶尔还要玩玩卡拉OK,一鱼三吃!所以就拿不定主意究竟是选专用AV音箱,还是选Hi-Fi音箱除了极少数个性太突出的外,绝大多数都具有非常良好的声学还原能力,绝对能够很好的胜任“家庭影院”的各种声音效果。即使是诸如猛牌700仔这样的小型书架箱,虽因单元所限低频不足,但加上一只有源低音炮也照样能劲爆到极!唯一不同的是,所谓家庭影院专用箱仅仅是在喇叭上作了一点磁屏蔽处理以防和电视机靠得过近(一般35公分内)而磁化荧屏。再就是有意将分频器低频端提升夸张一些以加强低音效果。喇叭的振盆也尽量选用轻、薄、刚性一些的材料以求速度快些、灵敏度高些。大多数AV音箱本身的素质并不高,且失真往往也比较大。但用于看欧美动作片时往往音量均开得较大,且有许多精彩激烈的镜头吸引了您的注意力而无暇分心去留意音响的表现。这就巧妙地掩盖了许多先天不足与失真,并不符合真正的家庭影院音箱要求。真正的家庭影院用箱要求有较高的分辨率和良好的声场还原,同时也要绝不吵人。这些要求与此同时Hi-Fi音箱如出一辙。真正好的音箱是不可能将家庭影院拒之千里的。但只能用于家庭影院的所谓专用AV箱肯定不是什么好箱。一般而言,每年在拉斯维加斯举办的国际音响大展中,许多上榜的五星级音箱排队行榜上从来就没有“家庭影院”专用箱。事实上,针对中国市场的家庭影院专用箱是因在我国广为流行的VCD需要而派生出来的大众化廉价产品。之所以有今天敢与Hi-Fi音箱论短长的地位,多半是出于厂家商家的炒作和广告的误导。因此在您配搭家庭影院时,笔者提醒您应优先考虑习一对性能优异的Hi-Fi音箱作为主箱。其余中置、环绕,也应严格按上述各条要求试听选择,最好买正规Hi-Fi厂家出产的名牌产品为准。顺便说一句:对既要欣赏大片,又偏爱玩卡拉OK的朋友来说,选一对三分频落地箱既可免去配低音炮的麻烦,也可免去怕烧高音单元之虑,您不妨多加注意。
作者: zgmfx10akira    时间: 2012-4-30 15:57
Hi-Fi基础知识——扬声器  
     
   扬声器是一种把电信号转换成声音信号的电声器件。确切地说,扬声器的工作实际上是把一定范围内的音频电功率信号通过换能方式转变为失真小并具有足够声压级的可听声音。
    扬声器的种类很多,分类方式也五花八门,一般可根据其工作原理、振膜形状以及放声频率范围来分类。
    一、扬声器的构造
   我们最常见的电动式锥形纸盆扬声器。电动式锥形扬声器即过去我们常说成纸盆扬声器,尽管现在振膜仍以纸盆为主,但同时出现了许多高分子材料振膜、金属振膜,用锥形扬声器称呼就名符其实了。锥形纸盆扬声器大体由磁回路系统(永磁体、芯柱、导磁板)、振动系统(纸盆、音圈)和支撑辅助系统(定心支片、盆架、垫边)等三大部份构成。
    1、音圈:音圈是锥形纸盆扬声器的驱动单元,它是用很细的铜导线分两层绕在纸管上,一般绕有几十圈,放置于导磁芯柱与导磁板构成的磁疑隙中。音圈与纸盆固定在一起,当声音电流信号通入音圈后,音圈振动带动着纸盆振动。
    2、纸盆:锥形纸盆扬声器的锥形振膜所用的材料有很多种类,一般有天然纤维和人造纤维两大类。天然纤维常采用棉、木材、羊毛、绢丝等,人造纤维刚采用人造丝、尼龙、玻璃纤维等。由于纸盆是扬声器的声音辐射器件,在相当大的程度上决定着扬声器的放声性能,所以无论哪一种纸盆,要求既要质轻又要刚性良好,不能因环境温度、湿度变化而变形。
    3、折环:折环是为保证纸盆沿扬声器的轴向运动、限制横向运动而设置的,同时起到阻挡纸盆前后空敢流通的作用。折环的材料除常用纸盆的材料外,还利用塑料、天然橡胶等,经过热压粘接在纸盆上。
    4、定心支片:定心支片用于支持音圈和纸盆的结合部位,保证其垂直而不歪斜。定心支片上有许多同心圆环,使音圈在磁隙中自由地上下移动而不作横向移动,保证音圈不与导磁板相碰。定心支片上的防尘罩是为了防止外部灰尘等落磁隙,避免造成灰尘与音圈摩擦,而使扬声器产生异常声音。
    二、场声器的分类
   按工作原理分类:按工作原理的不同,扬声器主要分为电动式扬声器、电磁式扬声器、静电式扬声器和压电式扬声器等。
    1、电动式扬声器:这种扬声器采用通电导体作音圈,当音圈中输入一个音频电流信号时,音圈相当于一个载流导体。如果将它放在固定磁场里,根据载流导体在磁场中会受到力的作用而运动的原理,音圈会受到一个大小与音频电流成正比、方向随音频电流变化而变化的力。这样,音圈就会在磁场作用下产生振动,并带动振膜振动,振膜前后的空气也随之振动,这样就将电信号转换成声波向四周辐射。这种扬声器应用最广泛。
    2、电磁式扬声器:也叫舌簧式扬声器,声源信号电流通过音圈后会把用软铁材料制成的舌簧磁化,磁化了的可振动舌簧与磁体相互吸引或排拆,产生驱动力,使振膜振动而发音。
    3、静电式扬声器:这种扬声器利用的是电容原理,即将导电振膜与固定电极按相反极性配置,形成一个电容。将声源电信号加于此电容的两极,极间因电场强度变化产生吸引力,从而驱动振膜振动发声。


   4、压电式扬声器:利用压电材料受到电场作用发生形变的大原理,将压电动元件置于音频电流信号形成的电场中,使其发生位移,从而产生逆电压效应,最后驱动振膜发声。
   按振膜形状分类:扬声器主要有锥形、平板形、球顶形、带状形、薄片形等。
    1、锥形振膜扬声器:锥形振膜扬声器中应用最广的就是锥形纸盆扬声器,它的振膜成圆锥状,是电动式扬声器中最普通、应用最广的扬声器,尤其是作为低音扬声器应用得最多。
    2、平板扬声器:也是一种电动式扬声器,它的振膜是平面的,以整体振动直接向外辐射声波。它的平面振膜是一块圆形峰巢板,板中间是用铝箔制成的峰巢芯,两面蒙上玻璃纤维。它的频率特性较为平坦,频带宽而且失真小,但额定功率较小。
    3、球顶形扬声器:球顶形扬声器是电动式扬声器的一种,其工作原理与纸盆扬声器相同。球顶形扬声器的显著特点是瞬态响应好、失真小、指向性好,但效率低些,常作为扬声器系统的中、高音单元使用。
    4、号筒扬声器:号筒扬声器的工作原理与电动式纸盆扬声器相同。号筒扬声器的振膜多是球顶形的,也可以是其他形状。这种扬声器和其他扬声器的区别主要在于它的声辐射方式,纸盆扬声器和球顶扬声器等是由振膜直接鼓动周围的空气将声音辐射出去的,是直接辐射,而号筒扬声器是把振膜产生的声音通过号筒辐射到空间的,是间接辐射。号筒扬声器最大的优点是效率高、谐波失真较小,而且方向性强,但其频带较窄,低频响应差。所以多作为扬声器系统中的中、高音单元使用。
    按放声频率分:可分为低音扬声器、中音扬声器、高音扬声器、全频带扬声器等。
    1、低音扬声器:主要播放低频信号的扬声器称为低音扬声器,其低音性能很好。低音扬声器为使低频放音下限尽量向下延伸,因而扬声器的口径做得都比较大,一般有200mm、300-380mm等不同口径规格的低音扬声器,能随大的输入功率。为了提高纸盆振动幅度的容限值,常采用软而宽的支撑边,如像皮边、布边、绝缘边等。一般情况下,低音扬声器的口径越大,重放时的低频音质越好,所承受的输入功率越大。
    2、中音扬声器:主要播放中频信号的扬声器称为中音扬声器。中音扬声器可以实现低音扬声器和高音扬声器重放音乐时的频率衔接。由于中频占整个音域的主导范围,且人耳对中频的感觉较其他频段灵敏,因而中音扬声器的音质要求较高。有纸盆形、球顶形和号筒形等类型。作为中音扬声器,主要性能要求是声压频率特性曲线平担、失真小、指向性好等。
    3、高音扬声器:主要播放高频信号的扬声器称为高音扬声器。高音扬声器为使高频放音的上限频率通达到人耳听觉上限频率20kHz,因而口径较小,振动膜较韧。和低、中音扬声器相比,高音扬声器的性能要求除和中音单元相同外,还要求其重放频段上限要高、输入容量要大。常用的高音扬声器有纸盆形、平板形、球顶形、带状电容形等多种形式。


   4、全频带扬声器:全频带扬声器是指能够同时覆盖低音、中音和高音各频段的扬声器,可以播放整个音频范围内的电信号。其理论频率范围要求是从几十Hz至20kHz,但在实际上由于采用一只扬声器是很困难的,因而大多数都做成双纸盆扬声器或同轴扬声器。双纸盆扬声器是在扬声器的大口径中央加上一个小口径的纸盆,用来重放高频声音信号,从而有利于频率特性响应上限值的提升。同轴式扬声器是采用两个不同口径的低音扬声器与高音扬声器安装在同一个中轴线上。
    三、扬声器的性能指标
   扬声器是扬声器系统(俗称音箱)中的关键部位,扬声器的放声质量主要由扬声器的性能指标决定,进而决定了整套的放音指标。扬声器的性能指标主要有额定功率,额定阻抗、频率特性、谐波失真、灵敏度、指向性等。


   扬声器的性能优劣主要通过下列指标来衡量:
   1、额定功率(W)
   扬声器的额定功率是指扬声器能长时间工作的输出功率,又称为不失真功率,它一般都标在扬声器后端的铭牌上。当扬声器工作于额定功率时,音圈不会产生过热或机械动过载等现象,发出的声音没有显示失真。额定功率是一种平均功率,而实际上扬声器工作在变功率状态,它随输入音频信号强弱而变化,在弱音乐及声音信号中,峰值脉冲信号会超过额定功率很多倍,由于持续时间较短而不会损坏扬声器,但有可能出现失真。因此,为保证在峰值脉冲出现时仍能获得很好的音质,扬声器需留足够的功率余量。一般扬声器能随的最大功率是额定功率的2-4倍。
   2、频率特性(Hz)
   频率特性是衡量扬声器放音频带宽度的指标。高保真放音系统要求扬声器系统应能重放20Hz-2000Hz的人耳可听音域。由于用单只扬声器不易实现该音域,故目前高保真音箱系统采用高、中、低三种扬声器来实现全频带重放覆盖。此外,高保真扬声器的频率特性应尽量趋于平坦,否则会引入重放的频率失真。高保真放音系统要求扬声器在放音频率范围内频率特性不平坦度小于10dB。
   3、额定阻抗(Ω)
   扬声器的额定阻抗是指扬声器在额定状态下,施加在扬声器输入端的电压与流过扬声器的电流的比值。现在,扬声器的额定阻抗一般有2、4、8、16、32欧等几种。
   扬声器额定阻抗是在输入400Hz信号电压情况下测得的,而扬声器音圈的直流电阻R直≈0.9R额。
   4、谐波失真(TMD%)
   扬声器的失真有很多种,常见的有谐波失真(多由扬声器磁场不均匀以及振动系统的畸变而引起,常在低频时产生)、互调失真(因两种不同频率的信号同时加入扬声器,互相调制引起的音质劣化)和瞬态失真(因振动系统的惯性不能紧跟信号的变化而变化,从而引起信号失真)等。谐波失真是指重放时,增加了原信号中没有的谐波成份。扬声器的谐波失真来源于磁体磁场不均匀、振动膜的特性、音圈位移等非线性失真。目前,较好的扬声器的谐波失真指标不大于5%。
   5、灵敏度(dB/W)
   扬声器的灵敏度通常是指输入功率为1W的噪声电压时,在扬声器轴向正面1m处所测得的声压大小。灵敏度是衡量扬声器对音频信号中的细节能否巨细无遗地重放的指标。灵敏度越高,则扬声器对音频信号中所有细节均能作出的响应。作为Hi-Fi扬声器的灵敏度应大于86dB/W。
   6、指向性
   扬声器对不同方向上的辐射,其声压频率特性是不同的,这种特性称为扬声器的指向性。它与扬声器的口径有关,口径大时指向性尖,口径小时指向性宽。指向性还与频率有关,一般而言,对250Hz以下的低频信号,没有明显的指向性。对1.5kHz以下的高频信号则有明显的指向性。
作者: zgmfx10akira    时间: 2012-4-30 15:57
Hi-Fi基础知识——音箱

   一、音箱的分类
   按音箱结构可以分为封闭式音箱、倒相式音箱、空纸盆音箱、迷宫式音箱、号筒式音箱等种类。
   1、封闭式音箱:封闭式音箱在所有的音箱中是最简单的扬声器系统,它的外形结构除前面留有安装扬声器的开口外,箱体全部进行密封,而且在箱内填充有多孔纤维吸音材料。当有音频电流通过扬声器时,扬声器振膜产生振动,推动扬声器纸盆前面的声波向四周辐射,而纸盆后面的声波则被吸音材料所吸收,这就将扬声器的前向辐射声波和后向辐射声波完全隔离开来,从而有效避免了声短路现象。又由于密闭式箱体的存在,增加了扬声器运动质量产生共振的刚性,使扬声器的最纸共振频率上升,提高了低频响应。这种音箱的声音有些深沉,但低音分析力好。由于封闭式的箱体一般较小,容积有限,箱内空气对扬声器形成一个附加的弹性作用,纸盆后面的气垫会对纸盆施加反驱动力,这种作用会使扬声器的固有谐振频率提高,而使低频响应变差,所以现在常采用谐振频率低的像皮边扬声器制作音箱。封闭式音箱的灵敏度较低,但可使用输出功率大的放大器,而且其结构相对较为简单,容易设计,方便放置,所以广泛地应用于家庭及小型娱乐场所。
   2、倒相式音箱:也叫低音反射音箱,这种音箱在箱体前面开一个或几个出声孔,音箱外形结构开孔位置和形状多种多样,有的只开一个孔,有的开几个孔。大多数孔内还装有声导管,声导管的形状也有多种多样。它的工作原理是:扬声器向后辐射的声波与箱内空气发生共振,然后通过声导管将声波相位倒转180度,由声导管开口处辐射出去。由于从扬声器纸盆后面辐射出的声波在相位上同扬声器前向辐射的声波正好倒相,所以称这种音箱为倒相式音箱。由于从声导管开口辐射出的声音与扬声器前向辐射的声音在到达音箱前方时是同相叠加的,所以它能提供比封闭式音箱更宽的频带,低音扬声器单元的辐射效率也由此大大提高。为使重放频带内声导管开口辐射出的声音与扬声器前向辐射出的声音正好同相,就必须很好地选择所用扬声器的参数值,精心地设计音箱。在理想情况下,重放频率要从扬声器最低共振频率的80%开始,均匀平坦地展开,以获得宽广的频率范围。
   倒相式音箱用较小的箱体就能重放出丰富的低音,失真比较小,性能也比较稳定,是目前应用最广泛的一个种类型,但它的设计及制作较为复杂。近年来为展宽低音重放频段,将吸声材料填充在声导管内,作成半封闭箱以控制倒相作用,使之缓冲一些,用降低共振频率来达到展宽低音重放频段的目的。结果使倒相音箱变成了半封闭状态,这种音箱叫阻尼型倒相音箱。
   3、空纸盆音箱:又叫被动式低音辐射音箱或无源辐射器,是在倒相式音箱的基础上发展起来的一种新型扬声器系统。它是用空纸盆代替倒相式音箱中的声导管,由普通的扬声器、一个空纸盆装置装在封闭式箱体内构成的,空纸盆装置是普通扬声器去掉音圈和磁路系统只用其纸盆和支撑系统构成。目前,常将空纸盆装置设在音箱面板的下部,这样,不仅中、低音频段的声压不易受到地板的影响,扬声器的高度也恰到好处,使音像定位在恰当的高度。另外,空纸盆工作在超低音频段时,可以利用地板的反射作用来提高辐射效率,从而进一步增强低音效果。
   空纸盆音箱是利用了箱内空气和振动系统(主要是纸盆)的质量形成的共振,由扬声器的振动再通过空气去激励空纸盆,便之作相应的振动。从这点看,它类似用声导管内空气质量和音箱内空气所形成的共振原理,和倒相扬声器系统十分相似。它们的基本工作过程也是相同的,都是扬声器后向辐射声经过一定装置倒相后,与前向辐射声处于同相。但是,在超低音频段,空纸盆音箱的振幅比倒相音箱的振幅更低些,更接近于封闭音箱,即空纸盆音箱在整个频带范围内可以有效地抑制扬声器振动幅度的增长,抑制了倒相音箱中反射出声孔的不稳定的声音。空纸盆音箱还具有重放频带灵敏度比较高、具有安装方便等特点。
   4、迷宫式音箱:这是倒相式音箱的一种变形,其结构在扬声器背后设置有吸声性壁板做成的声导管,这种导管的长度正好等于需提升的低频声波长的一半,这样,导管开口的辐射声正好与的扬声器前向辐射声同相叠加,从而使总辐射声压得到了加强。但是,当导管长度等于四分之一波长时,情况正好相反,会产生逆共振现象。因此,在设计时要设法将这个低频下限值选为扬声器的最低共振频率。理论上讲,声迷宫音箱会衰减来自锥盆后面的声波,阻止反射到开口端而影响低音扬声器的辐射。而实际上,它具有轻度阻尼和调谐作用,增加了扬声器在共振频率附近或以下的声输出,并在增强低音输出的同时能迅速减小振幅量。
   5、号筒(角)式音箱:有前向号筒(角)、背向号筒(角)式、组合号筒(角)式等类型。它的箱体背面全密封,箱体内的空气压力都加至扬声器锥盆背面,为保持锥盆前后压力平衡,号筒(角)装置一般都放在扬声器前面。前向号筒(角)式音箱的低音重放效果相当于一种超大型音响重放系统,背向号筒(角)式又叫反射号筒(角)音箱,在结构上可以直接看到所用的扬声器,它的号筒(角)大部分向后折叠。组合号筒(角)式就是将前向号筒(角)音箱和折叠号筒(角)音箱组合起来构成的音箱形式。号筒(角)式音箱的号筒(角)一般采用木质材料,号筒(角)口的大小取决于所要求辐射的截止频率。截正点频率要求低的话,号筒(角)的口径就要大。号筒(角)式间箱的作用原理与倒相式音箱相类似,但低频响应不如封闭式音箱和倒相式音箱好,但它的声音传输效率最高,多用在厅常、剧场主扩音系统和效果扩音系统上。
除此之外,还有对称驱动式音箱、克尔顿音箱、声矩阵式音箱、多导管式音箱等。
   二、音箱(扬声器系统)的性能指标
   1、声压频率特性:一个性能优越的扬声器系统,它的重放频带范围,理想情况下应该在人耳能听到的16-20kHz频率范围。结合较大声压级的超低音重放、尽量减少失真的要求,一般都把重放频率范围设定为30-20kHz,而且希望系统在各个听音点的响应特性尽量均匀。通俗地讲就是,在整个听音环境里,每个地方听到的声音大小都是一样的。
   2、指向性和指向频率特性:在扬声器系统正面轴向水平30度和60度方向上测得的频率特性叫做该系统的指向频率特性,指向性指的是扬声器系统输出的声压级随声音辐射方向变化的特性。它受分频点频率、音箱结构形式、扬声器配置方法和分频网络元件值等因素的影响。所用的扬声器种类不同时,低音、中音和高音辐射到空间的指向性、声平衡性等特性都不相同。
   3、最大输出声压级:扬声器系统的输出声压级与扬声器一样,是指在输入1W噪声电压信号的条件下,将标准测量传声器放在扬声器正面1m处测得的声压级的算术平均值。使用扬声器系统时,在某个距离上系统的声压量是否满足要求,都是用最大输出声压级这个参数来衡量的。
   4、阻抗特性:扬声器系统的电气阻抗特性由所用扬声器单元的种类、性能以及分频网络元件等许多因素决定。针对不同的频率点,阻抗会不相同,一般用阻抗频率特性曲线来表示系统的阻抗特性。扬声器系统结构形式不同,阻抗特性也有明显变化。
   5、谐波失真特性:扬声器系统的谐波失真特性与单个扬声器单元的谐波失真特性不同,它是由各个低音、高音等单元的失真特性综合而成的,而且还和音箱箱体、分频元件等有直接关系。这就要求在设计、使用扬声器系统时,应该根据实际情况,在重放频带内尽量使失真减小到最低值。否则,扬声器系统的失真特性会不理想。
   6、耐输入能力:加到扬声器系统上的输入信号是通过分频器将低音、高音分开后,分别供给各个扬声器单元的,所以加在每个单元上的输入信号的大小是不同的。从系统整体性能考虑,主要是要限制集中于高频段的连续信号,防止高音扬声器单元过载损坏;低音、中音扬声器单元应该考虑能输入功率比较大的信号。
   三、音箱分频网络
   由于单只扬声器重放声音的频率范围有限,故高保真音箱通常采用多只不同频率的扬声器单元组合放声。要使不同频带的扬声器单元组合放声。要使不同频带的扬声器单元工作在各自的最佳频率范围,则需要性能优良、设计合理的分频网络。分频网络又称分频器,其分频方式有两种类型:一类是电子分频器,另一类是功率分频器。
   电子分频又称有源分频,分频器设置在功放之前。它设计制作调试都较简单,能获得较好的分频效果。但分频后的信号,各需独立的功率放大器,故整体电路复杂,成本高。
   输入信号经过前置放大器后,其输出信号送入电子分频器,从分频器输出的低频、中频和高频三个频段的信号分别经各自的放大器放大,去推动三个扬声器。这种电路由于结构复杂,成本较高,调试较困难,家用音响中较少使用,它只用在少数高档放音系统中。
   功率分频又称无源分频,它设置在功放输出端,便于与音箱装在一起,使用方便。缺点是分频器中的元件要随很大功率和电流,而且,由于扬声器本身阻抗随频率的变化会直接影响其分频特性,因而调试较难分频点有较大误差。
   功率分频器通常采用R、L、C 组成的无源网络,按分频段数分有二分频、三分频、四分频等。按衰减率分有-6dB/oct、-120dB/oct、-18dB/oct等。按连接方式分有串联式、并联式等。分频频率的选取,对于二分频器,一般分频占取在800-2000Hz之间,三分频器的第一分频点一般在250-1000Hz之间,第二分频点取在5000Hz附近。
   功率分频电路采用一个功率放大器,对其输出信号进行分频。这种电路结构简单,成本低廉不易出故障在家用音响系统中有着广泛的应用。功率分频电路有两大类型:一类是二分频电路,另一类是三分频电路。
   功率分频器除具有分频作用外,还具有平衡各频段功率分配的作用,即根据各频段扬声器单元需要的功率恰当分配,以免出现如低音不足而中、高音过强,甚至损坏中、高音扬声器单元的情况。如果分频网络不能完全满足功率分配的要求,一般可加接衰减器使之平衡。
作者: zgmfx10akira    时间: 2012-4-30 15:57
电子管功放的调整!

  电子管功放(胆机)的线路比晶体管机简单,容易制作成功,并且有较好的音乐重播效果,特别是在感情表达方面更是专长,所以胆机复起以后很受发烧友的青睐。胆机最重要的特点就是胆味,阁下所焊的胆机是否也具有温暖、醇厚、顺滑、甜美的胆味呢?如果没有,声底和晶体管机差不多,或比晶体管机还硬、还干涩,或自制的胆前级、缓冲器接入放音系统中,放音系统音色的改变并不像媒体所说的那样“立杆见影”时,就应该测量一下各管的工作点,是否工作在最佳状态上,否则就要进行认真、仔细地调整。只有各电子管工作在最佳工作状态,才能发挥线路和每只胆管的魅力,达到满意的放音效果。

  工作点未调好的胆机,除了音色表现不佳以外,还有音量轻和失真的现象出现。一台放大器音质的好坏,影响的因素虽然很多,但最终还是决定于制作的水平。发烧友在制作器材时,一般是根据手中积攒的胆管和元件,再选择优秀的线路或按照名机的线路按图索骥,进行焊接,元件的规格、数值虽然与线路图上的要求相差不大,但由于元件的排位,走线的长短、焊接的质量,或其它方面的差异,如B+电压的高低等原因,都会影响到放音的表现,所以焊出的胆机,不一定是胆味浓浓的。没有胆味不要紧,只要通过适当、合理地调整、校验,使放大器各级胆管工作在最佳状态,便能达到放音的要求。

  胆机调整工作的内容,除了将噪声降低至可以接受的程度和更换输入、输出耦合电容的牌号或容量,以改变音色以外,最重要的是调整屏压、屏流和栅负压,使胆管工作在合适的工作点上,使放音系统放出好声,而这一点正是一些文章中谈得较少或用很简单的二句描述带过去了,要不就是“不需任何调整”就可以工作。如果胆管没有进入工作状态,再换名牌电容,胆味也不会出来。

  调整胆机时,要根据电子管手册上提供的数据,作为电路的依据,无电子管手册时,要尊重线路图中所给的参数数值或附加的胆管资料进行。三极管的工作点由屏压和栅负压决定,屏压确定后可调整栅负压来调工作点,束射管或五极管的屏压升高到一定程度后,帘栅压的变压会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。

  降低胆机噪音和更换耦合电容调整音色的方法,一些文章已有介绍,本文不再重复,这里就调整胆管工作点的方法谈一谈体会。

一、 栅负压电路
 调整胆管的工作点时,经常会涉及到栅负压,因此首先将栅负压电路说一下。电子管是电压控制元件,三大主要电极(灯丝、栅极和屏极)是要供给适当电压的,供给灯丝的称甲电,供给栅极的称丙电,供给屏极的称乙电。栅极电压一般是接的负压,习惯上称“栅负压”或“栅偏压”。为了使胆管工作稳定,栅负压必须用直流电来供给。按胆管的工作类别不同,栅负压的供给有二种方法:一种是利用电子管屏流(或屏流+帘栅流)流经阴极电阻所产生的电压降,使栅极获得负压,则称自给式栅负压,一般用在屏流较稳定的甲类放大电路上。另一种是在电源部分设一套负压整流电路,供给栅负压,称作固定栅负压,主要用于屏极电流变化大的甲乙2类或乙类功率放大级。使用自给式栅负压,胆管比较安全,采用固定式栅负压时,当负压整流电路发生故障,胆管失去栅负压后,屏流会上升过高而烧坏胆管,因此没有自给式栅负压工作可*。
 自给式栅负压产生的过程如下:图1表示电路中电流的流经过程,当电子管工作时,屏极和帘栅极吸收电子,电流从电源高压的负极经阴极电阻RK、屏极、输出变压器初级线圈和帘栅极的电流一起到高压的正极,成为一个负荷回路,当电流流过RK时,RK就产生一个电压降,RK两端的电压,在地线的一端为负极,在阴极的一端为正极。这样,阴极和地线间就有了RK所产生的电位差,栅极电阻R1将栅极和地线连接,所以栅极和阴极间也就有了RK所产生的电位差。由于不同的电子管所需要的栅负压不同,阴极电阻的阻值也不同,如6V6的阴极电阻300Ω,而6L6的阴极电阻170Ω。阴极电阻的阻值可用欧姆定律求得:阴极电阻=栅负压/放大管电流(屏极电流+帘栅极电流)。当栅极输入信号时,屏流立即被控制而波动,阴极电阻上的电流也就是波动的,所产生的电位差也是波动的,阴极电阻上电压波动的相位恰巧和输入的信号相反,因而减弱了输入信号,这种情况通常称本级电流负反馈,这种作用减低了本级放大增益。引起阴极上电压波动成份是音频交流成份,所以一般在阴极电阻上并联一只大容量的电解电容,将交流成分旁路,阴极电阻的直流电压就比较稳定了。
 还有一种产生栅负压的方式,称接触式栅负压,产生的过程见图2,这种栅负压是电子管自己产生的,当电子从阴极奔向屏极时,经过栅极,如果栅极上没有任何负压时,电子经过栅极就没受到拒斥,则在奔向屏极的路上就不时碰到栅极上,碰到栅极上的电子就由栅极电阻R回到阴极,电子流动方向是从栅极到阴极,所以电子流过R时产生电压降,栅极是负端,阴极是正端,因为碰触到栅极的电子很少,造成的电流还不到1μA,虽然R的阻值很大,以10MΩ计算,但所产生的电压不过1V左右。这种栅负压供给的方式见得较少,只能用在输入端小信号放大电路,输入信号小于1V的放大级,如拾音器输出只有几mV,用此栅负压电路很合适。
二、 电压放大级的调整
 电压放大级担负全机的主要放大任务,不能有失真,所以要求工作在甲类状态。甲类状态时,它的工作点在栅压-屏流特性曲线的线性段的中间,此时,栅负压是放大管最大栅负压的一半,工作电流应在放大管最大屏流的30%~60%之间为宜,不应过小。
 调整方法很简单,只要调整阴极电阻的阻值即可,首先将电流表(最大量程稍大于该管最大屏极电流,如6SN7屏流为8mA,可用10mA的电流表)串在阴极回路中,如图3a V1的阴极回路中所示,电流表正极接阴极电阻,负极接底盘,若阴极电阻无旁路电容,为了避免电流表和接线对该级工作状态不发生影响,最好在电流表两端并联一只100μ/50V的电解电容,图中的虚线CA。若阴极电阻RK有旁路电容,电流表的接法见图3b,也可以将电流表串入屏极电路中。然后改变RK的阻值或V1的屏压,使V1的工作点达到最佳状态。也可以用测量阴极电阻RK两端电压的方法,再用欧姆定律(A=V/R)算出电流。
 不同的放大管所需要的工作电流不一样,如6SN7可调到3~4mA,胆管屏流增大,声音温暖、丰厚,但噪声也会增大,噪声是电压放大级的重要指标,噪音不能大,所以在调整时一定要噪声和音色兼顾。具体到某一台胆机上,屏极电流调到多少为宜,也可以通过边调边听音来找到一个音色最佳的工作点。
 当屏极负载电阻R2的阻值用得比较高时,失真小,但这时必须整流输出有较高的电压才行,有条件者,可以将RK和R2用不同的阻值组成几组试听,找出噪音小,声音醇厚、丰满而通透度又好的一组组合换上。
 栅负压应大于输入信号电压的摆动幅度,如用6SN7作电压放大,输入信号来自CD机,CD机输出电压为0~2V,则6SN7的栅负压应调到-3V以上。如12AX7、6N3管的栅负压设计为-2V,若输入信号电压较高,可以在输入端设置信号衰减分压电阻,见图4,使输入信号电压适当降低,保持不失真放大。
 12AX7是音乐化的胆管,一般都喜欢用它制作前级放大器,使整个系统的音乐感更好,在调整工作点时要注意,因为12AX7的屏流很低,最大才1 2mA。
三、 倒相级的调整
 调整倒相级的目的是要输出端的上、下二个输出信号对称相等,以减小失真。
 屏-阴分负载式倒相电路,此电路是公认的好声电路,国内外有相当多的名机采用此种电路,电路中V的屏极与阴极输出电压相位相反,而且流过R2、RK的音频电流相等,所以只要R2和RK相等,则屏极和阴极的输出电压大小相等,因而得到相位相反、振幅相等的输出信号,因此一般线路图中都要求此两只电阻要数值相同并配对使用,但实际上由于输出阻抗并不相同,使负载上的输出电压也不是相等的,所以用同一阻值的负载不一定是最佳状态,因此要采用略有差别的阻值,无仪器测量时,可以通过试听是否有明显的失真来判断。本刊1997年举办胆机制作大奖赛时,采用的电路中RK的阻值取43k,稍大于R2(36k),可以得到对称的输出,减小失真。
 阴极耦合倒相电路,又称长尾式倒相电路,这个电路的频率特性非常平坦,也是很多名机采用的倒相电路,一般要求两个屏极负载电阻(R1、R2)也要相同,如果测得上、下两个输出电压振幅差较大,或放大器有失真,经调整各管的工作点,失真未能彻底消除时,可试将RK的阻值加大5%~10%左右,可能失真就会小些。
四、 功率放大级的调整
 甲类功率放大级,功放管的工作点是在栅压与屏流特性曲线的直线部分,栅极的输入信号的摆动不超过负压范围值,超过时将发生失真。甲类功率放大的特点是工作电流在强信号或弱信号输入时,保持不变,工作稳定而失真低,利用这一特性可检验功放级的工作点是否合适。检验时,将电流表串在功放管的屏极回路中,见图3a,当栅极有信号输入时,如果功放管的屏流升高,则说明栅极负压过低,若屏流降低,则表明栅负压过高,必须调整到屏流变化最小为止。屏流的大小要适当,屏流大时,音质听感好,失真小些,屏流小时,对胆管的寿命有利,可根据需要来调整。
 调整时要注意,不要超过功放管的最大屏耗,甲类工作状态时,功放管的屏压×屏流等于它的静态屏耗,超过后屏极会发红,时间一长就会烧坏功放管,一般要求胆管用到极限值的参数不得多于一个,更不能超过极限参数,屏流一般调到最大屏流的70%~80%为宜。
 调整方法是调整阴极电阻R5的阻值,R5的阻值是根据放大管的栅负压、屏流和帘栅极电流的总和而定的,图3a中6V6的屏流可调到30mA左右(最大屏流为45mA),阴极电压10V,屏压280~300V。当屏压较高时(300V以上),帘栅压的变化对屏流的影响较大,可适当的调整帘栅压和栅负压选取工作点,有条件者可以将帘栅压采用稳压电路,使功放管工作更稳定。
 推挽放大级的调整是使两只推挽功放管要平衡,两只功放管的栅负压和屏流要相等,以图7为例,栅负压不相等时,调整栅负压电位器RP,屏流不一样时,将屏流大的功放管阴极电阻加大或再串上一只电阻,如图7中的RK,如果屏极电流相差较大,说明功放管不配对,应换一只功放管。有的线路图上,功放管阴极接一只10Ω电阻,它是为了检查功放管的工作状态的,调整时只要测量此电阻的电压降,就可以知道屏流的增减。
 调整屏流时,还应该注意B+电压的变化,如果屏流较大时,B+电压降低很多,则说明电源部分的裕量不够或电源内阻较大,滤波电阻阻值大,扼流圈的线径细或电感量大,可减小滤波电阻阻值或将去功放管屏极的B+接线,改接到滤波电路的输入端,这时虽然B+的纹波较大,但对整机的交流声影响不大,仍可以在能够接受的水平。
五、 负反馈的调整
 线路有了负反馈后,会减少谐波失真,但会影响到瞬态表现变差,因此负反馈量不宜过大,一般有6dB左右为宜,调整方法是改变负反馈电阻的数值,如图3a中R6,图7中的Ra,反馈量的大小根据放音效果如音场、定位、人声的甜美、音乐感等来决定,以耳听满意为准。如果负反馈电路刚一接通,放大器便发生叫声,这是反馈的极性接反了,只要将负反馈的连接线改接在输出变压器的另一端上,此端改为接地即可。有的负反馈回路并联一只小电容,这只电容如果数值选择不当,可能会引起失真或自激,因此,发现此现象时干脆去掉它。
 经过上述方法的调整,各电子管已经进入最佳的工作状态,再放熟悉的唱片,放音效果一定会不同,胆味会增加不少
作者: zgmfx10akira    时间: 2012-4-30 15:57
胆机故障六大种类
一、输出功率变小,声音变得软弱无力

1 功率管老化。可以测量功率管的屏流。用100mA的直流电表,负表笔接屏极,正表笔接输出变压器,开启高压就能从电表中读出屏流数。在偏压正常情况下,如测得屏流小于正常值,就可以说明功率管衰老。如测得的屏流大于正常值,则可能有几种情况:A、功率管屏压过高,特别是帘栅极压过高;B、功率管本身质量有问题,本身屏耗大,输出功率势必减少。如果测不到屏流,说明功率管已经损坏。

2 栅偏压不正常。在自给栅偏压的功放电路中,常见栅偏压的故障有:A、无偏压,造成这种情况的原因有功率管失效无屏流、阴极电阻两端无电压降,阴极旁路电容器被击穿等几种。B、偏压小,原因为功率管衰老或屏压低。C、偏压高,原因有屏压增高、特别是帘栅压增高使屏流增大、阴极电阻阻值增大、栅极交连电容器漏电或击穿使栅极上加有正电压等几种。此外,阴极电阻开路也会使偏压增大,此时屏流很小,线路存在寄生振荡。

3 输出变压器局部短路。将造成屏流增大,而使屏极发红、输出减少且失真增大。如果是初级局部短路,那么在空载时输出电压不会减少,在接上负载或负载很轻的情况下,只要栅极激励电压达到额定值时,则功率管全部屏极发红,这是个典型现象。检查输出变压器初级是否局部短路时,可将输出变压器初次级接线与电路全部断开,从初级端上送进220V市电,用万用电表交流挡测量两个初级端与B+中心头的电压,正常时,两线端电压相等。有局部短路时,则一线端电压低于另一线端电压。如果一接上220V市电就立刻烧毁保险丝,则说明局部短路很严重,必须更换输出变压器。

 检查输出变压器次级有无短路故障前,首先要检查次级上并联的高频抑制电路和负反馈电路元件有无变质、失效和击穿等情况,然后再检查次级线与铁芯之间有无击穿短路。

4 推动级激励电压(或功率)不足。功率管栅极激励电压(或功率)不够,无**率管工作状态怎样正常,仍不能有额定的功率输出。

5 多管并联推挽工作,其中一只或数只管的屏极抑制电阻或栅极抑制电阻开路,此时不仅失真大,而且输出功率小。

6 自给栅偏压的阴极旁路电容器失效形成开路,产生电流负反馈,对某些胆机来说,可能影响输出功率。

二、功率放大级高压加不上

 高压加不上有两种情况:一是通电时,保险丝立即烧断,二是胆机在工作过程中突然发生烧断保险丝而切断高压电源。将放大器的输出变压器中心头高压B+与高压电源连线断开,然后开启高压,如果此时仍然烧断保险丝或不能启动高压,则故障不在功率放大电路,而在电源电路;若断开高压B+连线后,能启动高压,那么可以肯定故障在功率放大级。

功率放大级的高压电源加不上应从以下几方面着手检查:

1 观察或测试功率管内部是否各电极相连。

2 检测输出变压器是否击穿短路。常见是初级或次级线圈间被击穿短路。

3 负载过重或负载短路。负载过重或短路能致使屏流增大而过载,烧断保险丝或加不上高压。

三、寄生振荡

 放大器出现如“嘶啦嘶啦”的高频振荡和“扑、扑”的低频振荡等寄生振荡声时,轻则屏耗增大,屏极发红,输出减少,重则不能工作。产生寄生振荡的原因有以下几种:

1 负反馈电阻等元件变质或损坏。

2 输出变压器次级并联的旁路电容器开路或击穿引起高频振荡。

3 多管并联推挽工作的屏、栅极电阻损坏或变质也容易引起振荡。置换栅极电阻,千万不可用线绕电阻,因为它的电感将引起振荡。

4 功率管尤其是高互导式功率管及抑制振荡电路中的元件使用日久后参数变化,也容易产生振荡。

5 电源电压过高。因供电电压过高,破坏了功率管正常工作状态也能引起振荡。

四、功率管屏极发红

  放大器在正常工作时,如果在较明亮的环境中看到屏极发红,就是不正常的现象。引起屏极发红的原因可能是:

1 负载过重引起屏流过大。这种现象比较常见,主要是由于扬声器阻抗配接不当,或外线有短路、或输出变压器初级线圈局部短路。

2 负栅偏压减少,或无负栅偏压,或出现正栅偏压。负栅偏压减少的原因可能是:负偏压电源滤波电容器失效或容量减少;分压负载电位器中心滑片调得过低;整流管衰老;偏压电源变压器次级局部短路;自给栅偏压的阴极旁路电容器漏电严重;输入变压器的初级和次级(或耦合电容器)轻微漏电等问题。无负栅偏压的原因可能是:输入变压器中心抽头断路;偏压电源滤波电容器短路;偏压负载电阻损坏。整流管或偏压电源变压器损坏;自给负栅偏压阴极旁路电容击穿;栅极电阻或输入变压器次级断路;管座损坏,使栅极管脚与管座脱离。

3 后级功率管的屏压或帘栅压升高,使屏流增加,屏极发红。屏压升高的原因可能是:A、高压电源变压器初级线圈局部短路,使次级高压线圈的交流电压升高;整流后输出直流电压增加;B、泄放电阻断路,输出电压升高。C、滤波扼流线圈局部短路,电感量减少,降压减少,输出电压升高。帘栅电压升高(指采用束射四极管和五极管做功率放大级的机器),吸收电子的能力增强,使屏流增加,屏极发红。其中的几种原因可能是:A、高压电源变压器初级局部短路,使次级高压升高,整流输出直流电压增加。B、次级高压电位器调整不当。C、次级高压滤波扼流圈匝间局部短路,使输出电压升高。D、泄放电阻断路,输出电压升高。

4 超音频或高频寄生振荡,致使屏极发红。这两种寄生振动荡是由于后级的总寄生电容的正反馈引起的。有效的判断方法是,当屏极发红时,将负载阻抗换成放大器输出功率1/20左右的电阻,阻值等于输出阻抗。开机不送入讯号,几分钟后,手摸电阻如果感到发热,那么就存在高频寄生振荡了。

5 推挽管衰老,破坏推挽平衡,引起屏极发红。在推挽功放中,尤其是在并联推挽(如150W的扩音机中一般用KT-88管每两只并联)中,其中一边的管子衰老,内阻增加屏流减少,没有衰老的管子负担过重,屏流增加,屏极发红。

6 输出变压器的初级线圈的一边局部短路,破坏了推挽平衡,使该边的屏流增加,屏极发红。

7 输入讯号过大,使输出电流和电压超过额定值,引起屏极发红。

8 有些放大器本身设计不当。因屏压、帘栅压、灯丝电压过高,或负栅偏压太小,静态屏流过大,甚至静态时,也会使屏极发红。

五、失真

  所谓失真,是指经放大器的输出与输入波形相差过大,放大器放大出来的声音与原来输入的声音不一样。主要几种原因分析如下:

1 推挽功率管或推动级推挽管有一只衰老(或损坏),使两管的增益不一样,或者输出变压器初级(或输入变压器的次级)一边局部短路或开路;屏极和栅极的防振电阻变值,也会破坏推挽平衡,引起失真。

2 有的放大器推挽与前级是用阻容耦合的,当一边的耦合电容器变值(容量变小、失效、漏电等)时产生失真。如果该电容漏电,还会使下一级电子管的负栅偏压变小,甚至变成正电压,产生栅流,引起失真。

3 固定负栅偏压过高或过低,使电子管的工作点发生变化,或输入讯号过大等,都能使电子管工作于非线性部分,引起失真。

4 小功率放大器功率管一般都工作于AB1类(或A类)推挽放大,如果输入讯号电压峰值大于负栅偏压时,功率管将出现栅流,由于这类工作状态的栅路内阻较大,因此容易引起失真。

5 在**率以上的放大器中,功率管一般都工作于AB2类(或B类)推挽放大,如果推动级的输出功率不足或由于推动管衰老使内阻太大时,会引起失真。推动级要用内阻小的电子管,并用降压变压器进行倒相,才能获得稳定的输出电压。

6 屏极负载电阻、阴极电阻或帘栅极电阻变值,使电子管的工作点变化,工作于非线性区,引起失真。栅极电阻断路,引起阻塞失真。同时负载阻抗太轻或太重,使电子管的输出阻抗不匹配引起失真或音轻等。

7 电源电压不稳定或过高过低,都会改变各级电子管的工作点,引起失真。

六、交流声

  一般来讲,由于后级电压放大倍数不大,因此,由功率放大级故障引起的交流声不十分明显,但有几种故障却能出现明显交流声。

1 功率管内部栅阴两极短路或漏电,阴极与灯丝连极短路,灯丝电源变压器接地不良。

2 固定偏压滤波不良。

3 推动变压器初次级间漏电,或栅极交连电容器漏电使栅极带正电等。

4 整机接地不良。特别是搭棚焊接和灯丝用交流电供电的胆机对接地要求很高,在调试过程中要不断试用各个接地点以获得最佳信噪比,另外接地点的电阻越小越好。
作者: zgmfx10akira    时间: 2012-4-30 15:58
音箱的寿命与保养

    一、音箱的寿命到底有多长,这是很多人都关心的问题,正常使用应该说15年绝对没问题,保养好的话时间甚至更长,如劲浪907Be,只要保养的好,保你用上20年绝不会有问题的。在我自制的音箱中使用超过15年的有N对,而且仍在正常使用。但为什么有的音箱用到几年就损坏了呢?这与使用和保养有很大的关系。下面我就涉及音箱等有关问题简述一下:

    音箱主要有喇叭单元、分频器、箱体、倒相孔、接线柱、线材等组成,从保养的角度去看,前三项为主要,后三项为次要。
    1、喇叭单元。喇叭单元的主要构造由扼环、音盆、定芯支片、磁路(包括磁体、T铁、音圈),盆架等组成,而影响音箱寿命除音圈被非正常使用烧毁外,主要就是扼环和音盆了。扼环:扼环材料寿命顺序为布边、胶塑复合边、硅橡胶边、泡沫边……。较易损坏的是泡沫边(如JBL有一种LX系列音箱),由于采用了泡沫边的喇叭单元,在正常使用3-5年里就折裂几乎报废,我帮朋友修过N只这样的喇叭,无一例外都很泡沫折环损坏。当然泡沫边的材料成份和制作工艺的不同,其寿命也会不尽相同。其次就要数硅橡胶边了,原来国产“飞乐”低音喜欢用此扼环,它的缺点主要是如果工艺不当,时间长了,容易老化而产生惰性变形和龟纹,而影响使用。当今扬声器制造厂还是广泛采用硅橡胶扼环和胶塑扼环为多数。
    而使喇叭单体的寿命大大延长的扼环,是布边扼环 ,它大部分用在专业扬声器上,但也有用在民用产品上,如南京生产的12寸低音扬声器YD315-8b采用的就是布边扼环。
    2、音盆。音盆在喇叭单元使用中,采取了多种材料形式:其防弹布、纤维编织盆、PP盆、云母聚丙烯盆、铝镁合金盆之类的问题倒不大,主要是纸基或纸基复合盆,由于蛋白纤维的存在,在南方潮湿地区几乎不可避免的被霉菌侵蚀,即我们常见的霉点与白斑而令人头疼。这种音盆的所表现出的音色柔美、淳厚而倍受扬声器厂的青睐。如美国的“JBL”,丹麦的“威发”,挪威的“西雅士”均生产出大量的纸基或纸基复合音盆的喇叭单元,那么怎样保养的问题,尤其是对高挡喇叭的保养倍受发烧友们关注。
    3、盆架:盆架目前广泛彩的有二种材料,即薄铁皮冲压盆架和铝盆架,当然还有其他材料的,如尼龙塑料盆架(奥普802和西雅H545)都是采用此种盆架的。进口和国产高档喇叭单元大部分采用的是铝盆架,它强度高和抗震性能优越,比普通冲压铁制盆架要好得多。不过小口径的单元倒也无所谓了。还有定心支架(即黄板)都是经过特殊工艺生产的布麻制品,只要不脱胶,也没啥好说的了。
    4、磁体:磁体几乎无须保养,不过时候长了会有一点失磁现象,但对整体表现影响并不大,顶多是灵敏度有点下降,仅仅是微乎其微而已,防磁喇叭要比普通不防磁的情况要好得多。

    二、如何保养音箱及喇叭单元,我把多年来保养的经验告诉大家:

    1、箱体最好选原木制造的,外饰用高耐磨、高强度油漆制品较好,但比较少见;大部分是用高密度机制板外饰木纹纸或木皮(外表如果没有油漆的,建议重新油漆N遍)。摆放位置应该在干燥的房间里,尽可能地避免阳光的直接照射,千万不要放在潮湿的地方,防止高密度机制板遇潮而澎胀,那就麻烦了。而且音箱也不要长期搁置不用,每月至少要用1-3次,每次用一小时以上,否则会带来很多的麻烦,如材料的静态疲劳,分频器中无极性电解电容漏电等,轻则影响正常工作,重则影响它的寿命。
    2、喇叭单元的保养,(无论是箱体里的或是新购的喇叭单元。)
   (1)将成品箱中喇叭单元细心拆下,一定要小心,并在箱体和喇叭上用油性笔做好位置记号,以便保养好后复位安装。
   (2)准备一盒进口车腊(进口品牌轿车上用的)均匀地抹在磁钢上下二层T铁上,一般此T铁均为铁制镀锌品,如果盆架是铁盆架也须这样处理,让腊就附在上面,不要把它擦掉,可防止N年不被锈蚀。
   (3)喇叭单元从音卷引至接线端的二根抛物线状的编织软铜线上,也须涂上腊,并用手指来回弄均匀,也不要把 它擦掉,以防止时间长了,该引线发黑变得弹性减小而影响工作。
   (4)如是纸基或纸基复合盆出现霉点白斑,请用医用酒精棉球,从背部细心快速擦之(酒精棉球要拧得半干半湿,不能太湿了,也免渗到音盆的表面)。如表面有霉点白斑时,只能用40-45°的温开水,加几点洗手液香波,用干净的软毛巾蘸水拧干擦净即可,掌握适度,不要多次反复的擦。切不可用酒精之类,带有挥发性的有机溶液擦之。
   (5)高档喇叭在煲透后(一般1-3个月),再用一段时间,大约在半年至一年左右时间,再将音箱上的中低音单元拆下(高音不要再动了)旋转180度方位再装回去(第一次保养已做了记号,这次只要上下颠倒位置安装即可),以使喇叭在自身重力影响下更趋平衡,同时查看一下有无需要补腊的地方,如需要再补上。
   (6)分频器的保养。首先看一下分频器,有一只是串接在分频器中并通往高音喇叭的那只电容,是不是高质量的MKP分频电容(一般容量与耐压为2.2-6.8uf/100-400v,视分频点的不同而容量也不同),如采用了那就不要动了,反之无论如何也要换上一只高质量的MKP分频电容。如法国的“苏伦”,德国的“威玛”或美国的“MIT”等品牌,既可保证音色的再现,又因漏电流小而不易损坏高音喇叭。
    分频器改好后用车腊在印板反面再均匀涂一层腊。或者如有条件最好用快干绝缘清漆刷二遍即可,这样效果会更好,我自制的分频器都是采用刷快干绝缘漆的方法,二度即可,可防止铜泊氧化生绿锈和发黑。
    以上仅是个人的保养经验,对于缺乏动手经验的人来说,一定要注意行事,尤其是在拆进口成品音箱时,除了拆卸螺丝需要专用工具外,对实际操作要求颇高,最好在拆卸时有二人协同为妥。一句话,音箱如果使用得当和适当保养,用上15年或更长时间是没有问题的。
作者: zgmfx10akira    时间: 2012-4-30 15:58

一、音响审美的特点

    按照现代格式塔心理学的研究,人之所以能够实现审美,是因为事物运动或形体结构本身与
人心理——生理结构有某种同构对映效应,使得对象的表现是人的感情的“移入”。所以审美即是
对象在人心理上的内化,并与每个人的经历、观念、性格、社会地位和社会联系等有着密切关系,
是人的实践和超越功利性的结果。并由此认为,人的美感建立和审美包括以下过程:

    1、最初的审美态度通过对审美对象的注意而产生审美判断;
    2、由审美判断产生对审美的感知、想象、理解、感情多种因素的交融;
    3、在上述基础上形成审美趣味和理想;
    4、完成审美的理念化与心理共鸣。

    音响的审美是利用电子方式恢复放大经过复制或模拟的声音信号来实现的,它与听音乐会的
根本差异是在聆听中总要存在某些失真,缺乏人际交流及其气氛,参与性和临场感差,注意力容易
受环境干扰,聆听质量受到软件、硬件和传播空间的制约。但听音响审美的目的性强,过程比较主
动,所听的多为符合自己趣味的音乐,对作品的背景也较熟悉,又可反复聆听,使审美体验更加强
烈。

    音响审美大体可包括两个方面,其一是对声音的欣赏,这与一般的音乐欣赏并没有什么大的
差别;其二是对声音的音响创造审美,它包括了录音处理后形成的新美感、聆听者对音响器材选择
的声音改变、聆听环境对音响效果的影响等。其在美感的建立上,仍然一如古希腊音乐理论家阿里
斯托塞诺斯所说:“对于一个演奏的旋律的了解,可以归结为:用听觉和理智感受一切声音产生的
一切区别——要知道,旋律同音乐的别的部分一样,是处在不断产生当中的,所以音乐的理解是以
两个部分组成的,即由感觉和记忆组成的。需要感受正在产生的东西,用记忆把握已产生的东西,
因为用别的方法不能跟踪音乐”,“个性知觉的精确性几乎是基本性质,因为没有好的知觉就不能
很好地叙述他完全没有领会的东西”。

二、影响音响审美的因素

    1、软件是实现音响审美的源头,在声音欣赏中直接影响聆听质量,除了录音、制作的产品品
质外,它还受录音环境、乐队位置、录制技巧、录音师素养等的影响,不好的软件其音乐效果将会
被严重扭曲,甚至改变原作品的审美价值。

    2、硬件作为实现声音放大还原的器材,在音响审美中必须是Hi-Fi的,以保证对音源的准确
还原。但这也不尽然,随着音响控制器材的增多,为满足某些个性化听音的需要,对一些人来说,
利用改变音效的功能器材加强审美效果也是很必要的。

    3、传播空间——聆听室环境在获得高质量的声音欣赏效果上,作用甚至超过了器材。这是因
为,一方面聆听环境对声音传播的频率响应、混响时间、泛音结构、声音风格的表现都有影响,关
系着器材效果的发挥;另一方面聆听环境的舒适性也能对聆听者的审美情绪、审美感受带来影响。

    4、聆听时的个人情绪是造成音响审美的情趣来源,并将左右声音欣赏的感情变化,使审美心
理集中向某些音乐要素,形成联想,加强或削弱对它们的审美作用。

    5、聆听气氛可对审美情绪带来影响,所以在国外参加一些高档音乐会时,组织者都会对人们
的衣着、行为举止提出一些要求,以在演出和欣赏中创造良好的气氛,提高审美的效果。由于音响
审美中面对的只有器材,所以个人聆听时要创造一定气氛比较困难,故有的发烧友在聆听前有洗
手、冥思、听一些音乐引子的习惯,使自己进入聆听的意境。而有一些朋友一起共同聆听时,则可
以在聆听中产生心理和思想的互动,获得更多的声音感受和审美效果。

    6、人的个性和人格差异会对声音的强弱、高低、声调、旋律、节奏产生不同的感受,形成有
差异的审美体验,所以也就因此产生了对声音欣赏的多样化现象。

    7、此外,近代的研究还表明,人们的社会地位、社会交往、价值观念等变化也能够引起审美
趣味的改变。这大概在音响审美中也不会例外吧。

三、音响审美的观点
    据我分析,目前人们对音响审美的看法大体可分为以下3种观点:

    1、唯真观点
    这种观点主要认为,为了欣赏到声音的真实,经过音响复原的声音就应该保持录音时的所有
特质,即使一时还办不到,至少也要尽量将还原出来的声音趋近于原来的声音。这其实是艺术欣赏
中的照相主义观点,无论审美对象的真实对审美带来的影响是好是坏,都必须一律保留,只有这样
的才是“好东西”。由于,今天的音响技术还远没有达到将声音真实还原的程度,所以它仍然是一
个在音响审美中令人兴奋的追求目标,使不少人希望着某一天将世界上自己感兴趣的声音都搬到家
里来。

    有很多人认为,如果通过音响出来的声音与真实的声音无异,那么听一听真实的声音不就可
以了吗?而且处在实际的听音情况下,可能对听音审美会更加深入。其实不然,从技术美学来看,
不论你是配机,还是DIY,或是用什么方法,能够将音响重复出来的声音更加接近真实,这本身就
是一种成就,在许多发烧友来说,它所带来的愉悦并不逊于哥伦布发现新大陆。另外,如果音响真
的能够发出“真实”的声音,那么在任何时候你都能原汁原味的欣赏到令你感兴趣的声音了,这又
怎么不使人更能丰富审美呢!甚至比较不同录音版本的细微末节,也会产生许多意想不到的情趣。

    对唯真观点,从其欣赏趣味不同也可分为两类,其一是对质感真实的追求,这类人是侧重于
声音客观性质的鉴赏者,主要对发出声音的实体的真实感有很高的要求,无论是乐器的声音、发声
的具体位置、形状大小、演奏技巧的影响、乐队的规模大小和摆布、乐队中个人的行为……在他们
都要不折不扣的表现,使整个声音听起来都要“看得见,摸得着”,有点象是欣赏一幅工笔画或楷
书的情况;其二是对意境真实的追求,这类人虽较有个性,但一般都坚持对声音的客观审美判断,
他们对声音质感的还原要求不太高,而是追求对还原声音中强弱、节奏、旋律、动感、和声……表
现意境的声响表达有很高要求,以实现声音对情绪的真实表现与还原,犹如欣赏写意画与行草书的
感觉一般。而在实际中,更多的人是介于中间的,但仍有所侧重而已。

    2、以真为基础的唯美观点
    我以为,受中国文化传统的熏陶,多数发烧者应属此种观点的拥护者。因为,一是中国人从
来都是遵循“真在内者,神动于外,是所以贵真也!”的审美原则的,是追求于真与美在欣赏上相
统一的;二是许多人是由“一箪食,一瓢饮,在陋苍,人不堪其忧,回(指颜回)也不改其乐”走
进发烧的,受经济、技术等条件所限。

    这样的观点认为,声音离开了真实的表现,就只是虚妄,而在欣赏中不能带来享受,则就失
去了欣赏声音的价值,所以体现真实,还必须好听。其实所谓“好听”,就是要使声音听起来符合
自己的感受,只要让人心里舒服,虽有些音染也无大妨。于是有很多人都追求于英国音、德国音、
美国音、甜美柔和之声、暴棚效果、大动态感受等某些声音的表现,并要求器材也能实实在在地表
达出这些声音的特点。但是,他们对“美”的要求还是与“唯美观点”有很多不同的,其突出的一
点就是坚决反对用美去抹杀真,认为在音响欣赏中对美感的追求是被动的,有限的,如果两者相
悖,就应以真作为标准,从真中去寻找自己所追求的美。

    这类人趋向于联想性和个性化的审美判断,因此他们所追求的音响欣赏标准是象印象派绘画
那样的一种美。

    3、唯美观点
    此观点认为听音响的根本目的就是为了欣赏声音的美,所以应当把所发出来的声音能否使自
己愉悦作为听音的标准。而且,听音响也是具有个性的一门艺术,应当有与真实声音相区别的特
点,满足人们心理的多方面要求。所以,在欣赏音响中,让声音最大限度的发挥“美”是第一位
的。

    采取唯美观点的人也可大体分成两类,一种是客观的求美者,他们主要是一些联想极为丰富
的人,并能在听音中有较强的意象构造能力,使心绪与声音产生紧密的互动变化,这类人对听音的
基本要求是,声音只要不失之美丽,能在审美中将心里的意象与听到的声音相对应,虽有些失真也
再所不惜,就象是在欣赏达利画作时所产生的意境;第二种是主观的求美者,他们把注意力放在声
音对自己心理的影响上,主张用个人的主观意识对声音进行判断,是音响审美中最具能动性的一些
群体,他们除了对器材质量仍然要求是Hi-Fi的外,其在行为、思想上已不再遵循任何现有的Hi-
Fi观念了,所以他们常常利用SRS、BBE、频率均衡器、时间延迟等声音控制技术和设备,改变声
音原有的特征,来实现对音响的审美,他们是Hi-Fi中很有争议的一派,有许多人认为他们不能算
“发烧友”,因为他们的想法、做法是不符合Hi-Fi的,但这难道不是对音响的一种审美吗?只不
过,他们要欣赏的对象更加抽象罢了,就如同毕加索的画,或是色块艺术那样。

    有的朋友可能会问,如果在求美的基础来求真是否可以呢?我认为这样的审美关系是不会有
的。因为这种用主观来强求于客观的现象,在现实中并不存在。而一些人的所谓先于欣赏的音响观
念,其实也是来自他们长期形成的审美意识的,所以也就没有什么先于对真实的认识而自然产生出
来的美了。

    四、音响审美的趣味

    音响既是技术的,也是声音欣赏的,所以它的审美包括了许多不同性质、不同层次上的审
美,我认为主要是以下几个方面:

    1、选择音响配置
    许多人认为选择音响只是“用耳朵听一听,把你喜欢的东西搬回家”的过程,并没有什么可
以欣赏的对象。而在专家看来,事情并不这样简单,它乃是要通过恰当方法来实现的对音响审美期
望的选择,其本身就具有很高的审美体验价值。如果你搞配机,那么这种审美是来自长期听音经验
积累所形成的,是对不同器材及组合所生产的美之差异的认识与把握,每一次的器材选择也就是一
个审美判断和美的理念的建立的环节;如果你是搞制作或摩机的,那么音响的设计、制作、实验、
调整都将是一个为了使器材趋向于审美理想的过程,而随之提高起来的审美体验也就会成为掌握电
路结构、元件、参数变化中美的变化的关键;如果你搞音响工程,那么你将会在遗憾和成功中得到
美感的升华。这样,终于有一天你就能准确地说出音响中各种美妙之处所产生的原因了。

    2、音响审美中的品评
    有比较才会有提高,这对音响审美也是一样的。由于从声音中获得的美感是十分抽象的、多
意象的、情绪化的复杂心理变化,可以在多次欣赏中引起不同的印象和感受,所以音响审美的获得
除了与审美目的、审美趣味、审美能力有关外,一般还需要多角度欣赏和反复品味,以审美知觉的
选择为基础,才能得到正确的感受。不同的音乐流派、不同体裁、不同风格、不同表现形式,在音
响欣赏中心理感受的获得和喜悦程度是不同的,心理学家哈格里夫斯说:“听者对通俗、流行音
乐,在其被重复较少次数时愉悦程度已经很高,面对古典音乐的喜欢则要在其被重复较多次数后才
有一个较大幅度的增长,对前卫音乐虽也因重复而喜欢强度有所增加,但总的喜欢水平较低。古典
音乐被专家认为有较高的美学价值,它的重复使对它喜欢的增长也是最明显的”。在对音响审美的
比较里,对相同内容软件间、器材间的比较也是很重要的方面,有很多的审美体会和对其微妙差异
的感受就是在这种比较中获得的。

    3、音响对声音作品的再创造
    因为音响放音是通过声音录制、电子放大、空间传播来实现的,所以在这些环节都可以根据
自己对声音对象的审美理解进行再创造。
    在录音方面,如果你是录制派发烧友,那么你对声音的控制是以主动的方式进行创造的,当
你根据自己的想法完成对声音美的诠释时,其实你已经找到了对声音美感的特有的表达,以不同的
观察角度建立了新的一个美的理念。
    利用器材进行声音作品的再创造是比较被动的,我们除了可以改变一些音色变化外,能做的
并不多,但随着电路结构、元件制造技术的发展仍有一些让人们发挥审美理想的空间,使声音符合
于自己的审美要求。例如,一些发烧友欣赏胆机要保留轻微的交流声,就是对胆机审美的一种特殊
的肯定方式;一些发烧友希望通过音调、混响时间、声场的控制,主观地改变声音欣赏的角度,也
是为了使自己审美的观点得到升华。
    建筑声学研究表明,改变声音传播环境的形状和性质都可以引起声音的变化,例如矩形的房
间与椭圆的房间对声音的还原是不同的,房间面积的大小不同对声音产生的效果也不一样,所以有
条件的朋友在建立自己的聆听室时,应当多进行一些了解与比较,选择适当的方案,使聆听室的装
修更符合自己的审美要求。

    4、对声音的鉴赏
    有关这个问题的论述已经很多,这里就恕不赘述了吧!

五、音响审美的价值

    音响的审美,其价值是多样化的。它既有声音欣赏给人带来的听觉愉快、情绪满足、心灵抚
慰和对欣赏者各种审美趣味的适应;还有技术成就感、审美理想在技术上的实现……所带来的满
足;而且在音响审美的实践中,对个人审美能力的培养、引导人的审美心理形成、鼓励人对“美
好”不断的去探求和追寻……都有重要的作用。
作者: zgmfx10akira    时间: 2012-4-30 15:58
扬声器的效率、阻抗与动态

经由十余年来多次的接触,我发现消费者在选购扬声器时,常会询问:它的效率是多少?阻抗是多少?但却鲜有人问:它的最高音压是多少?音响史上确实有几款著名喇叭以低效率闻名,例如Rogers的LS-3/5a及AR-3a。


二十年前,当我还是杂志社小编辑时,曾亲眼所见,音响名师林宜胜先生,谈到3/5a时,脸上竟泛起一阵神光说:它的效率其低!但当日在板桥陈正修先生(音响闻人,早已移民旧金山)家里,有三对小喇叭的试听比较,3/5a上阵还不到五分钟,就被另外一位音响闻人高真民先生一阵xxx给开骂、炮轰了下来!


更早之前,那时只有LP没有CD,我到上扬唱片公司买唱片。在挑选唱片时,觉得背景音乐怪怪的,男高音Domingo怎么感冒了?鼻音这么重!问清楚后,才知一切都是「闷葫芦」3/5a搞的鬼─当时Rogers喇叭是由上扬公司进口销售。


我对3/5a的恶感就是这样而来,没想到全球闻名的BBC-3/5a,竟然是个「闷」葫芦。等到试作DaLine后,才知BBC 并未将KEF单体性能发挥极致,LS-3/5a的好处只是体型小、售价低,难怪有人会卖了3/5a换用我的DaLine传输线喇叭。道理很简单,依3/5a低音单体B-110之规格计算,根本不能装在那么小的音箱里!这点有必要说明,其实英国BBC并非不会设计喇叭,而是为了携带方便,不得不将喇叭音箱设计得很小,这是没办法的妥协。当初BBC是想设计出比例为十分之一的喇叭,这样测试的方法比较简单,也比较便宜,于是就诞生了LS-3/5a。


低效率喇叭确实曾风光过,但CD开始逐渐流行后,就有人对低效率喇叭抱着怀疑态度,名乐评家、莹升公司负责人曹永坤先生,就曾经说过CD的高动态会自然淘汰低效率喇叭。


晶体管机的瓦=真空管机的瓦


经过20年,CD系统已渐趋成熟,但低效率喇叭依然存在于市场,而且低效率=高音质的观念好像并未动摇;直到最近这几年才有了些许改变。


真空管又回头了,老厂新厂纷纷出笼,但管机后级的输出功率普遍比晶体机低。有音质至上,非WE300B不用,而且还只要单端不要推挽。300B做单端只有7至8W左右的输出,7W能推什么喇叭?当然,也有人用不到10W的管机后级推ATC喇叭─那是有声音,却无法呈现ATC应有的动态。 古早时代的Altec、JBL、EV…等大型落地式喇叭都是高效率,因为它们的亲蜜伙伴就是管机。所以当管机推Altec A7「剧院之声」时,气势就大大的不同,有谁能说管机后级没啥动态?


Watt就是Watt、瓦就是瓦,所以管机的7W差不多完全等于晶体机的7W─差异性是管机有输出变压器,输出功率较不易随负载阻抗变化而改变。因此若有人说管机的7W比晶体机的7W够力,那是无稽之谈,因为事实的真相是:晶体管机的7W,大多时候会比真空管机的7W够力,绝不骗你。有两个特例,一是 OTL无输出变压器管机后级,另一就是著名的LS-3/5a小喇叭。


喇叭的效率是用dB值表示,但与阻抗有关联。故效率完全相同,但阻抗不同的两对喇叭,其需求电压也不相同。因为8Ω喇叭的1W是输入2.83V电压,而4Ω喇叭的1W是2V输入电压。因此效率相同、阻抗不同的两对喇叭,接上同一台晶体后级也必定会有不同的声音表现。


扩大机输出功率 ︳ 8Ω负载 ︳ 4Ω负载


1W ----------------------2.83V----------2V


2W ----------------------4V--------------2.83V


3W ----------------------4.9V-----------3.47V


4W-----------------------5.66V---------4V


10W---------------------8.95V---------6.33V


4Ω喇叭的需求电压虽然比8Ω低,但需求电流却比较高,以4W输出为例,8Ω喇叭是0.7A,而4Ω喇叭则吃1A电流,因此大家都说低阻抗喇叭比较难推。


dB是分贝,它的计算式会因功率或电压、电流之倍数会有所不同,喇叭的效率是以功率计算。我们现在以阻抗变化甚大的某喇叭为例,说明大多数情况下,7W的晶体机的比7W的真空管机来得有力─重点就是低抗时的电流。


喇叭阻抗 │晶体管机功率 │ 真空管机功率


8Ω--------------------7W------------------7W


4Ω--------------------14W------------------7W


2Ω--------------------28W------------------7W


只要驱动电流够,晶体机的输出功率会随着喇叭阻抗的降低而提升,故不只是7W而已。但管机有输出变压器交连,功率不随喇叭阻抗变动。所以此时是不是晶体机的7W比真空管的7W够力?这就是最简单的奥姆定律。


3/5a既是低效率又兼高阻抗


具恒阻特性的喇叭并不多,因此当喇叭阻抗猛往下降时,管机就可能使不上力,所以管机后级推Dynaudio喇叭比较不容易发出好声,因此时喇叭欲吃电流,但真空管却是电压组件,无法提供电流;可是换成LS-3/5a就不一样了。


3/5a阻抗 | 晶体机功率 | 管机功率


15Ω-------------- 3.7W--------------- 7W


11Ω-------------- 5W----------------- 7W


8Ω--------------- 7W------------------ 7W


7W的晶体机接上第一代3/5a就只剩大约3.7W,接第二代3/5a也不过是5W;可是管机就一直维持7W输出。故遇到3/5a这对高阻抗喇叭时,管机的7W就比晶体机的7W来得够力。因此就晶体机言,高阻抗喇叭较不好推。但为何3/5a的阻抗会高至11~15Ω?它采用的KEF T-27A高音单体及B-110A低音单体都是8Ω。这就是诡谲之处,依KEF单体规格设计分音器及音箱,不必讶异,你会发现LS-3/5a根本是错误的设计!


若是高阻抗再加上低效率,那这对喇叭铁定难伺候,偏偏3/5a就有这种特性。因此有人用大power推它,但3/5a又吃不下大power,功率太高就容易将它的低音推到触底─它的KEF低音单体没啥动态。现在我们来看看喇叭效率与扩大机功率的关系,比对的喇叭是LS-3/5a及Klipsch的Klipschorn,从下表就可看出低效率喇叭较难伺候。


Klipschorn大喇叭 │  LS-3/5a小喇叭


104dB /1W----------------------------81dB /1W


107dB /2W--------------------------- 84dB /2W


110dB /4W--------------------------- 87dB /4W


113dB /8W--------------------------- 90dB /8W


116dB /16W--------------------------93dB /16W


119dB /32W--------------------------96dB /32W


122dB /64W--------------------------99dB /64W--?


125dB /128W--?--------------------102dB /128W--?


第一行104dB与81dB是两款喇叭的标称效率,3/5a的99dB打个?号,代表3/5a根本无法承受64W连续输入,因低音会触底,50W连续输入就已是最大值。而Klipschorn喇叭在1W输入时,就得到104dB的音压,这是LS-3/5a打破头也无法做到的事。至于125W加个问号,那是原厂公布Klipschorn最高连续承受功100W,故当128W连续输入时,Klipschorn也会不了。由于Klipschorn的效率高达104dB,若扩大机的讯号杂音比(S/N)不够高,那不用转音量旋钮,喇叭就会发出恼人的嘶声和哼声。对于扩大机的残留杂音及哼声,高效率喇叭倒是具有明察秋毫的效用。


3/5a的效率到底是多少?本文假设它是81dB,记忆中好像也是。但1995年10月号Audio年鉴上,KEF 3/5a的效率注明是85dB,阻抗则仍维持11Ω。最令我大吃一惊的是:这对小喇叭竟然飙涨到US$1450一对!老天,KEF 3/5a有这种身价吗?如果它有1450美金的音质,那我也毫不脸红,传输线设计的DaLine一对卖2400美金!可惜卖到现在,DaLine喇叭已全数售罄。81dB/W/m绝对是低效率,美国Apogee以生产平面式喇叭闻名,它的Duetta.2只有78dB/W/m,由于效率过低,被评为「反应迟钝」,非得用每声道250W的大power推不可。注:英国KEF及Celestion这两家喇叭公司早就出售股权,目前的老板是香港商,因此改变营运方针;KEF高音单体T-27及低音单体B-110皆已停产。


不论有什么改进,3/5a的最高音压却仍不及Klipschorn的基本标称效率。再计算「标称效率」至「最高音压」的范围,3/5a大约是18dB,而Klipschorn大约是21dB。


这里透露着两点,一是以300B单端每声道7W管机推Klipschorn喇叭,它的表现绝对会比40W×2的晶体后级推3/5a喇叭来得轻松自在、有魄力。第二点则有赖大家共同研究,是不是高效率也同时代表高动态?


若果真如此,曹永坤先生就有先见之明。准此原则,吾人当选用高效率喇叭,这样后级输出功率不必动辄数百瓦。当然,上百dB的高效率喇叭通常体型庞大,若是紧贴墙摆,又完全听不出音场、深度。但以一般家庭聆听音乐或观赏AV用,效率似乎也应在90dB以上。然而,低效率喇叭就代表低动态?很不幸,3/5a及本人的DaLine却是明证。当然ATC可能会不同意,ATC的SCM20为8Ω/83dB─效率比DaLine略高,但它的连续承受功率竟然是200Wrms,因此计算其最高音压竟然高达106dB,绝非LS-3/5a或DaLine之辈能比。


晶体机驱动高阻抗喇叭会降低功率,但也有例外,McIntosh虽是晶体机,却因为有输出变压器,故其输出功率不会随负载阻抗变动而变动。好在音响圈中特例不多,没有输出变压器的真空管机不多见,有输出output的晶体机也唯有McIntosh。而标称阻抗高过 8Ω的喇叭,这些年来也很少见。故现代管机的输出变压器,理应只须要有4Ω及8Ω两个绕组输出。


应选用高效率、高动态喇叭


接驳低效率低动态喇叭时,后级的输出功率不能太低,以免推不动;但输出功率又不能太高,以免喇叭受不了,故常两难。「低效率低动态」六个字若不能理解,改成「低效率低最高音压」八个字就比较明显。


世上喇叭何其多,但在规格表上明确注明最高音压者,却不及百分之一。若有最高承受功率─是连续不是瞬间,就可从效率计算过来。例如效率86dB的某款喇叭,其连续承受功率160W,我们就可轻易计算出它的最高音压是:108dB。利用工程型电算机按几个键,160 log×10=22,86+22=108(dB);而22dB大致上就是此喇叭的动态。


动态范围dynamic range之值以dB表示,数值愈高愈好。音响器材性能表中有动态范围者,大概只有CD唱盘及影碟机;扬声器厂商几乎都不会注明此规格,以避免自曝其短。动态范围可说是由最低到最高的变化、由最小到最大的变化,也由最弱到最强、由最暗到最亮的变化。音响器材动态愈大,就愈能表现由最弱音到最强音的变化。CD唱盘的动态甚少低于90dB,但扬声器却甚少高25dB。


这种直接比较合理吗?当然不正确,因CD唱盘的动态范围是电压倍数的变化,而喇叭的动态范围是功率的计算。我们常说前级的十倍放大具有20dB的增益,但10W功率却换算成10dBW,而不是20dBW,请看底下的说明。


都是dB值,功率的计算是:数值log×10,电压、电流计算是:倍数log×20,因此100倍的电压放大就是40dB。若某前级具14dB增益,它的放大倍数是多少?利用工程型电算机按几个键:14(dB)÷20÷inv log=5(倍)。若是某效率86dB喇叭的最高输出音压是105dB,换算成最高承受功率就是105-86)÷10÷inv log=79.5W。而105-86=19(dB),就「大约」是它的动态。


分清楚电压增益的dB与喇叭功率的dB,你就会明白为何Hi-End厂都反对将后级扩大机的输出功率标示成dBW。因50W是16.9dBW,而500W虽是超大power,但也仅是26.9dBW。看起来似乎50W与500W之输出功率差不多,故厂商可能以「消费者不容易懂」做理由,一直反对标示dBW。


若喇叭的最高音压-效率即是它的动态范围,那一般家用喇叭的动态有多少?不论是Avalon Asent、Thiel CS5i、B&W 801,都绝不超过25dB!往专业领域找,Rey Audio的RM-8V效率是100dB,最高音压是130dB,有30dB动态,30dB正好是1000W,亦即RM-8V可承受1000W。Rey Audio还有音压更高的RM-1800,其型号有两个意义,一是采用两只18吋低音单体,一是喇叭高度为1800mm。有一年「恰客与飞鸟」在大阪开演唱会,就用了4对RM-1800。再思考一个问题:若两对喇叭的阻抗与效率皆相同,用同一台扩大机驱动,是否会得到相同的音压?─数字通常是不会骗人的。


不会一样,经多年实际操作经验显示,差异性极大。在无响室内所测出的效率,不一定能含盖低、中、高频,因此同样都是95dB/8Ω的两对喇叭,其最低驱动功率(扩大机输出功率),可能一是20W,一是50W。


但高效率喇叭也确实有其优点,以102dB来说,那是指1W输入;若是0.5W输入,它也有99dB!就算是0.25W输入,也高达97dB。以一般家听音乐,很难有机会发出97dB的音压,故7W输出绝对够用啦。


通常高效率喇叭的体型都比较大,其共同特点则是低频不足,或是说:它们无法发出真正的低音。想测试它很简单,用电影配乐CD一试便知。主要原因是单体的Fs不够低,当年它们须要的是高效率、干净有punch的中低频,又没有电子合成器,故极低频可以牺牲。若是早期的大型高效率喇叭,低频不凝聚不说,喇叭贴着背墙、侧墙摆,左右相距又仅一米,应该有的音场及深度,都会被遮蔽掉;基本上常是糊成一团,毫无透明感。


聆听环境的背景噪音要低


理想扬声器是高效率、高音压,因为这样才可以将音乐最低音到最高音的变化完全表现出来。不过要谈动态范围,那可千万不能遗漏环境噪音这个重要因素。


听音环境愈安静愈佳,但除非是专业录音室,一般经过略为装修的音响室,其背景噪音也都在35dB以上─这是指夜深人静时的量测,大白天的情形更糟。而背景噪音之高低也与动态范围有直接关联,噪音愈大,就愈需要喇叭发出高音压以呈现乐曲的最弱音符。故聆听环境的背景噪音及器材的残留噪音绝对是愈低愈佳,就算是欣赏5.1声道的AV,要求也是一样。


由于背景噪音高,因此「声音」要更大,才能听到音乐的全部细节。但就算器材表现没问题,高音压也会带来困扰,一是邻居会向你**,二是对耳朵有可能造成伤害。在热门迪士可舞厅,为了营造气氛,也为了压抑消费者说话的声浪,它们的PA音响常开足马力,音压都超过120dB,长时间处于那种环境下,极有可能会对人耳造成伤害。


居家不同舞厅,而家用音响因管机又回头流行,不仅名管WE-300B重新生产,JBL、Altec老喇叭也逐渐重回市场。不过这些号角喇叭虽效率颇高,但体型也都甚为硕大,一般家庭并不适合摆放。此外还有一个疑虑:这些喇叭的音质与其效率成正比吗?好像不是吧。


小功率匹配高效率


为了避免浪费能源,及得到正确的搭配,我个人有两点伟大的建议,但需要全球音响界认同:一、效率低于90dB的喇叭,不准制造、销售、进/出口,而且阻抗应尽量恒定于8Ω;二、高过90W输出─8Ω/ch─的后级/综合扩大机,不论晶体管、真空管,也是不准制造、销售、进出口(当然,专业器材不受以上的限制)。


果真如此,则Dynaudio、VIFA、ETON…等著名喇叭厂,就会开发出不是号角型,而且体型又不很大的高效率喇叭。又因扩大机输出功率降低,电源变压器、滤波电容…都可减小,故材料成本、重量、体型及售价都可降低,这绝对是消费者、爱乐者之福。您说对吗?
作者: zgmfx10akira    时间: 2012-4-30 15:58
胆机单管放大输出与推挽放大输出

    时下,胆机在市场上的品种五花八门,发烧友在选择胆机的时候,往往眼花缭乱,不知哪一款更适合自己,很难正确把握住分寸,对不同型号胆管的音色也缺乏深刻的了解。
    胆机与晶体管不同(也有相同处)。严格来说,不同的胆管所发出的声音也各有千秋。而电路设计的不同,音色也有不同的变化,其中推挽放大电路的形式在数量上,占市场的主流地位,它的最大特点是相对于单端放大电路来讲,效率较高输出功率也较大。当然,电源利用率也比较高一些。比如我们常见的KT88、KT100、6550、EL34、6L6等,在推挽放大电路输出级里应用的就比较多。推挽放大电路由于推挽管分别放大信号的正负半周,在输出变压器的初级回路里,对于电路内感应所形成的噪声、交流声等杂音信号有一定的抑制作用,因为没有经过倒相的信号,在推挽放大电路中,是不能耦合到输出牛输出端子上的。所以该电路信噪比相对比较好。同时,由于推挽输出变压器不存在直流磁化作用,输出变压器可以同电源变压器一样采用交*迭放硅钢片的方式制作,这样可以相对单端放大来讲,缩小输出牛的体积,使成本降低,由于上述这些显著的优点,所以胆机厂家比较乐意采用。
    在推挽放大电路里,因为最少要用两只输出管分别放大信号的正负半周,所以必须在电路中设计倒相电路,以分配给功率输出管合适相应的信号,这样才能满足推挽放大电路的基本工作条件。
    在胆机的倒相电路中,有采用变压器倒相的,也有用胆管进行倒相的。比如我们经常见到的屏阴分割倒相,及长尾倒相电路等等,但不管使用哪能种方式倒相,都存在着一定的优缺点,利用变压器做倒相电路的设计由于成本高,且不能用大的负反馈来改善音质,很少有人使用。而电子管倒相电路很难保证信号从低频到高频正负半周分割的一致性。倒相电路这些缺点,使音质的重放在这个环节上多了一个障碍。
    单端放大的功率输出电路,在效率方面比推挽放大电路要低,使电路比推挽电路要简单得多,使用的元器件也比较少,故障率比推挽放大电路要低得多。单端放大电路由于没有倒相电路这一环节,信号直达末级功放管的输入级,所以不存在倒相电路的种种麻烦。在推挽放大电路中,倒相后的正负半周信号,要分别送至“上下”推挽管在栅级进行推挽放大,由于最少要用2只功率管来协调工作,这就要求每对功放胆机的一致性能要好,这样才能保证推挽放大后的波形完整不失真,而实际上每对推挽管的性能很难保证从低频至高频的一致。所谓配对亦只不过是在一定频率范围内配对而已。如果工作在乙类状态的推挽放大电路,还会存在交越失真的危险性。而在单端放大电路中,因为信号的正负完整波形都在一只功放胆机内进行放大的,又由于单管放大电路大都是工作在甲类状态,而甲类放大电路的工作点又都是选择曲线平直部分的中间部分,所以不存在有交越失真等问题。另外一个对比就是胆机之所以比晶体管好听(相对而言),一个最主要的原因就是晶体管机虽然各项指标做得比较高,但三次谐波失真比胆机大,即奇次谐波比较大,而胆机二次谐波失真比晶体管机要大,即偶次谐振动波失真大于晶体管机,但从听感上来讲,人耳对奇次谐波失真比较敏感,它给人带来的印象是一种生硬的感觉,比较让人讨厌,但耦次谐波失真带给人的是一种柔和的感觉。人耳比较容易接受,好比适量的调味品一样,这也是胆机好声的一个主要因素。
    而对推挽放大胆机电路与单端放大胆机电路来讲,两者比较,单端放大输出电路的奇次谐波失真更低于推挽放大电路,它所存在的大都是耦次谐波失真,所以更好声。
    单端放大电路虽然简单易制,但对电路间元件的排列要求较严,设计不合理,极易产生交流声。而单端输出的变压器,比起推挽输出的变压器来讲,制作更为复杂,这是因为单端放大电路的输出变压器初级有直流高压通过,会产生磁饱和作用,推挽输出牛虽然也有直流高压通过,但可以抵消这种现象。所以一般在硅钢片投入时,要留有一定的间隙、空气隙。而气隙的大小要视电路要求及输出功率大小来调整。因为硅钢有气隙的存在,使整个输出牛的导磁率大为降低,所以要采用截面积较大的硅钢片来制作,成本比推挽输出牛在同等输出功率时体积及制作的难度要大一些。 单端输出放大电路,由于电路简洁,音质又好,故障率极低,所以非常受资深发烧友的青睐和追求。别忘了世界上有许多的胆管成名,全有赖于单管输出电路的设计所发挥的迷人音色。比如素有“白马王子”之称的WE300B、胆王845等,它们所再现出的高贵音质,只有在单端输出时才能发挥出最大的潜力。
作者: zgmfx10akira    时间: 2012-4-30 15:59
音箱选购基础知识问与答

●音箱由哪几部分组成?



    市面上的音箱形形色色,但无论哪一种,都是由喇叭单元(术语叫扬声器单元)和箱体这两大最基本的部分组成,另外,绝大多数音箱至少使用了两只或两只以上的喇叭单元实行所谓的多路分音重放,所以分频器也是必不可少的一个组成部分。当然,音箱内还可能有吸音棉、倒相管、折叠的“迷宫管道”、加强筋/加强隔板等别的部件,但这些部件并非任何一只音箱都必不可少,音箱最基本的组成元素只有三部分:喇叭单元、箱体和分频器。



●为什么有些音箱用两只喇叭单元,而有的要用三只,还有用四只、五只的,用一只行吗?



    喇叭单元起电-声能量变换的作用,将功放送来的电信号转换为声音输出,是音箱最关键的部分,音箱的性能指标和音质表现,极大程度上取决于喇叭单元的性能,因此,制造好音箱的先决条件是选用性能优异的喇叭单元。对喇叭单元的性能要求概括起来主要有承载功率大,失真低、频响宽、瞬态响应好、灵敏度高几个方面,但要在20Hz-20kHz这么宽的全频带范围内同时很好兼顾失真、瞬态、功率等性能却非常困难,正如道路警察,如果管得太宽肯定会顾此失彼,而各管一段就容易得多,喇叭单元也是这个道理,最有效地解决方案就是分频段重放。为此喇叭厂生产了不同类型的单元,有的只负责播放低音,称为低音单元,播放中音的叫中音单元,高音单元只负责播放高音,这样便可采取针对性的设计,将每种单元的性能都做得比较好。



    所以,尽管可以采用一只全频带喇叭来设计音箱,不过出于上述考虑,用多个单元的组合来覆盖整个音频频段的设计方式还是占了绝大多数。具体用几只单元,取决于音频范围的频率划分方式,如果是简单地分成高音和低音(或中低)两段的二分频音箱,选用一高一低(或中低)两只喇叭就够了;如果是分高、中、低三段的三分频音箱,那么最少也得用三只单元,现在两只低音单元并联工作的设计方式也很流行,这样总的单元数便可能达到四只;有些大型音箱的频段划分得更细,如果再采用单元并联工作的设计,总的喇叭单元数就会更多。在音箱的资料或说明书上通常有“X路X单元”这样的文字,就是对音箱的分频路数和所用单元总数的具体说明,例如“三路四单元”,表示这是三分频设计的音箱,总共用了四只喇叭单元,其余依此类推。



●分频器是做什么用的?



    由于现在的音箱几乎都采用多单元分频段重放的设计方式,所以必须有一种装置,能够将功放送来的全频带音乐信号按需要划分为高音、低音输出或者高音、中音、低音输出,才能跟相应的喇叭单元连接,分频器就是这样的装置。如果把全频带信号不加分配地直接送入高、中、低音单元中去,在单元频响范围之外的那部分“多余信号”会对正常频带内的信号还原产生不利影响,甚至可能使高音、中音单元损坏。



    从电路结构来看,分频器本质上是由电容器和电感线圈构成的LC滤波网络,高音通道是高通滤波器,它只让高频信号通过而阻止低频信号;低音通道正好相反,它只让低音通过而阻止高频信号;中音通道则是一个带通滤波器,除了一低一高两个分频点之间的频率可以通过,高频成分和低频成分都将被阻止。在实际的分频器中,有时为了平衡高、低音单元之间的灵敏度差异,还要加入衰减电阻;另外,有些分频器中还加入了由电阻、电容构成的阻抗补偿网络,其目的是使音箱的阻抗曲线尽量平坦一些,以便于功放驱动。



●喇叭单元有那些种类?



    喇叭单元的种类很多,分类方法也各不相同。如果按电-声转换的原理来分,有电磁式、电动式、静电式、压电式等不同类型的单元,最常用的是电动式单元;按照单元振膜的形状来分,有锥盆单元、平板单元、球顶单元、带式单元等类型,其中锥盆单元和平板单元比较适合做低音和中音,而球顶单元和带式单元比较适合做高音,也有部分中音单元采用球顶式设计;从所覆盖的频带来看,喇叭单元又可分为低音单元、中音单元、高音单元和全频带单元。



    目前最常见的低音单元和中音单元从换能原理上讲都属于电动式扬声器,它们多采用锥盆状的振膜,因为这形状的振膜设计成熟、性能良好。振膜材料则多种多样,有传统的纸质振膜,也有高分子合成材料(如聚丙烯)制作的振膜,还有铝、镁等金属材料制作的振膜。对振膜的要求是刚性好(不易产生分割振动)、重量轻(瞬态响应好)、具有适当的内阻尼特性(抑制谐振),但这些要求并不容易同时满足,纸质振膜的重量和阻尼特性都能达到要求,但刚性不够强;金属振膜的刚性很好,但阻尼又欠佳;聚丙烯振膜比较好地兼顾了各个方面,近年来获得较多的应用。此外,还有些厂家采用很复杂的工艺制造振膜,“三明治”复合结构就是其中之一,它的上下两个表面之间夹着蜂巢结构的中间层,整体上具有很高的刚性,同时又有重量轻、阻尼好的特点,很有发展前途。



    高音单元最常用的是球顶式高音,从工作原理上讲也属于电动式单元。球顶高音的振膜可以用金属材料制造(如铝、钛、铍等),称为硬球顶,也可以用软质的织物制造(如蚕丝、化纤),称为软球顶,通常,硬球顶的高频响应比较好,而软球顶的声音比较柔和。近年来,带式高音和静电高音也得到一定的应用,它们共同的优点是振膜特别轻盈,因而高频响应出色,声音纤细透明,不过,这两种高音的生产还不如球顶高音那么容易,应用不太普及。还有一种号角高音,由球顶式的驱动部分加一个喇叭状的号角构成,它的特点是声音指向性强,而且效率高,因而在专业扩音领域的音箱中应用很普遍。



    还有一种同轴单元,实际上是低音和高音单元的组合,具体特点详见相关问答。



●喇叭单元为什么要装在箱子里?不装箱行吗,比如用个支架来固定它们?



    不行,准确地说是低音单元必须要装箱,高音则可装可不装。有两个原因使得低音单元必须装在箱子里:一是为了消除“声短路”现象;二是为了抑制喇叭单元的低频谐振峰。先说第一个原因。低音单元的振膜在前后运动时,除了有向前方辐射的声波,也有向后方辐射的声波,两个方向的声辐射相位正好相反,即相差180度。由于低频声波的波长很长,其绕射能力是很强的,也就是说低频声波的方向性很弱,如果喇叭单元不装箱的话,后向辐射的声波就会绕到前面来与前方的辐射异相相消,总体上的前向声波辐射能量就被大大削弱,这种现象称为“声短路”。“声短路”现象必须设法消除,否则低频根本无法有效地辐射。如果把喇叭单元装在箱子里,振膜后方的辐射被箱子阻隔,也就不会形成“声短路”了。



    第二个原因,每一只电动式低频单元都有一个低频谐振点,在此谐振点上的输出达到一个峰值,但失真也很高,瞬态响应非常差,如果对此谐振峰不加以抑制,势必严重影响重放的音质。如果将单元装箱,箱内空气的劲度就会对振膜的运动产生抑制作用,这样就达到了压低谐振峰、改善性能的目的。另外,通过合理选择箱体的结构和参数,可以达到拓宽低频响应的目的,设计良好的倒相箱、无源辐射器音箱、传输线音箱都能获得这样的效果。



    高音单元为什么可以不装箱呢?因为高音的波长短,绕射能力弱,不存在“声短路” 现象,也不象低音单元那样需要抑制低频谐振峰,所以,对于高音单元,音箱的作用只是一个支撑。



●箱体一般用什么材料制造?



    箱体一般用木质材料制作,因为木材容易加工,表面处理之后能得到和家具一样的质感,容易跟居室环境协调一致。目前最常用的材料是人造中密度纤维(MDF)板,这种材料强度高,而且不易变形,不开裂,表面还非常平整,无须打磨就可以直接粘贴木皮或PVC装饰。有些音箱也采用刨花板制作箱体,刨花板也有不易变形开裂、表面平整的特点,强度也可以,不过一但受潮后就容易损坏,所以通常只用于廉价的低档音箱。还有用天然实木板制作箱体的,不过天然实木成本比较高,而且处理不当容易开裂变形,所以近年来的应用越来越少,一般只用于高档音箱,主要是取实木的质感比较高级(特别是名贵木材)这一优点。当然,箱体不一定非得用木材来做,用塑料、用金属甚至用石板都可以,但这些材料制作的音箱并不普遍。



●实木音箱的声音比人造板音箱好吗?



    不能这么说。理论上讲,箱体只要足够坚固不发生振动,用什么材料都没有区别。音箱的声音主要是由喇叭单元、箱体结构设计、分频器这三大要素决定,而跟箱体材料用实木还是人造板,甚至用塑料、用金属都没有关系。



●音箱是如何分类的?



    音箱的分类有不同的角度与标准,按音箱的声学结构来分,有密闭箱、倒相箱(又叫低频反射箱)、无源辐射器音箱、传输线音箱之分,它们各自的特点详见相关问答。倒相箱是目前市场的主流;从音箱的大小和放置方式来看,有落地箱和书架箱之分,前者体积比较大,一般直接放在地上,有时也在音箱下安装避震用的脚钉。落地箱由于箱体容积大,而且便于使用更大、更多的低音单元,其低频通常比较好,而且输出声压级较高、功率承载能力强,因而适合听音面积较大或者要求较全面的场合使用。书架箱体积较小,通常放在脚架上,特点是摆放灵活,不占空间,不过受箱体容积以及低音单元口径和数量的限制,其低频通常不及落地箱,承载功率和输出声压级也小一些,适合在较小的听音环境中使用;按重放的频带宽窄来分,有宽频带音箱和窄频带音箱之分,大多数音箱其设计目标都是要覆盖尽量宽的频带,属于宽频带音箱。窄频带音箱最常见的就是随家庭影院而兴起的超低音音箱(低音炮),仅用于还原超低频到低频很窄的一个频段;按有无内置的功率放大器,可分为无源音箱和有源音箱,前者没有内置功放而后者有,目前大多数家用音箱都是无源的,不过超低音音箱通常为有源式。



●密闭箱的特点是什么?



    密闭音箱的喇叭单元装在一个完全密闭的箱体内,这样,振膜向后辐射的反相声波就被箱体完全阻隔,不会跑到箱外去和振膜前方的正相声波相抵消,解决了“声短路”问题,使低音能够有效地辐射。密闭箱的低频衰减特性比较其他类型的音箱都平缓,形同一个二阶低通滤波器的衰减曲线,这意味着它具有各类音箱中最好的瞬态响应。同时,密闭在箱内的空气形成一个强劲的“空气弹簧”,能有效抑制振膜在谐振频率处的位移量,减少非线性失真。不过,空气的劲度也使喇叭单元的低频谐振频率上升,使音箱总体的低频下限比单元在自由空间的条件下有所上升,与倒相箱、传输线音箱这些设计相比,密闭箱的低频下限相对要差一些。还有,振膜后向的辐射得不到利用,致使其效率也要低一些。



●气垫式音箱和密闭式音箱是一回事吗?



    气垫式音箱最早由美国的H.Olson和他的伙伴J.Preston提出后获得专利,1950年代被AR公司推广,代表性产品是当时名扬四方的AR-3(港台的发烧友称之为“阿三哥”)。气垫音箱是密闭箱的一种,它的特点是使用高顺性的喇叭单元并将箱体设计得足够小,使箱内空气的劲度大大高于单元振动系统的劲度(一般要超过3倍以上),对单元的振动系统而言,箱内的空气对它的作用仿佛一个弹性强劲的气垫一般,这种音箱因此而得名。气垫音箱的失真低,瞬态表现相当好,曾一度深受欢迎,不过,这种音箱由于采用高顺性的单元,灵敏度一般比较低。



●倒相箱的特点是什么?



    倒相箱是目前应用最为普遍的音箱,它在密闭箱的基础上增加了一截导管(倒相管),导管一端跟箱内的空气连通,另一端通过箱壁上的开口(倒相口)通往箱外。当喇叭单元的振膜运动时,一方面直接对外辐射声波,另一方面又压缩(或扩张)箱内的空气,使箱内的空气从倒相口排出来,这样,倒相口就成了策动空气的“第二振膜”,如果设计得巧妙,倒相管-箱体系统可以刚好将振膜后向辐射的声波倒相180度(倒相箱因此而得名),这样从开口处辐射出去的声波就与振膜前方辐射的声波同相了,而同相的辐射使声能得到叠加,于是加强并延伸了音箱总体上的低频响应。倒相箱和密闭箱比较,同样的箱体容积能获得更低的低频延伸,而且由于巧妙利用了振膜的后向辐射能量,因而效率比较高。不过,倒相箱也并非十全十美,除了设计调试比密闭箱困难以外,开口处急速流动的空气容易造成气流噪声。另外,倒相作用本质上是利用声学谐振来达成的,因而由开口辐射的声波瞬态响应比较差。



●无源辐射器音箱又有何特点?



    无源辐射器音箱又叫空纸盆音箱,其实是倒相箱的一种变体,它的工作原理与倒相箱十分相似,只不过用无源辐射器代替了倒相管。无源辐射器的结构跟喇叭单元类似,有折环和辐射声波的振膜,但没有音圈和磁路系统,振膜的运动完全受箱内空气的控制。无源辐射音箱的特点跟倒相箱差不多,即用较小的箱体就可以获得较好的低频响应,效率也比较高,但它也有区别于倒相箱的特点。优于倒相箱之处是克服了倒相口容易产生气流噪音的问题,不过无源辐射器音箱具有比倒相箱更陡峭的低频衰减特性,意味着瞬态响应比倒相箱还差。美国Polk Audio公司是生产无源辐射器音箱最具代表性的厂家。



●传输线音箱有什么特别之处?



    传输线音箱与密闭箱或倒相箱的设计思路完全不同,它利用了1/4波长的传输线来达到吸收单元谐振、抑制振膜位移、拓展低频下限这些目的。传输线音箱有以下一些基本特征:低音单元后面接有一跟长长的导管(传输线),导管的长度取单元低频谐振频率(或稍高一点的频率)的1/4波长,为了实用化,导管通常折叠于箱体内部,看上去象一个迷宫;连接喇叭单元那端的传输线截面积至少比单元的辐射面积大25%,然后逐渐变小,到传输线的出口处刚好等于单元振膜的辐射面积;传输线内敷设羊毛或玻璃棉等阻尼物质。传输线音箱与密闭箱和倒相箱等设计相比,具有更为深沉的低音,但以英国著名音箱专家Martin Colloms为代表的一些人则认为传输线音箱较难避免因传输线谐振所造成的音染。




●什么是同轴音箱?



    一般的音箱,高音单元和低音单元由于平面地排列在音箱的面板上,所以它们的发声中心不可能重合为一个点,这样,高音和低音到达聆听者的距离就有差异,这种差异会导致相位偏差从而影响声像的正确还原。同轴音箱用的是同轴单元,这种单元实际上是高音单元和低音单元的组合体,高音巧妙地放置在低音振膜的中心处,因此能保证高、低音的声学中心是同一个点,从而解决了相位偏差的问题。最著名的两种商品化同轴音箱都是英国的产品,一个是使用“郁金香”同轴单元的Tannoy(天朗),另一个是使用Uni-Q同轴单元的KEF。



●什么叫哑铃式的单元排列?



    就是高音单元紧夹在一上一下两只完全相同的中/低音单元中间,形式上有点象两头大中间小的哑铃。哑铃式排列可以获得近似于点声源的发声效果,对立体声的声像定位有好处,所以近来这种设计比较流行。



●什么叫双线分音?



    常规的音箱只有一组输入接线柱,从功放出来的全频带信号用一组喇叭线送到音箱,在音箱内部才通过分频器将高、低音分开。双线分音(Bi-wiring)则用两组喇叭线来连接功放和音箱,让高、低音分道扬镳各走各的道,大家互不牵扯。双线分音需要把分频器的高音通道和低音通道的输入端分开,因此音箱必须提供两组接线柱。当然,能双线分音的音箱也可以采用常规的单线接法,只要用随箱附送的金属短路片将两组接线柱并接为一组就行了。



    类似双线分音,如果用三组喇叭线分别传输高音、中音和低音,这样的连接方式就叫三线分音(Tri-wiring)。不过,三线分音不如双线分音普遍。



●双线分音一定比常规连接好吗?



    双线分音主要理由是有的喇叭线适合传输低频,有些适合传输高频,如果分开传输就能按照不同的需要选择相应的线材,达到最理想的效果。不过,这种观点也只是一家之言,也有人认为双线分音弊大于利的,例如著名的音箱厂Dynaudio和Thiel就坚持不用双线分音,他们认为不同线材的传输特性不一致,会破坏高、低音相位的一致性,如果用相同的线,那又何必多此一举呢?



●为什么通常较大的音箱低音也比较好?



    音箱的低频下限和两个因素密切相关,一个是喇叭单元的谐振频率,一个是箱体的容积。在不装箱的情况下,低音单元的低频谐振频率通常被认为是单元的有效频响下限,口径越大的单元,谐振频率一般也越低,所以用大喇叭有利于还原更低的低频。此外,较大的振膜面积在同等振幅的前提下可以推动更多的空气,容易获得更多的低频量感。当喇叭单元装箱以后,其谐振频率受箱内空气劲度的作用会上升,箱体容积越大,空气对单元的作用就越小,谐振频率上升也就越小,有利于获得更低的综合低频响应。大音箱一方面便于使用大口径的低音单元,另一方面又有更大的箱体容积,所以低频通常比较好。



●音箱的主要性能指标有哪些?



    客观衡量音箱性能的技术指标有很多,我们在产品目录或音箱的说明书上经常看到的有:频率响应、阻抗、灵敏度、最大承载功率以及最大输出声压级。



    频率响应表示音箱输出声压级随频率变化的关系,如果画成图,就是一条以频率为横坐标、以输出声压(或者声压的分贝数)为纵坐标的函数曲线。这条曲线在中频段的总体趋势是水平的,当然中间可能有很多因为系统不够完美造成的小波动。在低频端和高频端,曲线出现下跌的趋势,音箱的输出会减少,通常把低频端和高频端的输出相对于中间水平段下跌3dB的那两点成为低频截止点和高频截止点,这两点之间的频带就是该音箱的频响范围。显然,频响范围越宽越好,这样就能还原音乐信号更宽广的音域。对于目前的音箱来说,高频端不是问题,早已达到音频的上限20kHz,有的产品还远远超出,困难在于低频端,一般书架箱达到50-60Hz左右、落地箱达到30-40Hz左右就很不错了。另外,频响范围内的曲线越平坦、波动越小越好,这表示该音箱对频带内的所有频率信号都能一视同仁地重现,不会出现平衡度的扭曲。



    阻抗通俗地说,就是对输入电流信号阻力的大小,单位为欧姆(Ω)。音箱最常见的阻抗值有8Ω、4Ω和6Ω三种,当然还有3Ω、5Ω、10Ω等其他值,但不常见。需要特别说明一点:音箱的阻抗只是一个标称值,音箱的实际阻抗大小是随频率变化的,譬如标称8Ω的音箱,只有在某些频率点上阻抗才为8Ω,在其他频率可能为10Ω、20Ω,另一些频率又可能低至6Ω或4Ω。阻抗随频率变化的特性,在音箱的阻抗曲线图上可以看得很清楚,这种变化增加了放大器驱动的难度。



    灵敏度是衡量音箱电-声转换效率的指标,单位是dB/W/m,含义为输入1W的功率时,距音箱轴向1m远处能获得的声压级大小,比如灵敏度90dB/W/m的音箱,表示输入1W的功率,在音箱正前方1m远处就能够得到90dB的声压级。灵敏度高的音箱比较节省放大器的功率,应该算优点。不过,有时灵敏度和其他性能指标不易兼顾,权衡之下,往往宁可牺牲一点灵敏度来换取更好的其他性能,这是因为目前大功率的放大器很普遍,价格也不算太高,灵敏度低一些不算很大的问题。



     最大承载功率是音箱的安全指标,表示该音箱能够长期承受的输入功率大小,低于此值的输入显然是安全的,如果长时间都超过这个极限,就容易使音圈过热烧毁。最大承载功率这一指标为我们安全使用音箱提供了参考,但也应该注意到“长时间”这个前提,短时间超过最大承载功率是允许的,例如音乐信号中有许多短暂的峰值,其功率强度超过平均功率的数倍甚至数十倍,但持续时间都非常短暂,也就是转瞬即逝,播放这样的信号,只要平均功率不超过音箱的最大承载值,则完全没有问题。



    最大输出声压级表示在失真不超过某一标准的情况下音箱最大的输出能力,通俗的说法就是这只音箱最大能够放多响。通常,家用音箱的最大输出声压级在100dB~110dB左右,少数高输出音箱可达120dB左右。显然最大输出声压级越高越好,如果这一指标过低,就容易出现动态压缩。



●评价音箱好坏的标准是什么?



    一款真正优秀的音箱,应该同时兼具优秀的客观性能指标和良好的主观聆听评价。优秀的性能指标包括宽阔而平坦的频率响应、很少的失真、快速的瞬态反应、高声压输出能力、高功率承载能力、合适的阻抗特性以及合理的灵敏度。而什么是良好的主观聆听评价,则是一门“艺术”了,每个人的标准不尽相同。理论上讲,既然音箱是还音系统的一个环节(而且是对还音质量影响最明显的最终环节),那么就应该绝对忠实地还原,音箱本身不带任何个性,不能对原音乐信号进行任何扭曲或修饰美化,如果达到或接近这样的标准,就是一款好音箱,这就是所谓“唯真派”的观点。然而也有人认为,既然音箱是用来再生音乐的,那么声音好不好听就是检验音箱好坏的标准,这就是所谓“唯美派”的观点。“唯美派”容许音箱对音乐信号进行合理的修饰润色,也不太在乎技术指标是否完美,只要放出来的声音“好听”就行了。“唯美派”的观点更适合我们这些把听音乐作为娱乐的爱好者,不过,对于什么叫“好听”并无统一标准,而且不顾性能盲目追求好听或者个性很容易陷入误区。因此客观地讲,即使“唯美派”认可的好音箱,也应该建立在保证基本性能指标的前提下。



●4Ω的音箱能否接8Ω的功放?



    这是一个十分常见的问题,也是一个典型的存在概念错误的问题。“8欧姆的功放”这种说法本身就不正确,提问者可能看到有些功放上标有“100W/8Ω”之类的字样,便以为这台功放的输出阻抗是8Ω,其实是个误解,正确的解释是:以8Ω负载为测试条件,这台功放的输出功率为100W。



    功放无论晶体管机还是电子管机,都属于恒压输出功放,其输出阻抗是很小的,晶体管机一般在0.1Ω以下,电子管机要高一些,但一般也在1Ω以下,而不是8Ω。晶体管功放的带负载能力很强,原则上接任何阻抗的音箱都可以,当然也要注意,阻抗不能低到让功放吃不消甚至过载,例如,接一对2Ω的音箱(假如有的话),大多数中、小功率的功放会吃不消。对于电子管功放,有一个“最佳负载”的问题,即负载阻抗为某个值时电路的性能最好,这个最佳负载阻抗通常为几千欧到几十千欧,而音箱的阻抗只有几欧姆,相差太大,所以要用输出变压器进行阻抗变换。电子管机的输出变压器一般设有不同的抽头,无论音箱的阻抗为多少,只要选择输出变压器上数值相同(或者接近)的那组抽头,都能够“映射”为功放需要的最佳负载。综上所述,功放在搭配音箱时,根本无须操心音箱的阻抗,晶体管机可以接任何阻抗的音箱,而电子管机可以通过选择输出变压器的抽头来适应各种阻抗的音箱。



●为什么有的音箱很吃功率,是什么原因造成的?



    两个原因:第一,可能音箱的灵敏度比较低。灵敏度相差仅3dB的音箱,要获得同样的音量大小(或声压级),输入功率相差就达到一倍,比如一只90dB/W/m的箱子,若要在1m远获得100dB的声压级,只要输入10W的功率就够了,而对于87dB/W/m的音箱,就需要20W的功率才行。倘若音箱的灵敏度差异有10dB,那么同样输出声压条件下的输入功率就达到10倍之差。比如将前面87dB/W/m的音箱换成80dB/W/m灵敏度的音箱,还是在1m远获得100dB的声压,所需要的输入功率就高达100W,比90dB/W/m的箱子高出10倍。



    第二,也许灵敏度不算低,但阻抗特性有异常。例如有些音箱,灵敏度87-90dB/W/m以上,已经不低了,但再看它们的阻抗曲线,在某些频率点的阻抗可能低至2Ω甚至1Ω,这么低的阻抗对于普通放大器而言已经接近短路了,还怎么推啊?肯定在这些频率处会产生很严重的过载失真。要驯服这样的音箱,只有出动Krell、Mark Levinson这些负载阻抗降至1Ω时功率还能保持线性增长的超级强力功放才行。如果同时遇到灵敏度又低、阻抗特性又怪异的箱子,对放大器的要求就更苛刻了。



●有人用功率只有几瓦的电子管功放推一对很大的音箱,这样做有道理吗?



    有人认为大音箱用的大口径喇叭很重,功率小的放大器推不动,其实是一种想当然,音箱对放大器功率的需求主要跟音箱的灵敏度有关,而跟单元的大小无关。不少大音箱,特别是采用大口径纸盆低音单元的箱子,例如美国JBL、Klipsch等公司的产品,其灵敏度都相当高,通常在90dB以上,有些甚至达到95dB以上,对于这样的音箱,用一台输出功率几瓦的电子管单端功放就可以将它们推至爆棚。有些发烧友可能知道,在日本,采用8W的单端300B胆机推高灵敏度的JBL音箱是一种很流行的玩法呢。



●我的音箱是100W的,用50W的功放推得动吗?如果用200W的功放推,会不会烧喇叭?



    首先要明确,音箱说明书或铭牌上标明的100W功率,是指音箱的承载功率,意思是说只要不长时间输入超过100W的功率,音箱就不会损坏,而不是指需要使用100W的功放。至于需要多少瓦的功放才能推动,主要看音箱的灵敏度高低和需要的输出声压级有多大,跟音箱的承载功率没有关系。一般说来,灵敏度特别低的音箱总是少数,而且普通家庭环境下需要的声压级也不会很大,50W的功放已经可以满足很多音箱了。当然,有些音箱的阻抗特性比较特别,对放大器是很严峻的考验,这时就需要大功率、高电流输出的强力功放才能驯服它们。



     再看第二个问题:用200W的功放会不会烧喇叭?这要看你怎么使用这台功放。确实,200W已经超出了该音箱的最大承载功率的一倍了,如果将音量开到最大,一直让功放处于满功率输出,那这对音箱必烧无疑。但这种情况几乎不会发生,没有人会把功放的音量猛然拧到尽头来使用的,事实上,当音量大到接近过载失真(破响)时,肯定不会有人再继续猛增音量(等于增加输入到音箱的功率)来使音箱彻底发出破响,反而会减小一些音量让喇叭发出正常的声音,这样,输入到音箱的平均功率始终都控制在它能够承受的安全范围内,就算功放的功率再大,也只输出了音箱能够承受的那一部分,又怎么会烧喇叭呢?相反,用大功率的功放提高了功率储备量,能避免瞬间的大动态峰值音乐信号出现过载失真,对保证放音质量还有好处。



●音箱铭牌上标的“20-200W”是什么意思,它的功率到底为多少?



    这不是音箱承载功率的指标,而是建议的放大器功率范围,即厂家推荐使用功率在20-200W这一范围的放大器来驱动。



●音箱在使用时,面网摘下好还是戴上好?



    面网看起来是薄薄的一层纱,实际上对声音辐射是有影响的,如果用仪器分别测一下有面网和无面网时的频响,你会发现二者有不小的差别。大多数音箱出厂时的测试和调校都在无面网的情况下进行,因此使用时也应该将面网摘下。当然,有少数音箱据说是在戴上面网的条件下测试和调校的,听音时就不宜取下。据说美国Avalon的音箱就是如此。



●家庭影院系统对音箱有什么特别的要求?



    家庭影院系统一般都采用环绕声放音系统,所以声道数多,目前流行的杜比数字和DTS系统要使用五只宽频带音箱构成前方和后方声道,另外还有一只超低音。对这些音箱的要求跟对高保真双声道系统的要求没什么两样,仍然是频响宽、失真低、音染少、瞬态响应好等共通的要求,原则上,只要听音乐表现出色的音箱,用于家庭影院也没问题,只不过那些动态输出能力较弱的音箱(如LS3/5A)不太适宜,否则遇到大动态的火爆场面时容易过载失真。由于中置音箱一般放在电视机上使用,因此应该具有防磁性能。另外,各个声道的音箱音色应该协调一致,最好用同厂家同系列的产品。
作者: zgmfx10akira    时间: 2012-4-30 15:59
音质评价“发烧语”的技术特性

翻开音响杂志,我们可以看到许多音响评论家的评述文章,尤其是现在,有关“发烧”的文章很多,里面使用的音质评价术语多种多样。尽管我国声频工程界已将有关主观音质评价的诸多方面(包括音质评价术语)进行了规范,并上升为国家标准。但在如今的音响发烧热潮中,发烧友们常常有自己的一套主观音质评价“发烧语”,因其语言生动形象,发烧味足,在发烧圈内十分流行。初入发烧圈的朋友,对发烧界的一些“发烧语”,要么似懂非懂,胡乱套用;要么浑不解,不明白到底是怎样一个意思。即使已有一些资历的发烧友,对一些音质评价“发烧语”的含义及技术特性也不是十分清楚。鉴于此,研究一下这些音质评价“发烧语”的含义及其技术特性就显得很有必要。只有明确了这些“发烧语”的含义,大家才能更好地相互交流、相互沟通;进一步弄清楚这些“发烧语”的技术特性,在自己动手制作音响设计才可以自如地掌握音质设计,在选购音响设备时,才可以根据其技术特性来想象音色,购得适合自己口味的音响设备。



现将一些常见的关于音质评价的“发烧语”归纳如下,并简述其技术含义。



1.声音有水份:中高频混响足量,频响宽且均匀,声音出得来,有一定的响度和亮度。失真小,混响声与直达声的比例合适。在听觉上感到不干、圆润、有水份。



具有相反意义的音质评价术语:声音发干,干涩。



2.声音柔软:低频段频响展宽,低频、中低频也得来,高频段无峰值且高频段下降。混响适当,失真小,阻尼好,在听觉上感到柔软舒适。



具有相反意义的音质评价术语:声音硬。



3.声音明亮:整个音域范围内低频、中频成份适度,高频段量感充足,并有丰富的谐音和谐音上较慢的衰变过程,混响适当,失真小,瞬态响应好,听感明朗、活跃。



具有相反意义的音质评价术语:声音糊,灰暗。



4.声音厚:低频及中低频量感强,特别是200~500Hz声音出得来,高频成份够,声能平均能级较高,混响合适,失真小,声音厚实、有力。



具有相反意义的音质评价术语:单薄。



5.声音清晰(清澈):频响宽且均匀,整个频带谐波失真和互调失真小,混响适度,瞬态响应好,中低频段适度,高频段没有噪声和失真,并能出得来。语言可懂性高,乐队层次分明,声音有清澈见底之感。



具有相反意义的音质评价术语:模糊,浑沌。



6.声音有力度:中低频段量感充足,高频成份不缺,混响足够,失真小,声音坚实有力且出得来。



具有相反意义的音质评价术语:力度不足,无力。



7.声音结实:中低频段声能平均能级较大,高频及中高频不缺,直达声比例较大,混响声适量,响度高,失真小,声音厚实、明亮。



具有相反意义的音质评价术语:声音空。



8.声音木:高频及中高频欠缺,低频及中低频成份较多,但量感不足,混响时间偏短,听起来不活跃、呆板。



9.声音缩:声能密度较小,声音送不出来;缺中音,混响声少,响声低,清晰度差,音色不丰满。



10.声音脆:中高频及高频成份过多,低频成份不足,整个频带频响不均匀,失真较大,声音单薄、不厚实。



11.声音发尖:低频量感不足,中高频段(2kHz~6kHz)提升过多,频响分布不均匀,失真大,在听觉上感到刺耳。



12.声音发闷:低频量感过强,特别是在150Hz左右,且低频段失真较大,瞬态响应不好,高频和中高频成份欠缺,在3kHz~4kHz以上严重衰减,高频混响不足。



13.声音发飘:声能平均能级较小,响度低,缺少中音,直达声不够,间接声过多,造成声音焦点不实,声像发虚且飘动。



14.声音发炸:声能密度过大,高频及中高频成份过多,且在高频段有噪音,有过载削顶失真。



15.声音发破(劈):声能密度太大,严重的谐波失真和互调失真以及过载削顶失真都会产生破的感觉,严重的还会伴有“噗噗”的杂声。



16.声音发沙:通频带失真较大,有附加的高次谐波,且伴有瞬态失真,听觉上感到声音沙哑。



17.声音发毛:高频有中高频成份过多,且在这个频段有噪音及失真较大,在听觉上有高频附加音,声音毛糙不干净。



18.声音发散:声音不结实,焦点虚,主旋律不突出,混响过大,中频欠缺,频响不均匀,听觉上感到声音凌乱分散。



19.声音发哄:低频中频某段夸张,有共振,频响不均匀,混中央委员太长,例如混响使用不当,就会有一种哄哄的“浴室效应”,在300Hz提升过多也会产生哄的感觉,影响清晰度。



20.铜皮声(或称金属声):中高频某段突出或在谐振峰,频响不均匀,失真大,欠阴尼,瞬态响应不好。质量不好的动圈传声器或高音扬声器,在听觉上常常会感到音质硬,且伴有一种铜皮声,俗称为金属声。
作者: zgmfx10akira    时间: 2012-4-30 16:01
电解电容知识!

在我们摩机的过程中,由于我们不能对设计部分做太多的更改,那么在摩电源的时候手段比较有限,在有限的手段中,更换滤波电容是一个非常重要的手段。

  为了更好地了解电解电容,现在先转引一些有关电解电容地知识:

  1, 标称参数
  就是电容器外壳上所列出的数值。
*静电容量,用UF表示。就不多说了。
*工作电压(working voltage)简称WV,应为标称安全值,也就是说应用电路中,不得超过此标称电压。
*温度 常见的大多为85度、105度。高温条件下(例如纯甲类功放)要优选105度标称的。一般情况下优选高温度系数的对于改善其他参数性能也有积极的帮助。

  2 ,散逸因数dissipation factor(DF)
  有时DF值也用损失角tan表示。DF值是高还是低,与温度、容量、电压、频率……都有关系;当容量相同时,耐压愈高的DF值就愈低。频率愈高DF值愈高,温度愈高DF值也愈高。DF 值一般不标注在电容器上或规格介绍上面。在DIY选取电容时,可优先考虑选取更高耐压的,比如工作电压为45V时,选用50V的就不很合理。尽管使用50V的从承受电压正常工作方 面并无不妥,但从DF值方面考虑就欠缺一些。使用63V或71V耐压的会有更好的表现的。当然 再高了性价比上就不合算了。
 
  3 ,等效串联电阻ESR 
  ESR的高低,与电容器的容量、电压、频率及温度…都有关,ESR要求越低越好。当额定电压固定时,容量愈大 ESR愈低。当容量固定时,选用高额定电压的品种可以降低 ESR。低频时ESR高,高频时ESR低,高温也会使ESR上升。等效串联电阻ESR 很多品牌可以从规格说明 书上查到。
  
  4, 漏电流 
  一看就明白,就是漏电!铝电解电容都存在漏电的情况,这是物理结构所决定的。不用说,漏电流当然是越小越好。电容器容量愈高,漏电流就愈大;降低工作电压可降低漏电流。反过来选用更高耐压的品种也会有助于减小漏电流。结合上面的两个参数,相同条件下优先选取高耐压品种的确是一个简便可行的好方法;降低内阻、降低漏电流、降低损失角、增加寿命。真是好处多多,唯价格上会高一些。有个说法,既电解电容工作在远低于额定工作电压时,由于不能得到有效的足以维持电极跟电解液之间的退极化作用,会导致电解电容的极化而降低涟波电流,增大ESR,从而提早老化。但是这个说法的前提是“远低于额定工作电压”,综合一些长期的实践经验来看,选取额定工作电压标称值的2/3左右为正常工作电压,是比较合理可*的。业余情况下可以对电解电容的漏电流大体上估计一下。把相同容量的电解电容按照额定承受电压进行充电,放置一段时间后再检测电容器两端的电压下降程度。下降电压越少的漏电流就越小。
  
  5, 涟波电流Irac 
  涟波电流对于石机的滤波电路来说,是一个很重要的参数。涟波电流Irac 是愈高愈好。他的高低与工作频率相关,频率越高Irac越大,频率越低Irac越小。传统的认为我们需要在低频时能够有很高的涟波电流,以求得到良好的大电流放电特性,使的低频更加结实饱满富有弹性,以及良好的控制驱动特性;实际上在高频时高的涟波电流对音色的正面帮助也很大,可以使高频有更好的延伸和减小粗糙感。
在我看见的摩机报告和烧友发的帖子中,80%以上的烧友在选择电解电容方面是缺乏相应的知识和经验的,买到什么品种抓上就换,根本不考虑其声音是否匹配。而且有的听友对滤波电容很不重视,比如我见过的一些台湾听友的报告,滤波电容用上了极普通的工业级的电容,然后把大把的钱花在接线柱外壳上,还美曰其名好钢用在刀刃上。当然,大家对电容把握不住,是和我国的实际情况有关。在我们现有的摩滤波电容的文章中,推荐的大部分电容都是日本货,比如说elna,红宝石,nichicon(篮精灵),当然还有日本化工等品种,由于我们一入道就接触这些电容,因此先入为主的我们就认为这些电容就是最好的电容。当然,玩胆机的朋友,眼界更为开阔,他们决不轻易使用这些日本货,而是想方设法地去寻找欧美货。根据本人这些年的实践来看,在上面的那些日本货中,除了ENLA的极少数品种和欧美品种和能有一拼外,其他的品种根本不是欧美货的对手。下面我就为大家介绍一些值得用的电容,为了使大家能够全面把握这些产品,我专门找到了相关厂家的网站,供大家查阅。

  据资料记载,最好的滤波电容是大名鼎鼎的SPRAGUE电容,也就是我们所说的思碧。据说在Krell、Mark Levinson、Cello等著名厂机里,电源滤波一定是由它来坐镇,此外还有为数多得数不清的音响厂家亦采用SPRAGUE电容。SPRAGUE电容是美国制的高级电解电容,蓝色胶皮包装,品质优异,性能稳定,而且寿命很长。以至于现在的胆机发烧友们挖空心思找寻这个品种的老电容。据说这些老电容性能还是异常优异,但是从我个人的应用情况看,思碧的油浸电容使非常优异的品种,本人买了四个油浸的0.1u的vq作为耦合电容换下了自己胆机上的wima电容,效果令人十分满意,要知道这四个电容外观旧的不像样子了。但是我用过思碧的电解电容来做滤波电容使用,效果不很好。既然这么好的东西我们为什么现在买不到了呢?原因很简单,在80年代中期,它已经被日本的Nippon Chemi Con (http://www.chemi-con.co.jp/english/... 拿 纸蠻NITED Chemi Con.虽然思碧被美国化工收购了,但两个厂的产品还是可以区分开的。早日美国化工生产的电容的外皮包装的颜色也仍和原来的SPRAGUE电容一样,是蓝色的,不过现在也变成了日本化工的棕色。在日本化工的外皮包装上,都有一个扁的盾牌图案,里面有Nippon Chemi Con,Nippon在上,Chemi Con在下,但是美国化工也就是思碧厂生产的只有盾牌图案,里面没有字。思碧被日本收了后,迅速按照日本化工的标准进行生产,导致质量明显不如思碧时代,首先同型号电容的体积就明显缩小,ESR、Irac等几项参数也打了折扣,价格便宜了许多。90年代初期。我开始对音响产生了兴趣,记得那时候邮购的电路板上经常可以看见美国化工的产品,可见那时候它的知名度还可以维持,但现在是维持不住了,现在的产品中很少能看见美国化工的产品。现在日本化工和美国化工的产品非常多,世面上的二手电容也很多,但是日本化工和美国化工的电容的使用寿命普遍不长,而且使用温度的上限一般在85左右,大家在购买这些产品时候一定要小心。我在一些二手的网站上看见一些黑心的*商居然把一对普通的日本化工产的400伏400u的二手电解电容卖到30元一对,居然还有听友去买,想这样的电容其实不会超过2元钱。据说正宗的思碧电容SPRAGUE声音沉稳有力、刚韧并举,跟相同容量的其他品牌相比较,SPRAGUE的声音会更加 丰厚温和,同时不失阳刚,通俗一点说就是柔中带刚。非常优秀的动态表现也是SPRAGUE的特色,但在我自己使用的过程中,发现自己试验的感受和资料上记载的还是有一定的出入的。**的36Dx型在DIY发烧友中口碑比较好。日本化工的产品lxz系列较好。

  在滤波用电解电容中,能够跟SPRAGUE叫劲的不多,但有一个品种完全敢和思碧叫板,那就是我们下面说的RIFA.在本人使用过的电解电容中,本人认为RIFA是天下第一!RIFA是瑞典一个具有60多年历史的老牌名厂。以空心或黑体大写字母“RIFA”为其商标特征。 有意思的是除去少数极品器材中偶尔可以看到RIFA那乳白色的身影外(例如Gryphon的DM- 100以及REF-1等旗舰功放;Mark Leivenson、Cello也少有使用),其他品牌中还真的很少见到。原因无他,RIFA的价格太贵了。作为DIY发烧友为求靓声可以一掷千金,而作为生产厂家就不得不考虑成本因素了。RIFA电容有最优异的指标,最长的使用寿命和最昂贵的价格,别的电容用上7-8年已经行将就木,但是RIFA电容用上7-8年还是像新的一样,台湾的听友文章中写到:人到中年经济条件好了,终于舍得买几个RIFA电容使用了,然后用到自己死,这几个电容还好好的。

  RIFA的 涟波电流Irac 、等效串联电阻ESR 等效电感等指标达到了目前所有电容中的最高水平。RIFA电容内 部的等效电感和等效电阻都非常的低,他所提供的电流非常大,充放电的速度极快,因此它 能应付强大的动态以及低频所需的大电流。相对于功放在低频大动态时的表现就不言而喻了。更可贵的是他的高频之靓少有匹敌。RIFA电容的声音一身“富贵相”,相同容量的电容低频的下潜没有思碧深,量感上也没 有思碧来的多,但是质感相当好,富有弹性,松而不肥、荡而不浑。中频段的形体质感饱满 坚实而不硬,高频段顺滑细腻、良好的空气感、丝丝入扣的分析力也是RIFA 的特点。被誉 为“极品中之极品”当之无愧。RIFA电容特别适合数字电路的电源滤波中,可以降低数码味。笔者打磨CD机时,将其应用于数 字部分的滤波电路,效果真的是非常好。这一点笔者感触很深。以笔者使用的经验看,RIFA电容不费吹灰之力 日制“补品”电容,打得落花流水。它的表现已不局限于高、中、低三频的改善,无论速度、动态、质感、密度,是一种整体素质的提升。真是一分钱一分货,贵的有道理。好在目前知道这个电容的听友不多,目前二手货的价格还没有炒得太离谱。这个品牌的电容我用过十多种,其中电解电容用过2个系列5-6种。

  还可以称为世界名牌的电容是德国著名的ROE电解电容,这个品牌的电容我用过7-8种,其中两款是电解电容。网上的资料说ROE电解电容在可以和SPRAGUE电容相比美,二者可说是欧美主力音响品牌中唯二的选择,但是对这种结论笔者不敢苟同。笔者认为ROE电解电容和RIFA电容还是有很大的差别的。欧洲的音响器材ROE电容用得很多,各种卧式立式电容在电路板上经常可见。说到SPRAGUE电容与ROE电容在HI-END 音响器材中的代表性,可以Krell的扩大机来做为典范,Krell的功率扩大机主滤波电容是sprague电容,输入级电垦放大与驱动级的电容器,便采用了ROE。Krell的前级以及数位器材也是依样画葫芦,特别的是Krell的前级以及数位器材里所用的ROE电容都一定采用一种猪肝色塑胶壳包装,EK材质的品种。ROE电容在以前大部份是金黄色的外皮包装,装在机箱内部线路板上金黄一片煞是好看,令人不由得联想起泛著黄金般光泽的音质与音色,澳洲有一ROE电容作为主滤波电容,在造型设计时并特别将电容器外露出来,以增加器材本身高级的质感。不过近来的ROE 电容,小数值的电容外包装已经改为黑色了,但黑色的ROE电解电容我还没有用过。其中标注为DIN--41 238型号的声音最靓。

上面简单地介绍了几个世界级的品牌电容,有些是从网上的摘来的,有些是我自己的感受,一切都是为了让大家更好的了解这些品牌,希望不算是抄袭。

为大家介绍一些我使用过的名牌电解电容。

  思碧的电解电容我只用过1种。那是80年代初期的D500那一款。这款电容是银色的金属外壳,两头出引线,红色的一头为正,是25伏1000u的。其外形和国产的cj-10电容很接近,但是要比那个电容大一些,拿到手里分量不太足,显得轻飘飘的。试音发现,这款电容的高频部分表现不那么突出,显得过于温暖,解析力不强,资料上说对那些本就朦胧不透的器材选用SPRAGUE时,校声过程中可能会麻烦一些,而对于那些中频干薄、高 频刺亮的器材,SPRAGUE就会英雄大有用武之地了。这个结论我是同意的。这款电容的低频也不太好,解析力和力度都不太令人满意,我不知道它使本身就如此还是太老了。但该电容的中频给我留下了很深的印象,它的中频非常舒展,令人非常放松,很像是一个天真烂漫的小姑娘,尤其像村姑。思碧的薄膜电容的中高频也非常疏松自然,和胆机搭配可以使胆气四溢,胆机高手首选思碧电容,是有他的道理的。

  相比世界上其他品牌的电容,RIFA电容的电解电容的品种相对来说很少,常见的也就是PEH-169,PEH-124,PEH126,还有PEG系列。两者的不同在于脚的排列。具体参见其网站。 (http://www.bravoelectro.com/assets/multimedia/erkat.pdf). RIFA的电容从来不标什么LONG LIFE(长寿命)和for audio(音响专用),但是寿命都很长而且声音都那么好,这和其他的厂家形成了鲜明的对比,在以上3个系列中,PEH-124的使用寿命最长,其网站提供的技术资料明确显示,该系列的使用寿命在30年,而PEH-169的使用寿命较短,标明的为10年。PEH-126的标称温度最高,可以高达150度。从网站上提供的参数看,这三个产品似乎并不是并行的产品,而是上下互相补充的产品。如PEH-124系列的耐压和容量都不大,那些大容量高压的品种都在PEH-169中出现。RIFA的产品外面都有一个比较厚的塑料绝缘套。PEH-169系列的电容是两个脚,接线要用螺丝固定。而另外两个系列的有三个脚,中间一个为正,两边各有一个为负,其外壳为负。横向引脚得就比较简单了,一个为正,一个为负。另外要注意的是PEH-169系列的电容里面有大量的电解液,摇起来哗哗响,一般来说要起来不响的,其使用寿命可能就不会太长了。

  我最先使用的RIFA电容是PEH-124的40伏1000u的电容,我用的是1995-1996年的产品。我用每组四个并联凑成4000u为CD的数模转换和运放供电。效果极佳。其效果主要表现在以下几个方面:1,音色极为优美,各音域表现异常全面,几乎无懈可击。2,速度非常快,决不拖泥带水,让你想起法拉利的赛车,该电容在小动态时优美动听,在大动态时从容不迫,轻而易举的完成爆棚,而且力度,音场让人都非常满意,你都想不明白这百万雄兵是从哪里冒出来瞬间又躲到了哪里。3,细节非常丰富,表达非常细腻,在我用过的这些名牌电容中,这款电容是最具有胆味的产品,有网友说该电容是去除数码声的利器,对此我完全赞同。思碧的电容本身胆味不浓,但可以和其他的元件配合,将胆气烘托出来。但这款电容本身就具有浓郁的胆气。该电容的好处不是用几句话就能说明的,我个人愿意用天下第一,无懈可击来对其做出评价。如果硬要找点其弱点的话,我觉得这款电容比较挑电,和含银的线搭配效果最好,和铜线搭配效果就差些,之前的供电部分越好,电容的效果就发挥的越好。另外就是这款电容的体积较大,在石机上用还还说,但是用在胆机上就比较困难了。因为胆机滤波电容的直径一般35mm,但是rifa的胆机电容的直径太粗,很难安装。这款电容几乎不发热。此前我的CD机原配的电容为nichicon(蓝精灵)电容,是muse系列,是一款音响专用电容,但是使用半个小时后,电容就非常热了,长期使用,烘得上盖板都温温的,但是,RIFA的多款电容无论怎么使用都没有一丝热量。

  RIFA电容的品质如此之好,到底是怎么做出来的了,总于有一天我忍不住好奇,忍痛拆了一个电容。很费劲的从引脚处拆开电容后,发现里面有一个很粗的纸卷,把电容里面撑的满满的,里面还有一些淡黄的液体,把纸筒挑出来后展开,发现其结构为两层纸和两条铝箔,一条铝箔为银色的,另一条为暗灰色的,纸和铝箔的宽度比135胶卷稍窄,长度约为1米左右,其中的纸带为白色,和中国的宣纸很接近,但是其质地比中国的宣纸更加细腻均一。据说该电容的音色和这种纸有很大关系,这种纸只有马来西亚生产,Cerafine系列的电容就使用了这种纸。

  我是后来拿到的拿到了PEH-169,拿到了PEH-169后,我一时竟然没有兴趣试听。因为这款电容是1982年产的,而且其外面的塑料壳磨的很厉害,显得非常旧,想想该电容的标称寿命只有10年,因此我也没有什么兴趣再试听这款电容了。偶尔有一天又看见了这几个电容,心想反正也没事干,不妨试试吧。安装后开机,其表现令人大吃一惊,其表现居然也那么出色。褒熟后再听,感觉其音场更加宏大,更加宽厚,其音色要比124系列温暖,更加宽厚和从容不迫。和思碧的薄膜电容相配,胆色过人。其低频也更有力度,在音场的营造方面,该电容做得非常好,各种声音定位准确但又不过分分离,音乐的整体感非常好,面对这该电容营造出的声音,有置身于融融月光之中的感觉。都20多年前生产的产品,现在的表现还那么好,真不知道这种电容是怎么造出来的。当然这款电容和124系列相比,在中高频部分有一些不足,解析力和通透性略差,声音也不是太细腻,不知道该电容就是如此还是时间太久的缘故。我感觉就我手上的产品来看,169系列的产品更适合在功放上使用。

  我用过的ROE的电解电容有两种。ROE电解电容具有鲜明的特点,其声音和银线的声音很接近,非常华丽,解析力高的惊人。其定位异常准确,高频非常顺滑。其低频下潜的很深。对于一个世界有名的电容,其低频下潜的很深,这并不出乎我的意料,但是其低频居然比RIFA下潜的还深,这是我没有想到的。但是其低频的力度不如RIFA控制得好,显得有些浑浊,低频得质感也不如RIFA,如果听交响乐,那么roe电容是首选,各个乐器的定位很清晰,表现的从容不迫,再复杂的音乐也可以交代的清清楚楚。roe电容是追求hifi效果的听友的首选,从技术的角度来讲,roe是难得的作品,但是其过于精确,导致其音乐性打了一定的折扣,听ROE的音乐,你很难有融到音乐中的感觉,你可以明显感觉到你和音乐之间的距离。太精确的东西就没有诗意了,哲学家狄德鲁说得一点不错。ROE和德国的WIMA都和德国人很相似,都很技术化,但是缺乏诗意。ROE的电容也基本上不发热,用很长时间后摸着还是凉的。但是ROE的电容上面不些出厂日期,这样很难判断其未来还能用多少年。

  ELNA电容我用过Silmic, ForAudio 和longlife系列。

  ELNA (参见网站http://www.elna-america.com/ptable5...菀灿辛?5年的历 史,可以说是日制电容业的老大。跟欧美一些名牌电容的外包装所不同的是ELNA喜欢在不同 型号之间,使用不同的彩色外壳封装,闪闪发亮刹是好看。ELNA的音频专用电解电容也不是 等闲之辈,在很多中、高档器材上都可以觅见他的影踪。特别是在高档日产器材上,几乎是 ELNA音响专用电容的天下,例如DENON的旗舰CD、顶班功放,SONY的顶级SACD、CD、功放, MARANTZ、金嗓子的顶班器材,欧洲的“音乐之旅”功放等等不一例举。

  在我用过的ELNA电容中,longlife系列表现一般,根本无法和欧洲货抗衡。Cerafine系列我没有用过,但从其网站大的资料来看,它采用和RIFA类似的原料和制造工艺。Silmic是一款值得一说的产品。SILMIC为为无氧铜引出脚,据说内部使用了蚕丝,该电容的介质损耗角t g &特别低,几乎达到MKP电容的数值。特别适合作级间耦合。该款电容的有些指标和rifa不相上下,甚至好于RIFA,但是蚕丝的使用注定了它的声音会稍硬一些,我觉得这款产品是为数不多的可以和RIFA一拼的电容,但是它缺乏RIFA所具有的细腻和胆气,它的高频很顺滑,但是过于顺滑,反而缺乏一种贵气。日本可以造出最好的工业品,但是造不出最好的艺术品,这一点在电容上也可以反映出来。建议听友在找不到薄膜电容做耦合电容时,可以采用Silmic电容来做耦合电容,根据我的经验来看,用电解电容做耦合电容效果令人很不满意,这时候,如果你没有薄膜电容的话,Silmic电容应该时很好的选择。不过这款电容太贵了,甚至比RIFA还贵,不划算呀,ForAudio也不错,但我觉得不如SILMIC。其实ELNA产品从大面上讲和欧洲货差距不大,但就是在细微处显露处差距。

  需要指出的是,由于国内的听友太认同ELNA的产品,国内正宗ELNA产品几乎难觅,假货很多。市场上所能看到买到的大多是OEM产品,国内就有厂家就在给ELNA OEM产品,能够买到台湾 立隆ELNA-SONIC 公司的产品也算幸运了。不过,在国内,投资者不久也可以见到全新的价格比较适中的RIFA产品了,RIFA在我国的已经设了厂,希望其品质不要有太多的降低。另外ELNA的产品寿命普遍不长,而且发热比较大,当然,这也很好理解,把一个电容的寿命做到30年,这肯定也不符合利润至上的日本传统。

  目前还有一个厂家的电容也很受烧友的喜爱,那就是英国Aerovox的电容,常见的标着BHC ,这家厂子的油浸电容很有名,这家企业目前已经被RIFA收购了,这家厂子的产品我一种也没有用过,有用过的听友不妨出一篇试听报告。

  目前simens的二手电容也很多,这个品牌的电容我用过一种,就是德西门子SIKOREL黑壳金字 2200u 100v电解。这款电解的 涟波电流据说比RIFA-169的还高,我也就是冲这花了两三年的时间才找到了两枚这种电容,这款电容的外壳是黑色的硬塑料,上面刻着金字。外观非常漂亮,但是声音令人不很满意。它的中频很疏松很宽厚饱满,音乐感很优异,但是速度偏慢,高低音都欠佳,尤其是高音不太好。由于它的中频异常出色,我舍不得放弃它,费了很大的力气来调整它的声音,但高低频的声音仍不理想,只好放弃了。我还用过几款西门子的薄膜电容,也存在类似的情况。

  在胆机用滤波电容中,美国的cornell dubilier的效果不错,它的直径是35mm,高度要比日本货高一倍,其声音和RIFA比较接近,但各方面都要比RIFA的声音差一些,但是相同耐压的RIFA电容的直径是75mm,无法安装。cornell dubilier电容的脚是2个较粗的接线柱,通过螺丝固定,而很多日本货是四个脚,直接焊接,因此在替换的时候仍然比较麻烦,我费了很大力气才把我的胆机上的四个滤波电容换好。
作者: zgmfx10akira    时间: 2012-4-30 16:02
[转帖]品牌发烧线材介绍

线材对部分Hi-Fi和AV发烧友来说,可说是一种又爱又恨的玩意儿。关于线材是否能改变声音或图像品质这点,我想大家应该是持肯定的态度;但是对于改变或改善的程度多少,则是争议之所在,同时也因为目前线材市场上的产品价格呈现两极分化的倾向,更让此议题-时间难以取得共识。如果暂时抛开一些其它因素,回归基本面,其实我们可将线材的基本要求作些简单的归纳:

    1.接触性良好,多次插拔后的耐用性好。接触性不佳,则容易造成声音或图像信号劣质化甚至断讯,这绝不是消费者所能接受的。而我们在使用各种影音器材时,不免会因保养、变更摆放位置、换机等不同原因,将线材多次拆下和插上,一条质优的线材绝不能因经过多次的插拔后即出现接触不良的现象。

    2.极低的传输损耗、良好的屏蔽性能。线材的主要目的是传输信号,所追求的终极目标应是将信号真实完整无缺地传输,不因线材本身材质和结构造成信号损耗或出现失真引致声染色。故好的线材本身的阻抗和容抗要与器材间形成良好的匹配,使信号得以百分百的传送。此外,现今社会高度发展,日常生活对电气电子设备的依赖较高,各种电器设备工作时所产生的电磁辐射更是充斥于我们的生活空间,若线材本身的防辐射屏蔽隔离效果不佳,这些电磁干扰、射频干扰等噪声便有可能干扰到正常的音频和视频信号,产生信噪比劣化现象,这可不是线材使用者所乐意见到的结果。

    当我们对线材的基本要求有了概略的认知后,再依据需要、用途和个人的预算来选择适合的线材,相信就不会面对数量惊人的线材品牌和型号时无所适从了。为此,本文从发烧线材的技术原理入手,力求深入浅出地介绍各种各样发烧线材的不同技术特点,以供发烧友了解后对发烧线材有一种较为科学的认识和了解,并希望对您选购发烧线材时有一定帮助。由于目前流行的发烧线材品牌多达数十个,型号更是数以百计,因此本文不可能一一详叙,只能从中选取一些有代表性的品牌线加以介绍,相信读者能触类旁通,融会贯通。

古河发烧线技术特点

    古河(Furukawa)是日本一家已有百年历史的电气制造公司,发烧线制造只是其一个很小的分支。目前,古河电工推出的发烧线材主要有三大系列,分别是PCOCC系列、μ导体系列和μ-OFC系列。和来自日本的其他线材品牌一样,古河极为重视导体的纯度及绝缘材料的光洁度,以及导线的线径、总股数;不讲究线材结构,强调以高纯度的导体材料来提升传输性能。我们知道,发烧线材最常用的是铜,其次是银,软特殊的也有用非金属材料如碳纤维来作导体材料。这里先介绍一下高纯度铜的有关常识,因为以下介绍的大部分发烧线材多以此为导体材料。

    依据不同的冶炼加工方法,可以将高纯度铜细分为OFC无氧铜、LC OFC铜、PCOCC无氧单结晶体铜、Super PCOCC铜等;依据其纯度来分则有4N、5N、6N、7N、8N等,其中N代表9(Nine),4N表示其纯度达99.99%以上,以此类推。OFC是Oxygen Free Copper的缩写,中文称之为无氧铜,这是在冶炼铜的过程中,因不加入氧化物及避免了氧化所生产出的铜线,纯度为99.995%,一般说来,这已是品质相当不错的导线材料。

    LC OFC铜则是在制造时采用特殊的抽丝工艺,将无氧铜的结晶颗粒变大,以增加导电性能,1m长的LC OFC铜线其结晶数约为20个,其纯度比OFC无氧铜略高,但仍在4N的范围内。但因LC OFC铜结晶体颗粒少,故导电特性要比OFC铜好。

    PC OCC铜是由Pure Copper by Ohno Continuous Casting Process缩写而来,指由以OCC铸造法所生产加工提炼出的高纯度结晶铜。这项由日本千叶工业大学的大野教授所研究开发的铸造技术,特点是从热溶的金属液中抽出金属丝(如将溶化的铜液抽成铜丝),经由冷却水快速冷却,同时去除杂质,进而得到单一结晶的金属。用OCC冶炼法抽丝出的高纯度铜线就是PC OCC。PC OCC的特点是单一铜结晶体大,倘若其铜线直径在0.3mm以下,其结晶体长度可达125m,整体铜纯度提升为99.996%,导电性更为优异。Super PC OCC则是将铜的纯度提高到6N,杂质含量更低,导电性当然比PC OCC铜更好。

    古河电工的PC OCC单结晶无氧铜采用连续热铸工艺,使铜结晶拉长且无间隙,2m长的PC OCC导线中的铜晶粒数只有1个,含氧杂质则在5个以下。古河所使用的μ导体,是一种把导线材料经退火工艺处理后与PC OCC复合后所得到的具有高疲劳极限的新材料,除保持原有材料的优良特性外,还增加抗拉伸、抗弯折、不易损坏的物理特性。μ导体是古河电工一种前景广阔的应用导体材料。 为了全面发挥影音器材的性能,古河特别提出了自己的"全PC OCC传输"理念,强调从电源线开始,器材之间的连线,乃至于器材内部的配线都应采用PC OCC导线。在"全PC OCC传输"理念的基础上,古河又运用"超平衡原理"(Hyper Balance,即模拟信号用平衡型导线传输,数字信号用非平衡型导线传输,在这一最佳搭配的基础上,又将隔离部分与信号传输导体部分完全分离。对于传输微弱的模拟信号,其衰减可降至极低),以及"静电容量均衡原理"(Evencap,即设法使高、中、低频率的静电容量值趋于一致,防止因低频的静电容量值上升而出现低频衰减,从而取得平衡完美的全音域传输特性)来制造出各种各样的系列发烧线材。

日立发烧线材技术特点

    日本日立(Hitachi)目前推出的产品包括有Melltone系列和量子系列发烧线材,所采用的是特殊的顶级OFC铜导线。所谓的顶级OFC铜,是指通过特殊的加工处理技术令存在于普通OFC无氧铜结晶粒内占有微小空隙的气体成分(特别是氢、氧)逸出,从而提高普通无氧铜的纯度。由于铜结晶中所内含的微小空隙会随着气体成分的排出而消失,因而这和LC结晶缝隙减少所取得的效果相同。日立将这种经过量子效果处理后生产出的顶级OFC铜做成导线,推出量子系列发烧线材。

    后来,日立公司又把原有的经量子效果处理的顶级OFC铜重新经过特殊的Melltone加热处理,一方面可保留顶级OFC铜导体内的巨大结晶构造,另一方面可减少在敷线加工时可能引起的导体内部歪曲变形。据日立公司称,即使长年使用,这种Melltone系列发烧线材的品质始终如一。

铁三角发烧线材技术特点

    日本铁三角(Audio Technica)在其发烧线材中使用了一种较为特殊的Hi-OFC铜导线材料,它是由OFC无氧铜加工而来,由于无氧铜内部的结晶体呈不规则排列,从而降低了导电性能。而Hi-OFC则是利用特殊的冶金加工法令无氧铜内部的结晶排列整齐,使电子流通更为顺畅,故导电性大幅上升。铁三角所使用的高纯度铜线材依等级和用途而有所不同,大体上包括有OFC、Hi-OFC及PC OCC,这三种铜材在导电特性的表现上虽然有等级之分,但三者都是性能极佳的导电材料。铁三角在运用这三种导电材料的方式上颇为特殊,并不象大多数的线材只使用单一导电材料,而是采用多种导电材料混合使用的方式,以撷取不同导线材料的优点,获得更均衡、准确的传输效果。

    如铁三角新推出的DVD Link系列信号线(共6款,包括AT-DV33V视频色差信号线、AT-DV38S视频专用S端子信号线、AT-DV66A音频专用的5.1声道信号线、AT-DV95D音频专用数字同轴信号线等),其信号线内的主导线为PC OCC,而其外部的编织屏蔽线为Hi-OFC。据原厂称,PC OCC导线有利于低频的传输,而Hi-OFC则擅长于中高频传输,二者合一后的优点是信号线传输频宽可达100MHz,非常适合DVD与即将商业化的DTV数字电视使用。

怪兽发烧线材技术特点

    美国怪兽(Monster)旗下的线材从中低价位到高价位,从音频、视频信号线到音箱线、数码线等都有生产,其产品可说是种类齐全、琳琅满目。其Z系列音箱线是怪兽结合自己多项专利技术制造的,其中有独家专利的Time Correct线材编织技术,这种技术能有效消除信号传输时的相位误差,让低、中、高频信号的传输速度一致,以获得较佳的音像表现。另一个Magnetic Flux Tube专利技术能将线材的电磁感应降至最低,以减少对信号的负面干扰。PEX特制绝缘体能有效隔离外界噪声,保持信号的纯净度,从而提高音表现。独家专利的Multi Twist编织结构能增加音频的清晰度,充分展现出声音细节。专利Duraflex音箱接线端子能有效防止因长期使用所遭受的化学变化及磨损,以延长线材寿命。这些专利技术都是怪兽独家研制开发的,也是其产品获得广大使用者肯定的关键所在。怪兽Z系列音箱线秉持其特有的专利线材制造技术、线材结构、导线编织方法,以多元化的产品组合带来绝佳的搭配选择,是值得发烧友们所关注的产品。

线圣发烧线材技术特点

     美国线圣(Audio Quest)公司的信号线均采用Hyperlitz多股李兹线几何线身结构,能消除线芯与线芯之间的互扰和集肤效应;外套为聚丙烯或特富龙绝缘材料制成,其低电容值能有效防止高频损耗。线圣的数码线和视频信号线已多达10多款,其Video One视频线使用特富龙绝缘外套,镀银长晶粒铜(SP-LGC)导线,镀银同轴插头,具有非常宽的通频带。Video Pro色差视频线使用HCF硬孔泡沫塑料作绝缘外套,以FPS实心银线作为导体,以双平衡方式组合而成,这种结构和SP-LGC有相似之处。而线圣S系列中的S-Video信号线所采用的导线比一般S-Video信号线粗四倍,而长度则相对较短。如S-1采用HCF绝缘外套,以镀银的长晶粒铜为导体,通过对称方式组合而成;S-1由两条75欧电缆组成,其中一条用来传输亮度信号,另一条传输色度信号,每一条电缆都采用对称式设计,除金属箔和编织屏蔽网层外,另外再用一条和芯线完全一样的SP-LGC铜线接地。 而线圣的AC-12交流电源线是市面上唯一采用Hyperlitz构造的电源线,线芯采用OFHC无氧高导性铜,UL PVC绝缘外套,设有铁粉芯RF射频滤波器。线圣Hyperlitz系列音箱线采用Hyperlitz制线技术,不但保持了李兹线的低集肤效应特性,而且还有比李兹线更佳的免除多芯线失真的能力,所以音乐信号传输准确,音色优美。

至高发烧线材技术特点

    美国至高(XLO)公司是一家著名的发烧线材制造商,至今已推出近10款不同系列的发烧线。至高Pro系列中的主要产品是音频信号线、音箱线、交流电源线,线材所使用的导体材料是4N OFHC铜(Oxygen Free High Conductivity Copper,无氧高传导铜),绝缘材料以聚烯化合物为主,如杜邦(Dupont)、Surlyn、Elvax化合材料。至高Reference参考系列线材具有低电容量、低电感量的特点,导线材料选用4N高纯铜或6N PLGC铜(Pure Laboratory Grade Copper),绝缘材料为美国杜邦生产的Teflon特富龙材料(即聚四氟乙烯),并且采用了至高两项专利制线技术,导线结构按照至高专利最佳屏蔽几何构造设计。

    至高Standard标准系列线材采用特殊的OFHC铜导线,杜邦特富龙绝缘外套,插头采用能克服磁滞现象的"最小自电感"无磁设计,能保证传输信号的畅通无阻。其中的一款T-0.2平衡信号线采用"共模抑制"相干平衡电路传输原理制成,无屏蔽设计,在各种噪声、电磁干扰及射频干扰的场合中使用,性能依然可*。至高最高级的Signature签名系列发烧线全部采用厂家独特设计的几何排列绕线方式,可以杜绝任何噪声干扰和声染色,其线芯全部采用高纯铜,特富龙绝缘外套,高级镀金无磁性低电感插头。

蝙蝠发烧线技术特点

    美国蝙蝠(Vampire)发烧线质优价廉。所有蝙蝠信号线的外套都是在105度高温下将聚氯乙烯挤压成形的,其中SC 2 Twin Axial信号线采用两组中心导体,每组中心导体由60多股镀银无氧铜组成,采用低电容值和均匀电感量的聚乙烯泡沫绝缘外套;该信号线具有两层屏蔽,即一层编织铜网,外加一层导电PVC,有同轴和平衡插头供选择。SL Twin Axial Pure Silver信号线采用两组拉丝成形的纯银导线,每组纯银导线由7支银丝组成,聚乙烯绝缘,线身内填满控制电容量的特殊纤维,采用铜箔及银铜编织网双层屏蔽,有同轴和平衡插头供选用。蝙蝠公司采用了最新的制线技术推出了Hybrid OFS-Clad OFC系列音箱线,其中心导线采用一半OFC铜线和一半镀银OFC铜线绞合而成,其声音表现平衡,细节再现入微,没有早期镀银导线那种声音过于光泽和硬性的表现。

至尊发烧线材技术特点

    美国至尊(Magne Turbo)线材采用从澳大利亚的铜矿中冶炼出的铜,并经精细提炼后的单结晶铜制成,同时经由美国HNS实验室技术授权,使用由其开发的"磁场增压"技术才完成。据原厂资料称,HNS实验室是美国一家民营高新技术企业,以提供新概念和实验室高新技术为主。至于"磁场增压"的技术细节,厂家则是密而不宣,但是强调这种技术确实可以使人在听觉上发现差异。 据Magne Turbo的资料介绍,最普通最便宜的信号线,与价格高昂的发烧信号线同时以专用仪器测试,发现除了电阻及电容、电感等规格上的差异外,其频率特性在可闻音域范围内并无差别,要到200KHz以上才有较明显的差异。虽然这已超出人类听觉的可闻范围,但是其音质表现的差异在听觉上是非常明显的,亦即导线的性能除了电气规格影响电路的匹配外,还有其它影响声音的因素。导线在传输电气信号时,从物理角度看是导体中电子移动、碰撞的结果,这些电子运动会受到许多量子力学的因素影响而导致差异,而磁场增压技术就是从量子力学的角度,来提高导体的导电性,改善信号传输效果。

飞谱发烧线材技术特点

    来自法国的飞谱公司(Fadel Art Products,FAP)所生产的发烧线材均采用纯手工制造而成,并且飞谱线材多会在线身某处设置有一个神秘黑盒子(具体技术原理飞谱不外传,只知功能类似滤波器),其声音纯净,节奏起伏有条有理。飞谱信号线如IC-20S采用完全对称线身结构设计,带有3组频率速度修正器,特富龙绝缘外套,以5支完全分离的单芯镀银铜线绞合成导线。音箱线如The Stream line采用李兹卷线方式将纯银和无氧铜导体组成分别独立的6组导线,带有的3组修正器能分别修正导线的阻抗特性、相位及延时,用空气绝缘方式来避免信号的声染色和其他失真。

    据飞谱资料介绍,所使用的黑盒子型号有MB-10、MB-10BW、SB-10,这种特殊的黑盒子能够修正导线传输信号的相位误差,修正导线的阻抗特性和群延时(仅对MB-10BW而言),从而再现正确的音场及强劲有力的低频。

音乐丝带发烧线材技术特点

    由美国Nordost公司生产的音乐丝带(Flatline)发烧线结构独特,其推出的音箱线均为扁平状外形,采用冲挤处理制成,特富龙绝缘外套,具有极低的偏差,电气特性佳。音乐丝带的音响导线采用4N-8N单结晶体无氧铜及纯银作为导体,以圆形单支或扁带状垂直平行排列,可有效降低集肤效应及磁场互感效应所造成的失真。每支导体均以独立绝缘处理,通过专利的特富龙(Teflon)挤压成型处理技术,使导线内部绝对真空,防止导体在制造过程中受空气或其他物质污染;同时亦可准确固定导体之间的距离,加上特富龙本身是一种能提供恒定电介质的绝缘体,令电容值处于极低值并保持不变,从而减少信号中的相位失真。此外,低电感特性亦对重播音质有益,音乐丝带音箱线的电感较传统音箱线低得多,低电感使得线对电流的改变反应更快,如果要将音箱驱动至最高潜能,这点很重要,音乐丝带音箱线能使音乐最细致的声音准确清晰地重播。

    扁平导线较同等粗度的圆导线具有携带更多电流的能力,这是因为扁平导线增加了表面面积,使散热效率高,工作温度低,导线的分子振动减少,因此携带电流能力与物理性更粗的圆导线相同。音乐丝带音箱线的信号传输速度达到光速的95%,这是因其独特的几何构造及绝缘技术才能达到以如此快的传输速度。这个优点使得其重播高频信息特别清晰、瞬态响应较佳。音乐丝带导线具有非常好的电流传输特性,在放大器和音箱之间的高电流传输可产生更佳的低音及增强整个声音的重播。这种扁平导线的上升时间快,它的"介质滞"效应较市面上的任何发烧线均低,由于介质滞性可改变导线的介质数,故当介质系数低时,电流流动更自由。由于音乐丝带导线对电流的改变迅速,故低音更胜许多Hi-End级的音箱线。

NBS发烧线材技术特点

    NBS别称蛇王线,从其英文NBS(Nothing But Signal字首缩写)可知,这家公司十分注重信号传输的真实性。据NBS原厂资料称,导线最易受到电磁干扰和射频干扰的侵害,这些干扰是以嘶嘶声形成渗入音频声中,从而引起声失真。而市面上不少导线是通过采用某种装置来滤除各种噪声干扰,虽然这在某种程度上可以消除噪声,但这种装置本身的"声音"亦给加进声音地台上。而NBS导线采用专利的PFIN被动式电感网络,并结合手工编织、高纯度铜导体、金、铑、铬、特富龙绝缘、银网屏蔽、银焊点等技术要点综合而成。

    NBS目前有魔幻系列、响尾蛇二代系列、经典三代系列等多款音箱线,越是高档的系列,所使用的专利被动式电感网络越精密,技术性能相应更优越。据NBS称,其旗下不少的音箱线在全音域范围内,可降低射频及电磁干扰达98%。其每款不同形式、不同长度的线材,在线身结构上是各不相同的。而NBS信号线所使用的同轴接线端子是该厂独家设计的,采用镀金、铍的纯铜材料制成,除能有效排斥电磁和射频干扰外,还具有较大的电感值。NBS大部分音箱线将两声道正负导体分离,并以一粗一细的独特线身设计而成,能取得最低干扰及加速信号传输效应,有效提高音箱中的喇叭单元的控制力和能量释放。与此同时,将放大器和音箱之间的传输阻隔彻底消除。

科技线的技术特点

    美国科技线(Harmonic Technology)的线材种类众多,涵盖同轴、平衡信号线,音箱线,电源线,色差视频信号线、数码线等。据厂家称,科技线是采用抽真空之液压慢速铸拉技术,将7N纯银或6N纯铜,在低温下以专利的单结晶(Single Crystal)OCC冶金技术铸拉线芯;配合专利全平衡式绞合编织线技术,严密周全的屏蔽处理和一丝不苟的焊接工艺制作而成。从而将音乐信息经导线全息全情地传送,全面发挥导线设计极限。

敏力线之技术特点

    德国敏力线(Monitor Cable)的历史悠久,所生产的信号线和音箱线均有标准系列、极品系列两大类,导体材料从多股无氧铜到镀银产品均有多种选择,并且全部是自行生产。敏力线的技术特点包括有:MSR磁流反射带技术,TDC时差调控技术,特富龙绝缘外套,用特殊的Ferrite Core铁线芯杜绝干扰,使用镀镭可锁式XLR插头。如极品系列信号线中的00978212(型号),采用镀银线芯及内层屏蔽网,在线身头尾各四分之一长度,线芯扣内层屏蔽会互相换位置达成对称式信号传输的全新设计,Symmetrical Response配特富龙绝缘体同轴插头,线头配Ferrite Core铁芯以杜绝干扰。极品系列音箱线中的00971130,采用黑色外套,内层红、白两条正负导线(各长3米)对称平衡设计,高纯度PC OCC无氧铜线芯,独有TDC时差调控技术,配有镀金Y插及香蕉插头。其声音品质及性能精确度同时达到一种较高的水平。

MIT发烧线材技术特点

    美国MIT发烧线已有近20年的历史,人们对其最深的印象是它每条线身上都有的那个金属盒。这个盒子是MIT令音乐重放完美的"灵魂"所在,它包含了MIT独家的线路、电阻、电容等元件,使不同频率的信号能在同一时间传输,不会产生时间上的延迟,也不会损失传输信号的电流量,保证信号及动态能原汁原味地传送。据MIT称,目前市面上仍未有一条能本身百分之百保证所传输信号没有损失的导线,不管在编织、屏蔽、接地等方面下功夫也未能达至百分之百效果,而MIT独家设计的这种线路(指金属盒内的线路)正是针对导线本身缺点而设计,所以是接加在导线中的。针对不同导线的缺点,不同型号的MIT导线采用不同的线路。

    MIT独步天下的模件式线路如CVT连结、IT输入终结者、OT输出终结者等深获好评。如其极品高级系列中的MI-330 shotgun信号线、MH-750 shotgun音箱线采用了MIT独家专利的四种线路技术:ISN阻抗匹配、OSN输出匹配、SEVO轰天炮界面、NSMNT多重噪声消除线路;其中MH-750 shotgun轰天炮音箱线设有单线、双线分音型号,MI-330 shotgun轰天炮信号线备有单端同轴及平衡端子两种接口供选择,并且分高、中、低三种阻抗款式以配合不同类型的放大器。 而其示范级系列之中的MI-350 shothun EVO信号线和MH-850 shotgun EVO音箱线,则采用了MIT独家专利的6种线路技术:SIT音像稳定线路、IT输入终结者、OT输出终结者、SEVO轰天炮界面、CVT连结及IST音像选定技术。如厂家称,SIT技术 能令结像凝聚、准确,质感强烈,JFA噪声消除技术,可提供干净无瑕的背景,令微细音乐信息和动态表现得以重现。而MIT最新的旗舰Oracle音箱线设计更独特,其中的V1音箱线的模件式设计可提供最方便及容易的接驳方式,其模件可升级,整个模件(即金属盒)采用机械震动导向式避震设计,可将震动对线材的影响降至最低。V1音箱线频宽甚阔,易于匹配各种放大器和音箱,甚至对SACD和DVD Audio的5Hz-100KHz频率亦应付自如。

超时空发烧线材技术特点

    美国超时空(Tara Labs)是一家著名的发烧线材制造商,超时空认为:一件优良的音响产品是要经过主观的试听和客观的测试互相协调之后才可得出来的,所以超时空的发烧线材都是经过数字方程式计算,精密的测试和广泛的人耳试听之后才生产面世,这样可以保证它们拥有优异的表现和适应配搭任何类型的音响系统。超时空的设计哲学有三大原则:一,一个简单且容易实践的设计才是好设计;二,产品要能够准确地重播音乐;三,产品应该要有更杰出的表现和较合理的售价。超时空选用的铜采自澳大利亚的一个铜矿,该铜矿是世界上已知纯度最高的三个铜矿之一,经过独有的退火步骤来把纯铜导体作进一步软化以加强它的导电能力。

    电介质方面,超时空采用的材料是独有的航天级聚乙烯,由于经过化学处理,所以它具有较低的电介吸收率和高电介宽容度、较佳的弹性。与其它电介质相比,航天级聚乙烯远比特富龙更低的温度便可挤压成型,所以它所包裹着的纯铜导线可以保持它的特别退火性。超时空发烧线的导体有一个特别的直径厚度,因而在信号流经时,由于集肤效应的关系,在20KHz以下有最小的直流电阻力和衰减量。这个最佳的直径厚度是由超时空独有的数学方程式计算出来,然后他们利用已知的物料电阻力和导体需要保持线性的较高频便可以决定用任何物料所制造的导体之最佳直径厚度。

    另外,超时空还和美国太空署合作,取得和谐合金(Consonant Alloy)物料之独家使用销售权。据有关实验证明,和谐合金的导电量比现今市面上绝大部分的发烧线要高,导电性能超过8N纯铜,无论是声音的空气感、超低频、音场和定位均有极明显的改善。因此超时空将和谐合金用于RSC方芯铜系列发烧线上,务求本身效果已达登峰造极的RSC方芯铜系列发烧线有如虎添翼之效。拥有多项专利技术的超时空于1997年初推出其顶级的The One"天下第一线"信号线、数码线和音箱线,被誉为世界上最原音、通透和自然的线材之一。这里作重点介绍。

     The One线材的导体来自第二代方芯铜,物料为和谐合金。在进行线材挤压成形处理的过程前,所有的方芯铜导体被打磨至镜面般平滑,目的是令屏蔽层紧贴导体,防止两者之间产生缝隙或气泡导致高频失真。电介质方面,The One使用的是新一代"真空玻璃球体聚乙烯"电介质,可确保导体音染最低、无干扰。安装在The One专利吸震环上的原料,来自航空航天所用的高谐震铝合金。吸震环内里注有阻尼物,与铜合金插头紧扣时即抵消共震,令器材谐震无法干扰线材,效果如器材加上脚钉一样。试听结果试明,安装了吸震环的The One音场更阔、空气感更强,拥有更清脆的高频和更佳结像力。

    The One信号线使用2条第二代方芯铜导体以螺旋线形状运行于特富龙空气芯上,外面卷着多层条状特富龙,以使屏蔽网与导体分隔更远,有效降低电容量。纯75欧设计的The One数码线,用料与信号线相同。各型号均配备有吸震环、可锁式超时空插头,防静电单纤维辫带和ISM矩阵式全屏蔽系统。

    The One效果之佳,归功于超时空所发明的全隔离式网屏系统以及克服电磁和射频干扰的全新理念。The One信号线和数码线是世上首次使用IFS全隔离式网屏(Isolating Floating Shield)的发烧线。在这之前,一般信号线使用单端接地法来消除电磁和射频干扰,缺点是被吸收后的干扰易反馈到器材电路板上。

    The One所用的全隔离式网屏两边不接地,网屏跟器材及线材无任何接触。当这个网屏接驳上FGS地盒后,网屏所吸收的干扰从导线表面传送到独立的地盒。IFS隔离式网屏只是ISM矩阵式全屏蔽系统(Isolated Shield Matrix)的一个部分,全套ISM系统包括装有IFS的The One信号线和一个Ground Station地盒。地盒共分两类,同样采用军用级铝合金制造,此原料比一般铝合金重量超出18.23%,坚硬度更胜标准航天级铝材,可有效降低射频干扰和机械式谐震。Floating Ground Station大地盒内里装有铁化矿物质陶瓷支柱,能有效吸收干扰。当ISM矩阵式全屏蔽系统工作时,信号的背景噪声明显减少,微细信号分析力倍增,音场空间更为明显。

    The One音箱线由35条第二代方芯铜导体构成,正负排列,以螺旋线形状运行于特富龙空气芯上。跟信号线一样,The One音箱线同样使用新一代的真空玻璃球体聚乙烯电介质,采用平衡排列方法来降低导体间的电感量。这是一款在技术设计上具有突破性的音箱线。

范登豪发烧线材技术特点

    荷兰范登豪(Van Den Hul)发烧线材中最为人津津乐道的是它用非金属材料碳纤维制成的发烧线,不过它也有用铜、银制作的发烧线。下面来看看范登豪发烧线的技术特点。

    据范登豪多年的技术研究,认为金属导线存在交越晶体失真(Cross Crystal Distortion,简称为CCD)。大多数的金属,是由大小约为0.1-1毫米的大量晶粒组成,每个晶粒是一个单晶体。晶粒内分子、原子都是有规则地排列的,但每个晶粒的大小和形状不同,而且取向也是凌乱的,所以这种晶体没有明显的外形,也不表现各向异性,称为多晶体。如此多的不同晶体聚集在一起,数量巨大,当音频信号经其一条金属导线传输时,从微观角度看,音频信号是在晶体之间"跳跃"传输的,并且晶体还大小不一,这样的界面传输,就产生了CCD交越晶体失真。CCD易产生"假泛音"再现"平滑细节"的假音响效果。

    为尽量消除金属导线的交越晶体失真,范登豪通过机械加工方式,给纯金属导线外加一层金属套。如给纯铜导线外覆一层银或金外套,然后再用绝缘套再包覆一层,以隔绝电磁干扰和防振。另一种方法是在真空状态下,给纯铜导线真空喷涂一层金膜或银膜,范登豪的SCS系列线材就采用了这种方法。范登豪线材使用的是一种不含卤化物的优质PVC聚氯乙烯材料-Hulliflex,这是一种崭新的环保材料,能进一步防止化学性及温度性影响,具有良好的绝缘密封性能;其机械强度是常规PVC的三倍,但柔软度却比传统塑料更好;因此Hulliflex材料具有化学性能稳定,使用寿命长的优点。

    最近,范登豪独家开发出"极温熔合技术"(Fusion Technology),据介绍,其处理过程是:首先把高纯度的铜、银、锌放入冶炼金属的真空烤炉里进行高温蒸发处理,蒸发过程中之强力电场令三种金属原子聚合起来,形成一条直径150微米的超合金导体;处理程序经过严格控制,保证合金处于最稳定状态。随后合金导体再通过最关键的制作程序即"极温熔合处理",令铜、银、锌三种纯金属完全熔合。当熔化的合金正处于极度高热的情况下即时作急促冷冻,降温速度为每秒钟一百万摄氏度,令合金结构变成无定形状态,处理过程必须经过精密监控。合金在瞬间极温变化下被即时凝固,令金属原子不能恢复原有的晶体结构,新原子结构不再有金属晶体间的交接面,形成不结晶合金导体,令信号能直接传输,超高频信号毫无阻隔。

    利用极温熔合技术生产的不结晶合金导体,范登豪最新制作了一款Integration Hybrid合金信号线,它采用四芯双平衡式设计,每组不结晶合金导体以LSC碳纤维(随后有介绍)层紧密地包覆,直接加强电子流通性,并且保护金属导体免受空气污染,令接线长久保持最佳状态。该线采用特制三重屏蔽,两层独立金属屏蔽以合共180支OFC铜包上纯银制成,并以螺旋式相反方向紧密地环绕覆盖着4条信号导体,而两层金属屏蔽中间是一层LSC碳纤维,以彻底消除各种干扰。该线采用Hulliflex绝缘外套,为Integration Hybrid合金信号线提供最佳保护。

    经过多年研究,范登豪最终确认可拉直成线的高纯度、高饱和度的碳纤维非金属材料来取代金属材料制作导线。范登豪通过特殊的加工技术把纯碳加工成单晶碳纤维,即让碳原子整齐有序地排列在一个大的碳分子中,因此不会产生交越晶体失真。范登豪把这种碳纤维材料称之为:线性结构碳纤维(Linear Structured Carbon,简称LSC)。和金属材料相比,碳纤维材料具有以下优点:一,每根碳纤维直径为6微米,而金属丝最细直径只有25微米,可随意弯曲而不变形;二,拉丝成形的碳纤维强度高,不会因外力作用而产生内部微观结构的位移和断层;三,耐高温,即使在2000摄氏度高温时,也不会发生化学反应产生一氧化碳或二氧化碳;四,对各种化学反应具有较强的惰性,即使在非常恶劣的环境中,其内部性能和特性均稳定不变。

    范登豪目前已推出3款纯LSC碳纤维发烧线材;The Frist同轴信号线,中心导体由1.2万根LSC碳纤维组成,外覆由3.8万根LSC碳纤维组成的屏蔽层,采用Hulliflex绝缘外套。The Second平衡信号线,有2条独立的1.2万根LSC碳纤维组成的导体和4层屏蔽层,具体结构是2条碳纤维导线先外覆两层铜金属屏蔽箔,然后再直接包覆2层碳纤维屏蔽,同样采用Hulliflex绝缘外套。The Third音箱线由340万根独立屏蔽的LSC碳纤维丝组成,音色自然平滑、柔顺悦耳,声音具有活生感,极为耐听。
作者: zgmfx10akira    时间: 2012-4-30 16:03
CD與DVD (張文俠)

CD的發明

最早的CD (Compact Disk),係1980年由Philips與Sony所發表的,原來只是為了家電消費市場所設計的,當初並沒有想到CD將來可以用於電腦的用途,因為那時候連286的電腦都還沒有,當時電腦的資料儲存還在5.25吋的磁片階段,連3.5吋的磁碟都還沒發明呢。
在CD尚未發明之前,音響系統都是屬於「類比式」的,音樂的來源大多是30公分直徑的LP唱片、收音機,以及錄音機等,CD發明之前根本就沒有數位音響,因此CD可說是繼電晶体以來最偉大的發明。
自CD出現在音響市場之後,30公分直徑的類比式LP唱片就開始慢慢隱退(雖然到現在還有小部份死硬派的音響迷始終不放棄傳統類比唱片,但那終究只有小部份)。自CD之發明,以後所有有關CD的同類產品,包括DVD均是由此衍生的。
CD光碟機起始於1980年,由荷蘭的Philips公司與日本的Sony合作所發表的音樂光碟(Audio CD),亦稱為CD-DA (Digital Audio),從此之後,因其它媒体市場的發展而連續推出一系列的光碟規格與產品:

1.CD-DA型光碟機
  CD-DA (Compact Disc Digital Audio)即一般所稱的CD音響,也是CD系列光碟機的始祖,由Philips 與Sony公司於1980年發表,主要應用於音樂的儲存,由於其具有數位式的高品質音質,所以數年之內即風行全世界,並逐漸取代LP唱片與卡式錄音帶,現在所有的CD系列產品幾乎都是由此衍生的。

2.CD-ROM型光碟機
  由於CD光碟片有容量大、成本低的優點,很快被考慮作其他應用,於是Philips與Sony兩家公司於 1984年共同發表CD-ROM,專門用來電腦資料的儲存。

3.CD-I(Interactive)型光碟機
  1987年由Philips公司發表,此機器具有交談式(Interactive)的功能,不需要透過電腦,可直接接到電視機輸出,使用者可經由遙控器與主機溝通,主要針對消費性電子產品市場。

4.Photo CD型光碟機
  Photo CD由Kodak及Philips公司共同發表,Photo CD系統中可將相片底片掃描並轉換成數位化的Photo-CD格式後存入光碟片中,在直徑12公分的Photo CD光碟片中可儲存100張以上的相片,每一張相片以五種不同的解析度儲存,最高解析度達072x2048pixels。

5.Video-CD型光碟機
  Video-CD(簡稱VCD),係由Philips、 Sony、 JVC、 Matsu**a公司共同開發的,採用MPEG-1壓縮方式儲存全銀幕(Full-Screen)、全動作成(Full-Motion)的數位視訊(Video)及音訊(Audio),在直徑12公分的光碟片中,最多可存入74分鐘上述的訊號,主要應用於電影、卡拉OK等影音播映。

6.CD-R型光碟機
  CD-R (Recordable)光碟機為僅寫一次型光碟機,不能擦拭重寫,其讀取原理屬反射式,其光碟片較唯讀型多一層有機染料(Organic Dye)構成的記錄層,供使用者作一次資料寫錄。CD-R碟片可在CD-ROM型光碟機上讀取資料,主要應用於僅須寫一次不再更改資料之儲存,目前已成為電腦很普遍的儲存設備。

7.MODD型光碟機
  亦即MO磁光碟機(Magneto-Optic Disk Drive),可以多次重寫,碟片中記錄層為磁光材料,重寫資料時須先將舊資料抹除後才能寫上新資料,目前較普及商品化的磁光型光碟片之容量為230MB/3.5英吋、640MB/3.5英吋及1.3GB/5.25英吋三種。

8.MD型光碟機
  迷你光碟(Mini-Disc)有MD-Audio及MD-Data兩種,又分唯讀型及可錄型,直徑只有2.5英吋,容量140MB,可播放74分鐘音樂,與一般12公分CD-DA碟片一樣,可錄型碟片中記錄層亦使用MO材料,可多次重寫,主要應用於電腦資料儲存。

9.DVD光碟機
碟片尺寸大小和 CD碟片一樣,直徑12 英吋,單面可記錄容量為 4.7GB,約為目前CD碟片的7倍,最初設計亦應用於影音的播映,可收錄一部133分鐘之電影,不僅其記錄容量增大,畫質及音效品質方面亦超越LD。 DVD光碟片可用於記錄影像,聲音,資料等數位訊號。
全世界的業者經過會議的通過,而定訂各種CD的規格,並以顏色來區分。
種類 全名 規格書 年代
CD-DA CD-Digital Audio 紅皮書 1982
CD-ROM CD-Read Only Memory 黃皮書 1985
CD I CD-Interactive 綠皮書 1986
CD-R CD- Recordable 橘皮書 1990
Video CD Video CD 白皮書 1993
安全:由於是唯讀Read Only,不怕被誤改,不怕病毒。
耐用:讀取採雷射光投射方式,沒有接觸,故光碟片不會損壞。
多媒体性:可存放Text、 Graphics、 Images、 Video、 Audio等媒体。
低價格:光碟片本身成本低廉,是所有儲存設備中價格最低廉者。
易於攜帶:光碟片的容量大,攜帶又方便,作為儲存資料甚至作為雜誌或書本的附件更為便利。
由於CD有以上的各種優點,因此在CD-Audio應用不久之後很快就被考慮用作其他的用途,當然第一個考慮的對象是運用在電腦,CD-ROM應用於電腦上的領域相當廣泛,用於電腦軟体資料的儲存,可記錄範圍包含文字、圖形、影像、聲音、視訊等。於是Philips與Sony兩家公司於1984年共同發表了電腦專用的CD-ROM,這時正是286與386交替的時候,但是那時電腦的運用軟体容積都很小,大多數都只要一、二片1.2MB的磁片就可以解決,因此在CD-ROM剛推出的初期並不普遍,直到486時代,隨著電腦運用軟体以及作業系統軟体的容積增大,原來1.2MB容量的5.25吋磁片與1.44MB容量的3.5吋磁片早已不敷使用,CD-ROM才開始較普遍應用在電腦上,再加上電腦多媒体的普遍流行,到了486的後期時代,CD-ROM已成為電腦的標準裝置。
CD-ROM的全名是「Read Only Memory」,即「唯讀光碟機」之意,也就是只能「讀」而不能「寫」,這是與可讀可寫的硬碟或與軟碟最大不同之處,但是CD-ROM也有硬、軟碟所不及之處,就是可以播放音樂或觀賞影片
CD光碟片的厚度僅有1.2mm,直徑12公分,我們見到CD片一面光亮如鏡面,另一面則是貼在CD片上的商標,其實一片CD片係由一片塑膠底層及一片很薄的金屬層所組成的,再加上保護膜與印刷的標簽一共有四層:

1. 透明的塑膠底層:
就是亮晶晶沒有標籤的那一面,又叫做透光層,其材質是光學級碳酸脂塑膠,它的作用有二,一是支撐整個碟片,二是讓雷射光透射到儲存資料的金屬層。

2. 金屬反射層:
也就是實際儲存資料的地方,這層金屬的厚度非常薄,它的厚度只有數百挨,大多是鋁金屬的材料,也有少數採用黃金或銅合金製成的,用於反射雷射光的訊號。

3. 保護層:
金屬反射層的上面塗抹一層硬化壓克力樹脂,保護金屬層免於氧化並有防止括傷的作用。

4. 印刷層:
一種UV油墨,以絲網或平板印刷方式將圖案印在光碟片上。
CD-ROM光碟片的直徑12公分,厚度1.2mm,中心孔徑15mm,儲存容量為650MB~682MB,其儲存資料的方式是利用較高功率的雷射光在光碟片金屬反射層的表面上燒出凹槽(Pit)與軌跡(Land)以記錄資料,凹槽長度0.83μm,軌跡間距1.6μm。雷射光波長780nm(nanometer),並以圓環狀軌道方式燒錄,被燒的地方因發生化學變化而使的這部份不反光,而沒被燒的地方則會反光。
而CD-ROM讀取資料的方法u,也是利用雷射光學讀取系統來達成的,這光學讀取系統有一組可循跡移動的低能量雷射二極体,一組光學鏡片,一個發光二極体,一個能將光能轉換成電壓的感光二極体等。雷射光束是由下往上從光碟片的透明塑膠底層(光亮面)照射到金屬反射層上,再由光學感測器接收反射光,反射層會造成反射光之波長差異,而產生「ON」或「OFF」,雷射讀取頭的光偵測器不斷地將「ON與「OFF」的訊號送到解碼電路,由解碼電路轉譯成電腦使用的「1」與「0」數位訊號。
好像只要與電腦有關的產品,都會不斷地追逐速度,CD-ROM剛開始時並沒有追逐速度,直到CD-ROM成為電腦的標準裝備後才開始,由最先的1倍速,然後2倍數(×2)、×4倍、×6倍、×8倍、×12倍、×16倍、×24倍,到現今的×32倍、×40倍、×48倍、×50倍等,進步之神速令人咋舌,而且價格卻不漲反跌。
到底CD-ROM的速度是否愈高愈好,那可就不一定了,用來聽音樂或觀賞VCD的影片,高速的CD-ROM是無用武之地,而應用軟体或電腦遊戲,太高速的CD-ROM也無義意,而且由於DVD開始愈來愈普遍,遲早將會取代CD-ROM而成為光碟機的主流,因此到目前為止,CD-ROM的製造商已停止研發更高速的CD-ROM,其實如果您已有8倍數以上的CD-ROM,並不一定需去追求更高的速度,到是如果您今天才要買CD-ROM,32倍或40倍數的CD-ROM是主流,在價格相差不多的情況下,買更高倍數的亦無妨。
(有興趣的讀者如果想要對CD有更深的瞭解可參閱本刊別冊「音響祕笈-入門篇」)
 
CD的發明原是為了家電消費市場的用途,以製作音樂唱片為主,後來為了因應CD能播映影片而推出了VCD光碟,採用MPEG-1的壓縮技術,將影像壓縮存入光碟片,讀取時需解壓縮,最長播放的時間與CD一樣,也是74分鐘。VCD用於播映影片有兩個嚴重的缺點是不能普遍流行的障礙:一是VCD最長播映時間只有74分鐘,大多數的電影若要完整的播放,必須要換兩張片子才能將一部電影完整播完,另一個障礙是VCD採用係用高壓縮比的MPEG-1方式錄製影片,因此畫質不佳,甚至比錄影帶還要差。
提到VCD就不得不提出市場上還有一種播映電影影片的光碟產品,就是LD雷射影碟片,LD的畫質雖好,但是也有兩個缺點,一是30公分直徑的体積太大,使用與收藏都不方便,二是播映較長的影片還是需要需要換片。
1994年,光碟片的有關業者包括光碟片製造商與美國好萊塢幾家大電影公司,希望能設計出一種高容量與高畫質光碟片,因為自1980年CD唱片問世以來,一張光碟片的容量始終都無法突破640GB~680MB的限制,以致於播映時間最長不能超過74分鐘,於是DVD於焉產生,VDV的發明與CD唱片一樣,也是為了家電消費市場用途。
要增大容量,体積還要維持在12公分的直徑,只有設法設計出一種能容納更高容量的光碟片,其方法不外增加光碟片的資訊密度,於是最先業界訂名為「高密度光碟片」(High Density Compact Disk簡稱HDCD),後又改為名「Digital Video Disk」(數位影音光碟),光碟片的密度一高,容量自然就會增大,不但播映的時間加長,而且可穫得更高畫質,再加上1994年正好也剛提出新型影像壓縮技術MPEG-2,經實驗效果非常好,搭配45:1的MPEG-2壓縮比例,不論是畫質或播映的時間均超過LD雷射影碟。
最初由於業界商業利益的衝突,一直沒有將規格定案,經過歐美日等數十家家電大廠幾次的協商,直到1995年12月才達成DVD統一規格之協議,並正式更改名稱為「Digital Versatile Disc」(數位多用途磁碟),將其擴展為一種多用途的光碟儲存媒体,除了影像與聲音之外,亦將用於電子資料的儲存,亦即電腦用的DVD-ROM。這種規格的光碟片容量超大,單層就可高達4.7GB的容量,是CD-ROM的7倍以上容量,儲存MPEG-2的影片可達135分鐘,幾乎所有的影片都可以裝在單一片DVD光碟片裡,最初的DVD片為單層單面的設計,後來又研發出單面雙層,雙面單層,以及雙面雙層的光碟片,單面雙層可達9.4GB,雙面單層可達8.5GB,而雙面雙層更可達17GB的超大容量。
LD雷射影碟的水平掃描線大約在400到425條的範圍,而DVD光碟的水平掃描線更高,約在480到540條的範圍;LD雷射影碟的畫面解析度為567*480,而DVD的畫面解析度為720*480,比LD高了1.3倍。
而與VCD相較又是如何呢?VCD的儲存資料650MB~680MB,採用MPEG-1亦即100:1的壓縮比例,畫面解析度只有350*240,比LD雷射影碟的567*480還要差很多,畫質當然更差。
由於DVD擁有超大的儲存空間,業者發現除了可儲存較佳畫質的影片之外,還可以儲存多聲道的聲音以及多種不同語言的字幕,更厲害的是音效部份可支援杜比數位音效的AC-3處理技術,可儲存六個分離的聲道,除了五個主要聲道:左聲道、右聲道、中聲道、左分離立體環繞聲道、右分離立體環繞聲道之外,再加入一個低頻效果聲道。因此,在環繞音效與立體音效都有絕佳的表現。又由於雙面的設計,還可支援4:3與16:9的畫面顯示比(一面儲存4:3的畫面,另一面儲存16:9的畫面),理論上可儲存8種語言與32種不同語言字幕,但理論雖如此,但實際上目前的DVD光碟並未全數儲存如此多的語言與字幕,原因有二:一是Dolby Digital音效的電影已佔用了五個聲道,因此通常都只有三種語言,二是字幕的製作是要花成本的,更何況又有區域的限制,無需儲存這麼多語言與字幕。
與CD的最初設計一樣,主要是為了家電市場,後來亦衍生為電腦用的DVD-ROM, DVD是繼CD發展後的另一個數儲存裝置的重大突破,最大容量高達17GB,相當於26張CD的容量(目前17GB容量的DVD尚不普遍),且体積與CD一樣,因此DVD光碟機的外觀也與CD-ROM完全一樣。只不過由於DVD採用波長較短的雷射光學系統,第一代的DVD-ROM是不能讀取CD或VCD的,但自第二代的DVD-ROM起,由於採用雙光學的系統設計,可相容原有的CD與VCD,也就是DVD可以讀取CD與VCD的資料,但CD-ROM卻不能讀取DVD的光碟片。
DVD-ROM的1倍速相當於CD-ROM的9倍速,目前DVD-ROM的主流已經是5、6倍速的時代,最近還有10倍數的產品堆出。
DVD的基本工作原理與CD相同,都是利用雷射光來儲存與讀取資料,差別是CD使用雷射光的波長是780nm(nm為十億分之一米),而DVD所發射的雷射光波長較短,為650/635nm,因此可以儲存與讀取軌道較小的資料塊,儲存時也是以較高功率的雷射光在光碟片金屬反射層的表面上燒出凹槽(Pit)與軌跡(Land)以記錄資料,VDV的凹槽長度僅0.4μm(μm為百萬分之一米),軌跡間距亦縮短為0.7μm,(CD-ROM的凹槽長度0.83μm,軌跡間距1.6μm),因此VDV儲存的資料要比CD高出七倍之多。也因此DVD最佔優勢之處在於它的容量,DVD碟片的製作是將二片光碟黏合在一起,於是在儲存上可以有單層單面、雙層單面、單層雙面、雙層雙面四種。光是單層單面的儲存容量就可達到4.7GB,播放時間可達133分鐘。
DVD的光碟係由兩片0.6mm的碟片合成的,雷射頭讀取動作需要改變焦聚的方式來射入第一層的位置(0.6mm)或第二層的位置(1.2mm)。而雙面單層或雙層的光碟,就需要兩組雷射光讀取頭來工作。
理論上來講,一倍速的DVD的資料傳輸率是1358KB/SEC,而一倍數的CD則是150KB/SEC,所以DVD一倍速相當於CD的大約 9.05倍,而實際上由於波長、密度與解壓縮的方式的不同,因此我們並不能以此來比較兩者的實際速度差別。
DVD-5:單層單面,容量為4.7GB,目前市場以這種規格的DVD光碟片居多。
DVD-10:單層雙面,正、反面都可儲存,容量為單層單面的二倍9.4GB。
DVD-9:雙層單面,其實是一面有兩層,一層透明,一層不透明,其法是中間夾入一個半透明的反射層,如此讀取第二層的時候就不需將光碟片反一面,但是需切換雷射讀取頭的聚焦位置,容量為8.5GB,單層雙面的容量未達4.7GB兩倍的原因是第二層為了不與第一層資料相互干擾,故第二層只能儲存3.8GB的資料,這是讀取資料時鏡頭技術上的成本考量之故。
DVD-18:雙層雙面,這種方式是將兩片光碟背對背黏合雙面的光碟,只是雙面光碟需要人工翻面或機械翻面,容量為17GB。
現在的DVD碟片已可容納八國語言、16種文字,這樣的設計,使得DVD碟片和家庭電影院有密不可分的關係。如果將DVD用來儲存電腦的資料,其容量已能與硬碟平起平坐,前途真是無量。
目前DVD片大多都是電影片,在這四種不同規格的光碟片中,以DVD-5的單層單面最多,再來是DVD-10的單層雙面,再次為DVD-9的雙層單面光碟,有的DVD片上會註明DVD-5、DVD-10或DVD-9的規格,而DVD-18光碟片目前在市面上還看不到。
也許您聽說過DVD有區域碼的限制,也就是您到美國買回來的DVD片到台灣來卻無法觀賞,這就是區域碼(Region Code)的限制,俗稱「鎖碼」。
為什麼要限制呢?
我們知道DVD的最大用途是用來製作影片,而電影的來源以美國為主,因此業界在發展DVD的一開始,美國的八大電影公司就已擔心盜版與地區性的問題,因為並不是所有的電影都有全球同步上映的機會,為了避免發生某區未上映的電影因為DVD影片的流出而造成影片商的損失(通常在美國上映的電影至少半年後才會到其他國家上映,但是在這期間美國已有DVD的影片),所以才會有這種區域碼限制的產生,因此美國八大電影公司依照全球的「區域性」與「盜版性」,將DVD片共分成六個區域,這六個區域的DVD影片是不能夠互通播放的,特定區域的DVD影片播放設備只能夠播放該區域的DVD影片,在不同區域銷售的DVD光碟機都加入鎖碼指令,因此只能讀取該區的影片,而實際上全世界有 NTSC、 PAL與 SECAM 三種不同的播放系統,也無法共用相同的版本(NTSC 為美國,台灣,日本,與韓國所採用的視訊規格,每秒30張畫面;PAL 為歐洲國家所採用的視訊規格,每秒24張畫面)。
這六區域碼分別是:
第一區(Region 1):美國、加拿大、東太平洋島嶼。
第二區(Region 2):日本、西歐、北歐、埃及、南非、中東。
第三區(Region 3):台灣、香港、南韓、泰國、印尼、東南亞國家。
第四區(Region 4):澳洲、紐西蘭、中南美洲、南太平洋島嶼。
第五區(Region 5):俄羅斯、蒙古、印度半島、中亞、東歐、北韓、北非、西北亞。
第六區(Region 6):中國大陸。
但是,Region Code 並不算是 DVD Video 的規格之一,區碼限制(Region Code)這只是美商八大公司自己的保護措施,並不是每一家電影出版公司都必須遵循這種規定,所以,非美商八大公司的電影,通常都沒有加入Region Code,這種影片就稱為 「Free Region Code 」或是「全區影片」

美商八大公司是那八大?

1.華納 (Warner Bros')
2.哥倫比亞 (Colombia)
3.20 世紀福斯 (20th Century FOX)
4.派拉蒙 (Paramount)
5.環球 (Universal)
6.UA (United Artist)(007)
7.米高梅 MGM (Metro Dogwyn Mayer)
8.迪士尼 (Walt Disney)

自1995年推出DVD之後,不論是DVD-PLAYER(家用DVD播放機,或稱DVD-VIDEO)或DVD-ROM到現在都已經演進到第三代了,這兩者的演變因使用功能不同而有所差異,讓我們分別來分別說明:
第一代DVD PLAYER 只能撥放DVD片而不能播放CD片或VCD片。
二代DVD PLAYER可以撥放CD片與VCD片。
三代DVD PLAYER加入Dolby Digital的環繞音效音響。

DVD-ROM:

第一代DVD-ROM 為單倍速,最高傳輸率為1358KB/sec,但由於雷射鏡頭的波長為650/635nm,與CD-ROM的780nm不同,因此不能讀取CD-ROM的資料。

第二代DVD-ROM速度增加到2倍速,(2.7MB/sec),並由單讀寫鏡頭改成雙讀寫鏡頭,或單鏡頭雙波長,因此能讀取650/635nm與780nm兩種波長,亦即也可讀取CD的資料。

第三代的DVD-ROM速度又增加到5或6倍數,主要是引進了CAV (Constant Angular Velocity)的「等角度」的技術。

前面曾提到CDV的影片係以100:1的壓縮方式錄製的,因此在播放時需以同比例的解壓縮來還原,這種解壓縮的方式為MPEG-1,這種壓縮係以100:1的比例來錄製的,畫質解析度只有352*240。而DVD則以45:1的壓縮方式錄製,採用的是MPEG-2解壓縮方式,畫質解析度高達720*480。
但不論是MPEG-1或MPEG-2都是一種解壓縮的方式,在電腦上播映CDV或DVD影片都需要解壓縮來還原,CDV需要用MPEG-1卡或用軟体來解壓縮,而DVD則需要用MPEG-2卡或軟体來解壓縮。那到底是用硬體DVD解壓縮卡來解壓縮好?還是用軟體解壓縮好?
其實實際上除了硬、軟兩種解壓縮之外還有一種半硬半軟的方式,這三種解壓縮的方法,分別是:1.純硬體解壓縮。2.硬體輔助軟體解壓縮。3.純軟體解壓縮。分述如下:

1. 純硬體解壓縮

在Pentium MMX 166之前,由於CPU的速度不夠快,如果不用硬体解壓縮方式的話,播映DVD光碟時就無法達到每秒30張畫面(NTSC,PAL 為每秒24張畫面),所以必需要用解壓縮卡,當時DVD解壓縮卡的價格並不便宜,每片要5000元左右,最近已降到3000元以下,也不便宜,花這麼高昂的費用只不過用來看影片。

2. 硬體輔助軟體解壓縮

也就是所謂的半軟半硬解壓縮,將MPEG 2解壓縮線路附加在顯示卡的晶片內,因此得以分擔CPU的負擔,達到全螢幕每秒30張的流暢播映效果,如果您的CPU是一、二年前的產品的話,買此類卡時需檢查說明書對CPU的最低要求。

3. 純軟體解壓縮

由於CPU的速度愈來愈快,因此最近有些顯示卡採用純軟体解壓縮方式,這類顯示卡藉由其強大的繪圖運算能力,以及大量的繪圖記憶體(8~16MB),因此多少也能降低CPU的需求,但是對CPU的速度要求仍然很高,最好在PENTIUM 350以上,其實顯示卡作純軟體解壓縮時,吃重的並不只是CPU而已,顯示卡晶片,顯示卡記憶體,L2 CACHE, RAM匯流排都受到嚴苛的考驗。
以上說了半天,好像DVD都是用於看電影,那運用在電腦上呢?
本來DVD超大的資料儲存量用於電腦是最理想不過的了,電腦業界亦認為DVD即將成為電腦的標準裝置,但偏偏採用DVD-ROM的電腦族卻不多,原因出在那兒呢?
第一是價格,兩年前一台2倍數的DVD價格超過萬元,還要另購解壓縮卡,DVD-ROM當然普遍不起來,但DVD-ROM的價格也一直快速下跌,最近5、6倍數的VDV-ROM才3,000元左右,並不算太貴,但是CD-ROM的價格也已降到1,500元以下,還是比DVD-ROM便宜一倍,這是原因之一。
其實電腦族並不是不能負擔3,000元安裝DVD-ROM的費用,還有一個原因是應用軟体的廠家還不流行用DVD來包裝,而僅有少數日本的電腦遊戲採用DVD光碟片,想當初在486時代,已有許多應用軟体與電腦游戲採用CD片包裝,讓您不得不買一台CD-ROM,而今天既然還沒有那一家軟体廠家採用DVD片包裝的,安裝DVD-ROM就沒有迫切的需要,此乃原因之二。
既然目前還沒有軟体用DVD包裝的,那電腦上安裝DVD-ROM豈非只能用來看電影?此乃原因之三。
話雖如此,其實至今還是有很多人買DVD-ROM的,除了看影片之外,還有玩3D動畫的電腦玩家,玩電腦遊戲的人一定裝有高品質的3D動畫顯示卡,而較高級的顯示卡大多都會附有DVD硬体輔助解MPEG-2的功能,不裝DVD豈非可惜?再者DVD-ROM又可向下相容CD與VCD,一台機可三用,何樂而不為?
如果您現在才要買電腦,或更換老舊的CD-ROM,更應該直接買DVD-ROM,如果買的是整套電腦,建議您要求加價將CD-ROM更換為DVD-ROM?
作者: zgmfx10akira    时间: 2012-4-30 16:04
何谓声音的质量
      所谓声音的质量,是指经传输、处理后音频信号的保真度。目前,业界公认的声音质量标准分为4级,即数字激光唱盘cd-da质量,其信号带宽为10hz~20khz;调频广播fm质量,其信号带宽为20hz~15khz;调幅广播am质量,其信号带宽为50hz~7khz;电话的话音质量,其信号带宽为200hz~3400hz。可见,数字激光唱盘的声音质量最高,电话的话音质量最低。除了频率范围外,人们往往还用其它方法和指针来进一步描述不同用途的音质标准。
    模拟音频与数字音频
      对模拟音频来说,再现声音的频率成分越多,失真与干扰越小,声音保真度越高,音质也越好。如在通信科学中,声音质量的等级除了用音频信号的频率范围外,还用失真度、信噪比等指针来衡量。
      对数字音频来说,再现声音频率的成分越多,误码率越小,音质越好。通常用数码率阿才(或存储容量)来衡量,取样频率越高、量化比特数越大,声道数越多,存储容量越大,当然保真度就高,音质就好。
    语音的音质与音乐的音质
      声音的类别特点不同,音质要求也不一样。如,语音音质传真度主要体现在清晰、不失真、再现平面声象;乐音的传真度要求较高,营造空间声象主要体现在用多声道仿真立体环绕声,或虚拟双声道3d环绕声等方法,再现原来声源的一切声象。
    音频信号的用途不同,采用压缩的质量标准也不一样。如,电话质量的音频信号采用itu-tg711标准,8khz取样,8bit量化,码率64kbps。am广播采用itu-tg722标准,16khz取样,14bit量化,码率224kbps。高传真立体声音频压缩标准由iso和itu-t联合制订,cd11172-3mpeg音频标准为48khz、44.1khz、32khz取样,每声道数码率32kbps~448kbps,适合cd-da光盘用。
    音质评价方法
    评价再现声音的质量有以下主观评价和客观评价两种方法。
    (一) 主客观测试技术指针
      通常,据乐音音质听感三要素,即响度、音调和愉快感的变化和组合来主观评价音质的各种属性,如低频响亮为声音丰满,高频响亮为声音明亮,低频微弱为声音平滑,高频微弱为声音清澄。下面结合声源、声场及信号特性介绍几种典型的听感。
    (一)立体感
      主要由声音的空间感(环绕感)、定位感(方向感)、层次感(厚度感)等所构成的听感,具有这些听感的声音称为立体声。自然界的各种声场本身都是富有立体感的,它是仿真声源声象最重要的一个特征。德波尔效应证明,人耳的生理特点是:人耳在两声源的对称轴上,当声压差△p=0db和时间差△t=0ms时,感觉两声源声象相同,分不出有两个声源;而当△p>15db或△t>3ms时,人耳就感觉到有两个声源,声像往声压大或导前的声源移动,每5db的声压差相当于lms的时间差。哈斯效应又进一步证明,当△t=5ms~35ms时,人耳感到有两个声源;而当近次反射声、滞后直达声或两个声源的时间差△t>50ms时,即使一次反射声(又称近次或前期反射声)或滞后声的响度比直达声或导前声的响度大许多倍,声源方位仍由直达声或导前声决定。
    根据人耳的这个生理特点,只要通过对声音的强度、延时、混响、空间效应等进行适当控制和处理,在两耳人为的制造具有一定的时间差△t、相位差△θ、声压差△p的声波状态,并使这种状态和原声源在双耳处产生的声波状态完全相同,人就能真实、完整地感受到重现声音的立体感。与单声道声音相比,立体声通常具有声象分散、各声部音量分布得当、清晰度高、背景噪声低的特点。
    (二)定位感
      若声源是以左右、上下、前后不同方位录音后发送,则接收重放的声音应能将原声场中声源的方位重现出来,这就是定位感。根据人耳的生理特点,由同一声源首先到达两耳的直达声的最大时间差为0.44ms~0.5ms,同时还有一定的声压差、相位差。生理心理学证明:20hz~200hz低音主要靠人两耳的相位差定位,300hz~4khz中音主要靠声压差定位,更高的高音主要靠时间差定位。可见,定位感主要由首先到达两耳的直达声决定,而滞后到达两耳的一次反射声和经四面八方多次反射的混响声主要仿真声象的空间环绕感。
    (三)空间感
      一次反射声和多次反射混响声虽然滞后直达声,对声音方向感影响不大,但反射声总是从四面八方到达两耳,对听觉判断周围空间大小有重要影响,使人耳有被环绕包围的感觉,这就是空间感。空间感比定位感更重要。
    (四)层次感
      声音高、中、低频频响均衡,高音谐音丰富,清澈纤细而不刺耳,中音明亮突出,丰满充实而不生硬,低音厚实而无鼻音。
    (五)厚度感
      低音沉稳有力,重厚而不浑浊,高音不缺,音量适中,有一定亮度,混响合适,失真小。除此之外,还有许多评价音质的听感,象力度感、亮度感、临场感、软硬感、松紧感、宽窄感等。
    (二)客观测试技术指针
    (一)失真度
      谐波失真,主要引起声音发硬、发炸;而稳态或瞬态互调失真主要引起声音毛糙、尖硬和混浊。二者均使音质劣化,若失真度超过3%时,音质劣化明显。音响系统的音箱失真度最大,一般最小的失真度也要超过1%。
      相位失真,主要引起1khz以下的低频声音模糊,同时影响中频声音层次和声象定位。
    抖晃失真,主要是电机转速不稳,主导轴-压带轮压力不稳,磁头拍打磁带等造成磁带震动和卷带量变化,进而使信号频率被调制,声音音调出现混浊、颤抖。抖晃通常用音调变化的均方根值表示,通常,录音机的抖晃率<0.1%,hi-fi录音机<0.005%,普通录像机<0.3%,视盘机<0.001%。
    (二)频响与瞬态响应
      频响,指音响设备的增益或灵敏度随信号频率变化的情况,用通频带宽度和带内不均匀度表示(如优质功放的频响1hz~200khz±ldb)。带宽越宽,高、低频响应越好:不均匀度越小,频率均衡性能越好。通常,30hz~150hz低频使声音有一定厚度基础,150hz~500hz中低频使声音有一定力度,300hz~500hz中低频声压过分加强时,声音浑浊,过分衰减时,声音乏力;500hz~5khz中高频使声音有一定明亮度,过分加强时,声音生硬;过分衰减时,声音散、飘;5khz~10khz高频段使声音有一定层次、色彩;过分加强时,声音尖刺;过分衰减时,声音暗淡、发闷。按此规律,可根据各种听感,定量调节音响系统的频响效果。
      瞬态响应,是指音响系统对突变信号的跟随能力。实质上它反映脉冲信号的高次谐波失真大小,严重时影响音质的透明度和层次感。瞬态响应常用转换速率v/μs表示,指针越高,谐波失真越小。如,一般放大器的转换速率>10v/μs。
    (三)信噪比
      信噪比,表示信号与噪声电平的分贝差,用s/n或snr(db)表示。噪声频率的高低,信号的强弱对人耳的影响不一样。通常,人耳对4~8khz的噪声最灵敏,弱信号比强信号受噪声影响较突出。而音响设备不同,信噪比要求也不一样,如hi-fi音响要求snr>70db,cd机要求snr>90db。
    (四)声道分离度和平衡度
      声道分离度,是指不同声道间立体声的隔离程度,用一个声道的信号电平与串入另一声道的信号电平差来表示。这个差值越大越好。一般要求hi-fi音响分离度>50db。
      声道平衡度,是指两个声道的增益、频响等特性的一致性。否则,将造成声道声象的偏移。
    结论
    世界上还没有比音还主观的东西,所以一个真正公平公正的音评人,绝对会以非常谨慎的态度去评价一套音响设备, 他们经常会分别以人声及乐器两者的表现来综合评分。
    (一)语音音质
      评定语音编码质量的方法为主观评定和客观评定。目前常用的是主观评定,即以主观打分(mos)来度量,它分为以下五级:5(优),不察觉失真;4(良),刚察觉失真,但不讨厌;3(中),察觉失真,稍微讨厌;2(差),讨厌,但不令人反感;1(劣),极其讨厌,令人反感。一般再现语音频率若达7khz以上,mos可评5分。这种评价标准广泛应用于多媒体技术和通信中,如可视电话、电视会议、语音电子邮件、语音信箱等。
    (二)乐音音质
    乐音音质的优劣取决于多种因素,如声源特性(声压、频率、频谱等)、音响器材的信号特性(如失真度、频响、动态范围、信噪比、瞬态特性、立体声分离度等)、声场特性(如直达声、前期反射声、混响声、两耳间互相关系数、基准振动、吸声率等)、听觉特性(如响度曲线、可听范围、各种听感)等。所以,对音响设备再现音质的评价难度较大。通常用下列两种方法:一是使用仪器测试技术指针;二是凭主观聆听各种音效。由于乐音音质属性复杂,主观评价的个人色彩较浓,而现有的音响测试技术又只能从某些侧面反映其保真度。所以,迄今为止,还没有一个能真正定量反映乐音音质保真度的国际公认的评价标准。但也有报导,国际电信联盟(itu-t)近期已批准一种客观评价音质的被称之为电子耳的新型测量方法,可对任何音响器材的音质进行客观听音评价,也可用于检测电话通讯语音编码系统的缺陷。
作者: zgmfx10akira    时间: 2012-4-30 16:04
保存黑胶唱片正确方法

很多发烧友仍然钟爱传统的黑胶LP唱片,但LP播一次就差一次,究竟怎么样才能让LP长播长有呢?现在就介绍一下玩LP的要养成良好的习惯。

黑胶唱片由于面积较大,保存上亦需要特别注意。首先谈谈摆放的方法,最正确的方法是将唱片垂直放在柜内,就好象书本垂直存放在书柜上一样。倘若柜内仍有空隙,应该用一块硬纸皮,配合书靠将大量唱片固定在垂直的状态。千万不可将唱片水平横放,这种方法是最容易弄弯唱片的。若然唱片真的弄弯了,补救的方法是用几本体积相若的硬皮厚书,水平压在黑胶碟上一至两天,这样弯曲的情况应该会有所改善。

另外放置场所需通风或干燥以防止发霉,养成听完后擦拭的习惯,让灰尘无机可趁。例行的保养请用碳纤刷,此刷以不产生静电为优点。

每听完一次须等六小时后,才能听第二回.此举可防止唱针在唱片上播放时,所磨擦产生的高热,会让唱片塑料沟槽软化。
在尚未完全冷却时马上听第二回,会让沟槽造成永久性的变形而无法恢复,此时灰尘及沙砾并会溶入唱片中的塑料材料而无法清除.届时更大的杂音与失真将造成无法复原之永久性伤害。

切忌唱片未处理时播放,霉菌和灰尘将在唱针与沟槽中挤压,而使音轨受伤。在经济许可的范围下买台洗唱片机吧。

当然如果想经济点也可以,简单清洁灰尘及发霉的方法,最直接是用肥皂液加水,然后涂满整张唱片,紧记必须沿同一方向,而且最好是依照唱片上的坑纹,然后再彻底冲洗,干透后再喷上一层黑胶唱片专用的防静电**。这种**由Philips出品,早几年前在市面上很容易买到,现时则要到一些音响器材专门店才买得到。处理过的唱片必须把已脏的内套换掉,如此一般可再维持个十多年。
作者: zgmfx10akira    时间: 2012-4-30 16:04
日本CD转盘结构彻底研究!

     和欧美音响厂家比较起来,我们不太容易从日本家电大厂的产品中归纳出相同的作法。这些规模大得吓人的公司,各有各的研发方式、各有各的设计理念,大从传动机械、小到各种运算集成电路,它们都能自行研发制造,将不同厂牌的日本CD唱盘拆开,讲夸张一点,可以说没有一个电路的设计方式是相同的。既然如此,我们常听到大家说「日本唱盘的声音走向」到底是怎么一回事?这些设计大不相同的器材是怎样被归纳出同一种声色走向的?老实说确实很难回答这个问题。
     笔者虽不敢说听遍日本CD唱盘,但我实在无法将DENON及PIONEER列为同一种音色表现,或说TEAC和SONY拥有同一走向的声音质感之类的话。但假如从日本制音响器材多使用日本零件制这点来看,那么大部分日本唱盘(甚至可以适用于所有器材)各频段量感的分布状况相似便是可以理解的。
既然如此,我们该从什么角度去切入介绍这些东洋娇客呢?日本唱盘在数字/模拟转换线路方面虽然各家有各家的独门作法,但严格说起来还是不脱离 多Bits 及 1 Bit 的两大系统。而且欧美音响厂商会用到日本公司设计之数模转换电路及芯片的机会实在太小了,因此我们决定将焦点集中在使用理论各有不同、工作方式多有巧妙的传动读取系统,当然,下面介绍的系统虽然有些已有三、四年,甚至于更久以前的技术产物,但许多欧美HI-END厂商却是一直到最近才开始使用,这些看起来很先进的系统(尤其是飞利普生产CDM─12系列传动系统之后),此文应该可以提供─个参考给最近想换讯源,尤其是准备较多预算的读者(使用日本传动结构的欧美CD唱盘或转盘,几乎都没有太便宜的机种)。但值得注意的是,下面介绍的传动读取系统大多这会细分出许多等级(就像PHILIPS的CDM系统除一般型号,还有Pro等级)。
     而多数欧美公司那些贵得要命的机种,使用的等级可能还不如原厂中低价位型号呢。
TEAC VRDS系列
代表机种:TEAC VRDS-25x、Esoteric P2s,平价唱盘机种:TEAC VRDS-7其它使用此系统之欧美音响厂商: Krell、Wadia、Copland、Emsemble Resolution Audio。
这是目前最受欧美HI-END音响厂商喜爱的日制传动系统。虽然目前使用先锋倒置式传动结构的厂商数量较多,但大多集中在中低价格的产品,高级机种还是以使用VRDS系统较多。比起其它公司,TEAC的VRDS最早就因为被Wadia看中用来制造高价转盘而闻名于HI-END音响界。假如您看过飞利普CDM传动系统正在工作中的样子,除了佩服伺服系统在那样晃动不堪的环境下还能继续工作外,也很难不怀疑它到底遗漏了多少信号。而TEAC的工程师早已发现了这种情形,因此发展出这里的主角VRDS。简单的说,VRDS系统就是用一个大夹子将CD紧紧的夹住,让它不会随意晃动﹔但从另一个角度来看,这个大夹子也可已视作一个和CD唱片一样大小的「唱片镇的作用」。不能将它完全视CD镇的原因,在于它并不是从上向下压住CD,而是让CD向上去紧紧的贴住它而随之旋转,增加传动系统和CD唱片之间的接触面积,使CD唱片的运转动作更加稳定。
马达以悬挂的方式装置于传动机械上方,则是VRDS系统的另一个特点:当然,为了支持这块大型的压片盘及马达重量,TEAC设计了加强型的支架,VRDS系统的等级分类,主要就是支架及压片盘制造材质的差异上,便宜的机种使用合成材料,高级机种使用合金材料。
 
CEC皮带传动系统
代表机种: CEC TL-O,平价唱盘机种:CEC5100,其它使用此系统之欧美音响厂商: Burmester,Parasound
CD的转速是不固定的,随着雷射头由内圈移动到外圈读取信号而改变转速,从每秒500转到200转之间不断地作变化。过去设计者们认为要让CD在最短的时间内正常转动,还要让选曲时很快的加速或者减速,所以必须使用高扭力马达。另外要抑制CD在高速旋转时的扭动,转轴上要加上重量不等的CD镇,这也使得马达需要更高扭力工作。 
为了让转速正确,降低伺服校正系统的负担,使用高扭力马达是必需的,问题在于高扭力的马达虽然可以解决问题,却也带来马达本身发生震动及产生电磁噪音的更大问题。资深的音响迷一定很清楚,以前的LP唱盘大多数都是以皮带进行驱动,这种驱动方式可以有效隔绝不当振动 ─ 包括皮带可以隔绝马达所产生的振动,边缘的抖动因为这种质量的惯性而降低。但为何后来的CD系统反而不用这种传动方式呢?原因之一在于上述的情形只在马达转速固定的情况下才存在,而CD唱盘驱动马达的转速却是不断的在变化的。原因之二则是CD系统的转速每分钟高达200至500转,传动皮带在这种情况下是否不会断裂而还能正常工作,也着实令人担心,面这也正是CEC皮带系统一直被人怀疑其成效的原因。不过这套系统显然对上述的问题有所对策,他们发展出一套「PLL相位环锁线路」,加上高精度转轴及加重唱片镇所产生的飞轮效应(只要马达轻拉,转轴就会转个不停),让转速变化的问题降至最低,伺服系统的工作也更加容易。传动皮带也经过精选,避免长时间使用会老化的问题,雷射头以另外一具马达驱动,又减低了一种震动干扰的可能。CEC就是用如此方式彻底解决高扭力马达所带来问题。
DENON三重避震转盘系统
代表系统:DENON DCD-S1 DENON DP-S1
其它使用此系统之欧美音响厂商:无
虽然DENON公司始终不肯将这套技术外售给其它厂商使用,目前也没有将这套技术向下移植到低价格的机种,但还是应该花些篇幅来介绍它。首先是它具有代表性,少了它会让这篇介绍不够完整﹔其次是一般转盘系统的补强方式,多少都有这套系统使用方法的影子。
DENON解释这种三重浮动结构,可以把内部相外部振动都减低到难以想象的程度。第一重悬浮是以打上DENON标志的铝铸体为主的雷射读取头部分,雷射头由高精度光学玻璃制成(你可知道90%以上的雷射头都用有机玻璃镜片?),二维平行控制的线性马达驱动,这部分的主体以弹簧和油压阻尼固定在铝镶底盘上。第二重悬浮就是占全机三分之一重量的铸铝底座,它上面有很多突起的柱子。包括电源变压器、稳压线路板、传动机构、仿真放大线路板等,都是悬空的锁固在这些柱子上。第三重悬浮指的是特殊合金所措成的避震脚,它们不像美规器材一样随便装个橡胶垫聊备一格,而是真正具有非常好的阻尼作用。
在三重悬浮之外,DENON还有很多独特的设计,先说重达200公克以铜和铝合金车制的唱片镇好了。目前我看过能和DENON唱片镇「论斤秤两」比较的只有SONY、CEC和Burmaster,而后两者根本是一样的东西。这么重的唱片镇除了能真正把有弯曲的CD压平之外,它在旋转时形成的惯性作用也会大幅降低晃动。某些采用飞利普CD传动系统的器材上也加了一片唱片镇,不过飞利浦规定马达所能负载的重量很有限,因此时间一久那些「超载」的马达难保不出问题,Denon为了支撑重量级唱片镇,以高转矩的霍尔马达为基础,直接驱动一个12mm的不锈钢主轴,轴心承座使用摩擦系数低且硬度极高的红宝石。在大轴心、大扭力马达与起重唱片镇的配合下,CD片转动时服服贴贴,几乎不会有任何振动,相对的校正系统工作负担减轻,也代表了好声的开始。此外,DCD-S1的200公克唱片镇多开了三个孔,这可以让CD与唱片镇之间有更繁密的结合。
 
先锋公司超稳定性转盘结构
代表机种:先锋PD-T07HS
平价唱盘机种:先锋PD-S703,PD-S503,其它使用此系统之欧美音响商:Audio- Alchemy、Theta、EAD、Musical Desien、Wadia、Carv  
先锋此型传动装置,是本文介绍的五种传动系统中最多欧美音响厂商使用的一种。拆过一般传动结构并观察它们工作情况的读者,一定清楚夹住CD唱片旋转的唱片夹大小其实只和CD内圈相仿而已,结果当然是高速旋转的CD唱片难免东摇西晃。很多设计师都认为这是CD唱机不能正确稳定读取信号的一大原因,于是更大、更重的各型唱片镇纷纷出笼,最具代表性的有Krell八爪鱼唱片镇、超重的Denon三孔合金制唱片镇、ART的石墨镇,而TEAC的VRDS系统严格来说也可以算是这种设计理念下的一种产物。但先锋使用的却是一个完全逆向思维模式,他们将CD的印刷而朝下、读 取面朝上放在一个和CD相等大小的圆盘之上,而雷射头则以悬挂的方式向下读取信号,这种工作方式有点像是以前的LP唱盘。不用解说高超的理论,光看托住CD的旋转盘有整片CD那幺大,就可以知道这样工作的机械一定比较稳定,再加上此时CD是被整片压在托盘上工作的,旋转时能避身上下晃动的可能性。实际看过这款传动系统的读者一定会发现,Pioneer还在CD承盘上面加了一层柔性的胶垫,这层胶垫也有其用途,它可以吸收外来的细微振动,使得CD唱片更稳定的旋转。从新一代◇型号开始,Pioneer也针对这款机械系统作一些细部的调整,最明显的是CD承盘材质作了一些改进,同时还加一些洞,这些洞可以让CD旋转时和承盘作更紧密的结合。
SONY的光头固定旋转系统
代表机种:SONY CDP-XA7ES,CDP-R1A
平价唱盘机种:SONY CDP-X5,SONY CDP-XA50ES,CDP-3000,CDP-XA3ES
其它使用此系统之欧美音响厂: Gryphon
SONY的Fixed Pick Upechanism,雷射头固定读取系统,是上述几种传动机构中最晚研发出来的一型,但它却也是向下移植使用得最彻底的一型。目前SONY使用此型传动读取系统的机种众多,从定价高达一百二十万日币的CDP-R10转盘,二十五万日币的中价位唱盘旗舰CDP-X7ES,十二万日币的CDP-X5000,九万八千日币的CDP-XA50ES,六万日币的CDP-X3000及六万六千日币的CDP-X30ES,甚至于四万六千曰币的CDP-XE900、三万五千日币的CDP-XE700(折台台币还不到一万元)都这使用这种最新设计的传动系统。当其它公司把眼光放在唱机中摇来晃去的CD,而想尽办法要让它稳定时,SONY却发现移动中的雷射头由于质量太小的缘故,极容易被外力干扰而产生不必要的震动,因而影响读取讯号的正确性。SONY在此运用了完全不同于其它厂商的设计方式,他们选择将质量较轻,易受外力震动影响的雷射头固定,然后让较重,可以较稳定动作的CD的承盘移动迎合雷射头的读取动作。当然,这样做还是没有解决原来马达本身振动所带来的问题。在这个部份,SONY用了类似于Denon公司的作法─使用大轴心、大扭力的马达,配合超重的唱片镇让CD的旋转动作极为平稳,不过这些作法只有在高价机种上可以见到,
SONY已于前些日子推出SACD唱盘的原型机,这种新的系统上统上仍然沿用了雷射头固定工作方式,因此说它是SONY公司跨世纪的设计,应该再适合不过了。
作者: zgmfx10akira    时间: 2012-4-30 16:04
线号对照表-WBT

WBT ------ mm2 AWG
WBT-0430   0.5    #20
WBT-0431   0.75  #19
WBT-0432   1.0    #17
WBT-0433   1.5    #16
WBT-0434   2.5    #14
WBT-0435   4.0    #12
WBT-0436   6.0    #10
WBT-0437   10.0  #8
WBT-0438   16.0  #6
作者: zgmfx10akira    时间: 2012-4-30 16:04
声音断断续续——一时有声一时无声,或者是在大音量时突然无声等不稳定现象。
1.试换喇叭
    换用一对喇叭当然并非简单,但有时是非换不可,因为负荷阻抗问题并不匹配。扩音机负荷过度会令机内之保护电路自动工作,切断电流,当继电器恢复原来状态给输入讯号直入时,如果还是过荷,自动保护电路又再次工作,令嗽叭又无声出,如果情况还末有改善,如是者便一时有声,一时无声了。
    有些扩音机是指定负荷阻抗是由8~16欧,但假如你接4欧喇叭到扩音机,那么便很容易引起扩音机过荷。有时,喇叭线与讯号线太接近时也会在大音量下产生扩音机短路现象,因此最好是将它们分隔分。

2.试扭多几次音量控制
    每当扩音机之音量控制出现接触不良时,也有可能会输出断断续续,时有时无。当你“拎”它时,一定会有很剧烈的噪音,所以如果你想知道音量控制有无接触不良,不妨扭它几次,如果是就有必要更换一只新的!
    此外,假如讯号线插头接触不良,断线、焊锡不良或输入选择制接触不良等时候都有可能导致声音断断续续。
    声音失真——偶然声音出现严重失真、突然声音完全失真,或者是一边声道之音量突然细了而且失真等等,诸多情形。

3.磨靓插头
    被人接好线后而以后不理之音响器材,是很容易引致插座接触不良。器材接口出现接触不良,是会令输出减弱、整体音质有耳闻失真之倾向,因此,大家应经常插座及插头,半年一次是最基本的需要。
    如果只是某种讯源产生失真的话,大家最好用耳筒去直接确认出来,如果功率放大器是附有音量控制,最好不接上为佳,这样便可更加肯定失真是来自何处。

4.试换唱头
    重播唱片之高电平片段时出现失真,大有可能是因为唱头输出太高而令扩音机过荷,唱头输出超越了扩音的最大输入承受功率便会产生失真。这是最好换用其它输出较低之唱头,最好将唱头输出接到MM输入端,也许输出会少一些,但声音失真的情形可消失,听得更顺耳。

噪音大——噪音也有很多种:有些是电流声、有些是超高频、有些是哼声。
5.旁边有电视机
    电视机有强力磁场,是很容易令旁边其他的电器受到干扰,因此,如果音响器材放近电视机时便会容易检拾到很多杂音,最好的解决办法就是尽量将器材摆离电视机,令干扰减至最低。唱盘讯号线太接近其他器材之电源变压器时也会产生交流声,摆位方面最好试多几种,MC放大器太接近变压器亦会产生电流哼声,所以为了杜绝电流噪声,最好找出一个最佳的摆法。

6.检查地线
    音响器材中,只得唱盘至扩音机有条地线,这条地线太长便会失去了[落地]的作用。无论如何,唱盘应尽量接近扩音机,而地线应越粗越短就越好。地线短路会带来严重的交流声噪音。假如是[拆] [拆]不稳定的噪音,好有可能是讯号线接触不良。大力按着插头转三次,利用摩擦去清洁插座之表面亦有时收效,如果是眼见的顽渍,就必须将插头与插座用纯酒精清洁一番。

低音不足——这里并非说超低音,是指一般低音不足而已,没有强劲的气势。
7.用得多拖苏
    即使是最靓的扩音机,如果电源能量不足,一样没有强劲的重播效果。有很多人喜欢用幼线电源拖苏了。当然在这个情形下,爆棚起来都没有可能有迫人之气势,正所谓[脚软]。
    计正,功率放大器起码要直接插到入墙插座去至合标准。音色之气势必定因而立竿见影之改善。如果仍未满意,可检查电源的电流电压,有时因某种原因可能导致会低于正常的数值,那么最好致电到电力公司投诉!

8.喇叭线要粗而且要短
    幼喇叭线是绝对不能重播出强劲的低音,尤其是又长又幼的更甚。原因是讯号太多被遗失。因此之故,假如你用的昌又长又幼的喇叭线,最好便尽量将长度缩短到最短,而且要用较粗的多股铜丝合成之喇叭线。
    但大家不可不知,有某些扩音机如接上又粗又短的喇叭线,可能有不良效果,因制动太好反会令低频之量感消失,形成低音不足的情形。假如扩音机是正常,你就要研究一下喇叭摆位的问题,摆贴近墙会帮助增强低音。

定位不明确——整个音场的定位模糊,或一面出问题。
9.检查输出插座
    扩音机背后之输出插座是分左、右及正、负四粒,假如正与负掉转了驳便会出现反相,令重播效果大打折扣,音场窄了而定位不明确。所以大家最好要检查清楚扬声器有无驳错正负,驳错了便于工作要驳番正。
    平日绝少用到的音量平衡制日子一久便会氧化,出现接触不良,可能曾令某一边声道输出减弱,甚至无声,所以要确定它是否有问题,出了问题便要换过一只新的平衡制了。

10.接错左、右喇叭线
    初用音响器材的朋友常常因喇叭线太长而接错左、右。有时更有些人左、右喇叭线用不同牌子及不同长度。一长一短的喇叭线亦不适当,无论如何,左、右喇叭线要用相同的长度、相同的品质及越短越好。接线时要分清左、右,正、负至好接!
    如果连讯号接线都插错左、右时便令定位更糟,音色也有损,故此希望大家要分清左、右。
作者: zgmfx10akira    时间: 2012-4-30 16:05
扬声器 喇叭面网   
     
    一只喇叭之所以有面网,当然有一定的好处,它可以防尘,或避免因意外而弄穿纸盆,也可以防止阳光直射至发声单元的胶质元件,而且是当温度上升时,甚至会出现溶解的现象。也有些是纯为了外观,有面网时外型会更好看。但不幸的是,有很多喇叭因为盖上面网而引起音质变劣。这是铁一般的事实,不是空论!而引起音质变劣的面网,罪过不在“网”的材料上,因为它们大都被设计为“音响上透明”的物质,即是说声音能顺利穿过它而不会有音染。其实面网的“支持物质”——木框,才是导致出现音染的主要原因。   

    要明白为什么木框会有这种不良效果,首先请大家想像一下当音波射至硬的固体上会出现什么情形,例如当声音射向扬声器声箱的边角位置,当间歇性的声音撞向一件硬物时,有一部份的声音是会反射出来而混进原有的直接音波里,如果情形严重时,结果会出现一连串的声音加强和互相抵消的现象。所以扬声器声箱出现绕射作用,是会影响音乐中的透明度和解像度。这也是一些讲究的扬声器设计成无边的原因,是防止绕射作用而造成音染。   


    面网的木框相当类似扬声器面板的“边”,它们会引起不必要的声波反射现象。它会令高频重播效果变劣。除了面网听音乐,音质会放上面网时为佳。如果是一种纯胶制无木框的面网,当然没有问题!喇叭承架 一只好的喇叭承架应该是采用最坚固的材料制造和最稳固的结构.因为承架越是稳阵,从地板传来的振荡和共振,便会受到隔离或减少,扬声器便更稳阵!   


    一只扬声器当发音时,自己产生向前,向后的摆动,就算是最稳固的承架,也不能完全消灭这些现象,最有效的办法是尽量将喇叭倚墙而放,如果地板是主要的振荡来源,就不应将承架放在地上,最佳的方法是在墙上钉上一个急固的承架放扬声器,效果比放在地上好得多!

   
    选择喇叭承架,当然要它最稳固,最坚硬,现在有很多著名扬声器制造商都为它们的喇叭做“原配”承架,例如HEYBROOK ,LINN等。但当你找到一款靓的喇叭承架后,还有什么问题要考虑呢?首先要留意地毯,因为如果将承架放在一块铺了一层厚厚的地毯时,都不会很稳阵,最佳办法是用螺丝将承架“上死”在地板上,螺丝穿过地毯“上死”在地板或石屎地面上,这会有最稳定的效果。   


    效果选胜只随意放在地毯上。其次,相信任何人都会认为加重于承架里是曾增加其稳定效果。有一位音响店经销商就用100磅重的物件分别放在左、右的承架里来承他心爱的LINN ISOBARIKS,据说效果不俗。驱动单元的稳固性 数年前开始,发烧友已懂得唱头要收紧于唱头上,是十分重要,扬声器里的喇叭要紧紧的固定在面板上,也同样重要。有时将螺丝钞为再扭紧,重播效果即时便有明显的改善。令人感到意外的,有很多大扬声器制造厂家都忽略了这个问题,反为一些小型厂家如:HEYBROOK,ARC等就有留意这个问题。这两间小型厂家就采用了一种甚少人使用的特级“光头”螺丝,喇叭当然够“稳阵”!   


    但在此要说明不是任何喇叭,经盲目在扭紧螺丝后,就必定有更佳的音响效果。因为一些喇叭的金属外框太脆弱,螺丝扭得过紧反为会使它变形,影响音圈的活动,严重时甚至会受到破坏。有时如果螺丝钻在木里时,木“窿”太阔便会“滑哑”,这时可以放几根火柴枝到“窿”去,然后螺丝便能再次收紧,或可将它钻大些后放进一种特别胶质,一样使螺丝能再次扭紧。   


    有些喇叭是顾意上不紧的,如KEF,B&W,因为这种特殊设计称为“空气封口”,螺丝太松时,“空气封口”便失去作用,太紧时便使声箱太受压缩,形成声箱不规则振荡,所以如果喇叭是这种设计,最好就不动手为佳!灰士一只扬声器内置了“灰士”作保护喇叭防止过大电流烧掉喇叭线圈,尤其是高音单元;这是十分合理,如果在此建议大家连扬声器的“灰士”也拔掉,似乎大家未必能够接受,因为“灰士”是一种保护装置,如果除曲,喇叭随时会有“生命危险”!但大家如细心再考虑,“灰士”如果通保护喇叭而不会使音质产生失真或称“走样”,当然可以全部保留,但如果真的会令喇叭重播效果“走样”时,你会怎样处理?“灰士”,或称“保险丝”,理论上当电流经过时,它在“冷”状态时的阻抗是很低,但因为音乐中的电流是时大时小,所以负荷阻抗是不停地变,即是连带温度也时高时低,所以“灰士”的阻抗也会时高时低,这就是问题所在的地方。音乐中的低频瞬使“灰士”阻抗变化很大,结果是引起互调失真。一粒2A的“灰士”当一个瞬变峰值电流经过,如果喇叭的阻抗是8欧,互调失真便是2,这是谬论,但假若你是明眼人,你会有最聪明的选择!房间音响特性的处理很少人能够或不愿意花一笔巨额金钱去将自己的聆听房间装修成一间录音室一般的专业**房间吧!所以适当地处理房间的音响特性是较为可行。大部份人只着眼在喇叭摆位及聆听的位置,但“稍为”布置房间当喇叭阻抗是4欧,失真更高至4,这是最坏情形所发生的严重可闻失真,所以即使扩音机的失真只得0.005,但“灰士”引起的2的失真相比下,前者也只是白费气力!大部份扩音机内置有保护电路去保护喇叭,所以即使除去喇叭上的“灰士”,也应该有大问题。除去“灰士”后要用导线连接回“灰士”承托器的两端,有人赞成用铝箔,有人用一截适当长度的高级喇叭线,但按笔者的意见,最好连“灰士”承托器也除去,因为将两端的讯号线直接连系是最佳的传导方法。也许有喇叭制造商会认为可能会有更佳的音乐重播效果。因为每间房间都是不同,所以在此不能用三言两语指导大家如何去处理房间。但以下的一些原则,大家不妨一试!   


    如果你的聆听房间出现了低音混浊问题,一般人会认为是因为不同物件的吸音能力所引起,但事实却不是,因为大部份对声音有吸音能力的物件对低频则没有什么吸音能力,对低频以上的频率才有最大的吸音能力。只有两种情形是例外,一是挂式木板地台,另外是一间有大量玻璃面的房间。所以影响低频之因素只是房间的尺码,家私的摆位,及扬声器之摆位。

  
     在一个普通家庭式聆听房间内,厚地毯,厚绒梳化及厚窗帘布是主要的吸音物件。理想的情形是它们能够平均地铺在墙上及地上,但不能时,一些辅助吸音材料便可有效吸去一些不必要的声音。

   
    铺设吸音材料,最佳办法是铺在当聆听时坐下来耳朵以上的位置,因为直接音不会在未到达聆听者的耳朵时便被吸去,而最初从硬物反射到聆听者耳朵的反射音便不会与直接第一时间混合,所以直接音的干扰便更低。一些房间注波及回音也可铺设吸音料在两边墙壁来减少或杜绝。所以适当地按需要去加设吸音物是使音响器材能充份发挥的最佳办法。

转载自《音响技术》
作者: zgmfx10akira    时间: 2012-4-30 16:05
扬声器面面观(一)

声箱

   声箱的重要性很容易被忽视,看上去它只是一个简单的箱子在里面安装着驱动单元,但实际上并非如此简单。
   驱动单元原本是安装在一块很大的板上,使后面的反相位音波与前面的正相位音波隔离,如果前后两面同时产生的音波相遇它们就彼此抵消,在家庭中使用,中音和高音单元很容易用一块不大的板隔离,但低频波长已不是几寸而是若干尺,因此若想隔离前后的最低频率那就必须用巨大的障板才行。
    大约四十年前,封闭式声箱,气垫式或无限障隔式扬声器是克服这个问题的最早设计,它的原理是如果将后面的音波在声箱内充分减弱,那就永远不会与前面的音波相遇使驱动单元可以在无音波抵消情形下播放音乐讯号进入听音乐的房间,声箱将驱动单元后面的音波封闭和吸收等于采用一张无限大的障隔板一样,即使最长的音波也不会绕到前面,因此能产生最低的频率。
    低音单元后面的音波也可以用几种设计来利用,例如反射气孔负载的声箱即用一个或两个准确计算好直径与长度的管让箱内的音波通过释放出来,这种反射式开孔将后面的音波相位掉转变成正相位,与前面音波相遇不但不抵消并可加强,扩展低音单元可用的低频至它在自由空气中的谐振点以下。
    另一种变通的设计是采用一个被动式辐射器或者称为辅助低音辐射器,它本身没有磁铁和音圈,振膜受到低音单元的声波压力而产生谐振,结果也可以利用后面音波增强低音输出。此外还有一种传输线式设计,这种声箱需要较大的体积,内部构造也比较复杂,传输线负载容许后面的声波通过一个长隧道才到达外边,而隧道的长度要根据整个处理的频率波长计算,需要的频率愈低,传输线隧道愈长,这种设计概念是后面的音波应在隧道中被吸收而消失,使传输线的开口没有真的输出。
    全封闭式声箱或无限障隔式设计为最简单和最常用的声箱形式,这种声箱实际上已变成驱动单元/房间系统的一部分,驱动单元后面的能量如果不消失在吸音物质里变成热量或声箱的音响处理上就能激励声箱,有两种设计方法,一是将声箱尽量制成惰性和吸音性,但这样需用大量的阻尼物质和加闩才能达成预期效果,成本也极高,另一个变通方法是BBC提供的设计,容许声箱辐射能量但在频率上受到控制。
    声箱的储存能量和泄放这个能量的时间与扬声器系统的瞬变性能有密切关系,直到最近设计者也只能选择其一,但Celestion最新推出的SL-600扬声器已采用了一种真正高度坚固和质量轻的声箱,不用传统式物质,但能显著减少声箱的音染。今日驱动单元的发展已到达了一个很高的技术水平,再想改善高度原音,扬声器的设计就应该朝向声箱的物质和结构方面发展取代传统式的木板或夹板声箱。

分音器

    从扩散度和降低失真的观点来看可能两个单元的设计是理想的设计,但有一个问题就是这两个单元不想都接受整个讯号的频宽,高音单元不能设计成可以跟随强大的低频讯号(事实上这种讯号常用来测验高音单元的承载力,最后将它烧毁),同时中/低音单元试图重播高频讯号也无可避免产生大量失真,解决的办法是只输入设计驱动单元所能承受的那部分讯号频率。
    将两个驱动单元结合为一的线路称为分音器,最简单的形式只需用一个电容器接在两个单元之间防止强大的低频讯号通过进入高音单元,中/低音单元的高频端滚降曲线需要准确设计,有些扬声器则没有降裁到达这个单元的讯号,分音网路的复杂性也由此而生。
    比采用一个电容器精密一级的设计是第一级分音器,滚降曲线的斜度浅而受控制(每八度音程衰减6dB),当两个驱动单元在分音频率连接它们的频率在下降3dB交叉点处交连,保证整个系统达成平滑的输出,如果用更复杂的线路可以获得每八度音程陡降12dB,18dB甚至24dB的频应斜度,我们最好是把分音器想像成一系列电气性谐振线路,它们的用途不应只限于输入驱动单元的准确频率范围,如有需要还可以用这些调谐线路矫正单元的不规则输出使频应变得更平直。
    现在有些厂用分音器作为一种精密的电子化过荷感应和保护线路,但也有些厂相信这种线路可使音质出现能用耳朵听出的变劣影响,尤其是瞬态响应不清和声音不集中,使声音的细致受到扰乱。Celestion解决的方法是制成有足够坚固,虽然构造简单,但用最大的功率也不会使它们永远损坏,除非连续令驱动单元过荷才会烧音圈。
    分音器中的元件愈多,扬声器吸收的功率也愈多,由于通过分音器的电压和电流十分高,所以分音器的元件必须具有足够的承载力避免过荷,否则即产生讯号失真,大功率扩音机可使分音器发生物理性振荡,为了重播高度原音,它的构造需要很坚固并应适当安排元件的位置,避免互相产生磁场干扰。
   
了解规格

    复杂的技术性测量和规格数值虽然是扬声器设计者的工作范围,但消费者也可以从曲线图表中找到一些帮助来选择扬声器。
    可能最常见的测量就是频应曲线,它描绘出扬声器在一个频率范围内的输出,不过绘制这种曲线图表有许多方法,厂家、评论者与阅读者最好要小心,因为用这些图表比较一间厂与另一间厂的产品常会作出错误的引导,可能曲线的垂直比例和输出的高低在两个曲线图表上都有分别,看上去最平滑的曲线可能因为压缩了垂直比例将真实的峰和谷隐蔽而缺少解释力,另一点是可能绘图的速度有分别,快活动的笔会描出较平滑的曲线,请注意一下在图旁注明的描绘速度,厂方提供这个资料对他们并没有损失。
    描绘这些曲线图表虽有许多方法,但基本上可以从测量的结果看出扬声器的输出分别,测量扬声器可能在无残响室内进行,但在低频中的分析则要视乎所用的无残响室大小而定,在英国很少能准确测量低于60Hz的频应,在测量时可将咪高峰放在离扬声器不同的距离,根据驱动单元的垂直排列而产生不同曲线,其他的曲线一般还在扬声器的主轴之上下左右分别测量,这些曲线可显示扬声器偏轴的输出,也是扬声器重播身历声效果的重要线索。
    一款真正为播放高度原音而设计的扬声器应该有平直和规则的频应曲线,由80Hz至15KHz之间的衰减要限于3dB以内,偏轴曲线应与主曲线平滑地分开,水平面曲线也应不大于3dB直至12KHz或稍高频率,最偏轴曲线只应平滑衰减。
    测量频应曲线也可以将扬声器放在户外空旷地方和非常高的位置,这样测出的曲线与在无残响室中大致接近,这种方法所得的结果也不能与其他方法测量结果严格比较。
    扬声器也可以放在正常室内测量频应,测出的曲线包括室内各障面反射音波与直接音波之间的关系,这些描绘的频应曲线通常是用粉红色噪音所产生,测量每一个第三八度音程内的能量,它们不像用扫描音调测试讯号所产生的连续性可变曲线但呈现以第三八度音程为中心的一系列阶级曲线,一个完美的扬声器在正常室内测出的曲线不会平直,但在低频内会显示一些室内效果以及在5KHz以上高频有缓和的衰减。
    极性频应很少受人关心,这是用一个单音调播放围绕扬声器360度测量显示不同频率的扩散度。
    效率和灵敏度数值将会在驱动扬声器一节中讨论,一般平均的灵敏度数值约为87dB/W/M,阻抗规格常引起混乱,扬声器的额定阻抗只是一个一般性数值,并非表示8欧姆扬声器它的真正持续阻抗为8欧,只能被认为大约是8欧,扬声器阻抗较低通常显示具有较高的灵敏度,它们需要从扩音机得到较多的电流,假如你想选购低阻抗扬声器必须确定你的扩音机能驱动低阻抗负荷,阻抗与频应曲线可以帮助你发现扬声器的最低阻抗,查看一下与欧姆有关的垂直比例和深谷为多少欧姆。
    失真曲线需要小心理解才能发现失真是在那一个电平测量和那些是与驱动频率有关的谐波,一个中等大小的扬声器播放音压在96dB时,高音的失真应低于0.5,最好少于0.25,在100Hz附近正常应为1-2,更低的频率,失真为5已可接受,这些数值均与第三次谐波失真有关,它们比二次谐波失真更能破坏音质,失真与其他的测量曲线缓和地离开理论上的理想不能当作是性能不良的显示,但在一段小频带中出现大的不规则曲线变化就会有显著的影响。

转载自《音响技术》
作者: zgmfx10akira    时间: 2012-4-30 16:05
扬声器面面观(二)

期望

    对于一个很久没有接触HI FI新产品的人来说,现在想购买扬声器会感到花多眼乱不知如何选择,他们都可能为了“我应该购买那一款扬声器”问题而烦恼,如果问HI FI店的售货员,他们通常会根据你的消费预算介绍几款产品,但售货员多不是专家,他们的意见和推荐的扬声器未必符合你自己的理想,选择扬声器的人都有一个非常高的期望,希望能买到一款质素优异的扬声器使他们的HI FI系统重播音质可以获得明显的改善。
    其实在选购扬声器之前你应该想到现场音乐与重播音乐在自己的生活中究竟使怎样的重要,或者说听现场演奏与听音乐重播有什么分别,有些专业化的音乐家更喜欢采用全无渲染的扬声器,只用来作为记忆他们脑子里音乐的东西,相反一般HI FI迷则多喜欢那些听起来令人兴奋和有效果的扬声器,因此在你未选择扬声器或一套HI FI系统之前,最好先问问自己“究竟我期望这个器材带给我怎样的音乐声音?”
    想决定音乐对你的重要性并不困难,问题是与你期望所买的产品有关,售货员可能将他们认为富有音乐性的最便宜和最贵的扬声器都介绍给你,但你能与最便宜的产品相处吗?你可否察觉最高和最低价扬声器之间有何基本的分别?对你来说它们的重要性又有什么不同?更重要的是你会不会舍不得花钱?这些问题在你未与店员谈论牌子和产品之前先要确定你对HI FI器材的期望。

偏见

    人们对一种产品常会有偏见,你不能真的避免不受产品的外表影响,但却可以不让任何偏见形成觉得某一种产品更好,不要下意识地喜欢或不喜欢一种产品的外表,例如它的颜色,大少和形状,这些都可能与我们的观感有关,但偏见总应该有一点知识作根据。
    在HI FI里,学到一点是一件危险的事,你可能听过有人说没有一款反射式负荷的扬声器可以产生无混浊过重的低音或者三个单元比两个单元更好,实际上我们在试音室听扬声器的声音与测量出来的数值比较才可以了解产品的质素,对于一款产品的性能必须要作客观的衡量。
    让我们看看关于对扬声器的最普通偏见,例如“较大的扬声器比较好”可能是大多数玩HI FI者所持有的观点,如果你想确知较大的扬声器有些什么是比较好,那只能说它具有更多的低音,更深的音调或者能产生更响更大的声音。从物理定律和观察上证实用大声箱可以获得较多的低音,但声箱的大小与低音扩展之间却没有绝对的关系,大声箱通常的缺点是因为采用宽障隔板当重播身历声时在障板的宽度上产生音波折射效果这可以破坏音像的准确与精密,所以不要相信扬声器愈大愈好,较大的扬声器不一定是较佳的扬声器。
    同样价钱的扬声器采用较多的驱动单元它们的质素多数不如单元较少的好,一个低价的三路分音系统为了不超出额定成本只能采用平凡的三个单元和质素较低的分音器,因而难免劣化了音质。今日采用新原料已容许二路分音系统可以良好地伸展至整个频率范围,正确设计的二路扬声器因所用的障隔板较多单元的三路扬声器窄,故能产生更佳的音像。
    人们对音盘的原料也同样有偏见,例如用Bextrene音盘也永远有它的音色,低音盘也永远有音染,当你在试音室中聆听比较扬声器时应放下偏见,只细心聆听声音与音乐之间的关系来判断重播的录音是否能满足你的期望。

示范-设备与房间

    聪明人购买HI FI在他决定买那一款之前总要亲自聆听一次,较佳的HI FI店均有这种设备,要注意的是在试音时用什么音源作示范和你应该听出些什么?
    当你在试音室中想决定选择那一款扬声器之前有些关于听觉机能的事值得一知,人耳对所有频率的敏感度并不都相同,我们听中频1000Hz附近最灵敏,如果一款扬声器在这些中频输出多些它的声音就会比频应平直的扬声器响些,不要受最响的扬声器欺骗而作出错误的选择,事实上听两款声音相同的扬声器大多数人都喜欢选择两个中的最响者,音量响度差别在1/2dB以下已可对聆听者的选择有很大影响。
    这种事实告诉我们当扩音机的音量控制在相同位置分别推动两款灵敏度不同的扬声器作比较时就需要小心,否则你可能选择了声音最响的扬声器而不关心它的缺点。
    以上所提的偏见使人记得在聆听比较扬声器时不要因习惯上的错误而作出不正确的选择,最好的试听方法是采用遮蔽式聆听测验,不让聆听者见到扬声器,你所能做的只是聆听音乐和判断每个扬声器的质素,如果可以见到扬声器,若有一款喷成鲜红色油漆就可能导致你对这款产品作出不同的聆听判断。但若不能看见到的话,那就没有这种问题。
    大多数购买HI FI的人似乎都觉得正确比较扬声器的方法是将所有扬声器均接驳在一个音源上然后用开关制互相比较直到找出最喜欢的一款为止,采用这种方法有关扬声器的灵敏度问题已是一个缺点,开关式比较器本身也可能容易导致所有扬声器的音质变劣。此外,在房间内应该只有一对扬声器,最多两对,放在正确位置对于聆听者坐的位置来说才能产生最佳的身历声音像和室内障面反射效果,而室内不驱动的各对扬声器会产生吸收室内声音能量作用并且与第一对扬声器发生某些频率谐振,这些扬声器的振膜与声箱几乎想一组鼓一样,当在室内进行试音如搬入另一对扬声器就可能破坏试听扬声器的低音结实,如果不驱动的扬声器不能搬出室外,最好将它们面对墙壁和把输入端短路来破坏驱动单元的电阻性。
    因此最好的试音方法是在室内只用一对扬声器放在适当的位置聆听,这样再没有用开关制比较的音量不同问题。
    在试音室中对用来驱动扬声器的器材也需有一个普通的知识,当然,假若你在家中只听LP唱片,那么主要可以用唱片作示范用途,选择适当的示范音源将在下一章谈到、驱动扬声器的扩音机应该本身的声音尽量中性,若唱头或扩音机有音染则不易判断音质,因此应该选用声音平滑中性的唱头,最好在试音时用你自己的唱头。
    如果在试音室中采用前级与功率放大器配合,或者你在家中用一部机,最好用最短的喇叭线使功率放大器或前后级扩音机尽量接近扬声器,采用中等质素的长讯号线连接前级与后级比用长喇叭线对高度原音的损害少,前/后级之间的讯号线必须有正确的屏蔽网,前级放大器是否适合用长讯号线应该先确定。
    扩音机应有充沛的动态余度来轻易应付讯源中的峰讯号,当试音时如果扩音机被驱动至削峰则导致选择扬声器非常困难,有些聆听者可以听出削峰但却不能证实,削峰是扩音机工作辛苦的显示,也有些聆听者在他们觉得音量够大之前已需要将扩音机驱动至削峰状态,因此用作试音的扩音机首先需要有不削峰的功率。
    选择正确的扬声器座要考虑在试音室中的稳定性与高度应和在自己家中相同,关于这点在后面将会谈到。
    除非聆听者认为已听清楚了试音的扬声器和了解与室内的互相作用关系,店员应该准备移动扬声器到不同位置,直到产生最佳声音为止,当比较两款扬声器时如将第二对扬声器放在第一对扬声器的座上虽不难,但第二对扬声器却未必在这个位置达成最佳工作,必须要使两个扬声器之间的距离与聆听位置关系正确,这点非常重要,如果两个扬声器是为放在接近两边墙壁而设计,音量应该适当地提升补偿扬声器距离聆听者的位置较远。
    如果采用唱盘作试音,不论利用它的设计优点或摆放在稳定的平面上甚至放在室外,必须不受音响回授影响,唱片若有音响回授会使深沉的低音混浊不清而隐藏了真正的录音质素,小型数码碟和数码录音带讯源没有回授问题,是一种真正动态范围宽阔的音源,但缺点是它可能与你的家庭聆听没有关系,并且听数码碟与习惯听的LP唱片声音完全不同,数码器材的来临已成为一种优异的试音讯源,在每一间HI FI店聆听声音均相同。

转载自《音响技术》
作者: zgmfx10akira    时间: 2012-4-30 16:05
扬声器面面观(三)

示范——音源
   
    当你选择一对扬声器时在决定购买那一款之前必须小心比较各款和仔细观察,不可马虎了事,否则买回家里的扬声器重播钢琴、合唱和独唱都觉得难听那就后悔莫及,比较保险的做法是当你准备进入试音室时先要拿定主意聆听那一类音乐和你认为需要听的录音,或者带去你自己选择的唱片更好。
    扬声器用扩音机驱动才会重播出讯号,其实所有扬声器都会在讯号中加上自己的特性,所以用作比较的音源应该尽可能质素高,这点十分重要,前面我们已谈过试音器材和环境,但唱片本身也有些问题需要注意,采用自己喜欢的唱片固然因熟悉内容而在比较上有帮助,但如果你太喜欢这个音乐可能对扬声器的评判太客气。有一个古老的方法不妨采用,你可以从HI FI店的试音唱片中挑一张自己不喜欢的音乐,听听各款扬声器重播这张唱片的效果如何,如果你发现有些扬声器的声音比你心目中那款更纯美,即表示你选择的扬声器可以影响你选择的音乐。
    有些形式的音乐和录音更适合表现扬声器特殊区域频应的声音,许多人喜欢用聆听直接输入电低音结他他弹奏的摇滚音乐录音方法来决定扬声器的低音性能,其实聆听一段录音良好的钢琴音乐更能告诉你有关扬声器的低音性能,因为低音电结他很少真正的低频输出,钢琴的低音可以伸展至A调27.5HZ,因而能具有乐器的低音实体感,低音大提琴的E调低频约伸展至42HZ。
  
判断扬声器首重选录音

    如果你想判断一对扬声器的身历声音像,那就要记着采用可以真正能重播出身历声效果的录音,有两种方法制造身历声音像,第一是让演奏者在自然的音响环境中用两个或三个咪高峰排列录音,这样可录到声音与室内音响的关系而保存了空间感和透视感,另一种方法是让演奏者在无残响录音室中,每一件乐器前面用一个咪高峰拾取直接音然后用混音器将各件乐器的声音混合,利用混音器和控音器可将各种声音控制到左边、右边或在中间的某一个位置,这种技术即俗称的Pan Potting,在多声轨录音时常采用,这种方法制成的录音效果没有室内的回音和空间感,但可用回音器加上回音,今日许多古典音乐和摇滚或流行音乐都用这种技巧泡制,通常那些较小的公司唱片会特别强调身历声效果。
    如果你想听扬声器的音染可以接收电台广播的谈话声,但要注意有些商业广播电台的唱片介绍员(DJ)经常故意作出怪声,最好是聆听新闻广播,假如试音室中不能提供调谐器的滑,采用钢琴、横笛、结他和人声等独奏或独唱的录音也有帮助。
    动态范围和大音量重播的潜能较难正确判断,大多数人都期望摇滚唱片有最响的声音,其实摇滚音乐只有平均的大音量但响度变化却不大,相反交响乐的音乐可能平均音量较低,但如为正确的录音就会将最柔和与最强劲的声音均录入,动态范围超过摇滚音乐,如果你想试验一下听一段时间后会否导致疲倦,那么用高能量和大音量的摇滚音乐是理想的测验素材,如果你想判断扬声器的清晰动人音质和最大的爆棚气势,用贝多芬或柴可夫斯基的交响乐是最好不过,在决定动态范围时你应该聆听最强音发展的动力与自然的表现。
    搜集几张这样的唱片用来试验扬声器各方面性能对你的选择非常有帮助,记着在试音室聆听比较扬声器时要包括低音的伸展,身历声音像的深度、透视和分隔度、动态范围和大音量重播的测验。
   
“音染”是什么?

    音染是一个难解释的HI FI字,永远没有两个人对音染的看法完全相同,英国广播公司(BBC)给关于扬声器的音染下了一个最广阔的定义,认为一个扬声器如果增加了不需要的声音或减少了需要的声音都属于音染,其他人可能给它一个更明确的定义,就是在平直的频应中有任何改变即为音染。
    从以上的解释我们可以见到BBC式定义已将音染划成两种,一种在扬声器的中性声音中增加“染色”,另一种则从中抽出了一些声音,换言之有“增加”和“减少”音染之分,对于扬声器设计者来说这个区别可能很重要,但对一般聆听者来说可能只会对听声音的概念上有些帮助,究竟什么是增加音染和从声音中减少?在后面音染名词一节将会有更清楚的解释。
    音染是在扬声器中出现不需要和不能移植谐振,例如高音单元的金属保会网即可能在一个窄频带中产生谐振,这种谐振可以很容易听出是一种多余的声音,或者说是在基本中性声音中增加的成分。
    与HI FI外行人谈音染是愈谈愈糊涂,例如有铜声,开扬和温暖等形容字都会令人难以会意,但是与评论家、厂家、分销商和HI FI迷谈这些则可以建立一个共同的概念来讨论扬声器的性能表现,在下段我们列出了与音染有关最常用的形容词,许多字应该自己去寻求答案,但如果你急切想知道什么是开扬的中音,那就需要继续下去。

转载自《音响技术》
作者: zgmfx10akira    时间: 2012-4-30 16:07

扬声器面面观(四)

驱动扬声器
   
    HI FI评论家和厂家最常被问到关于扩音机的问题就是“它能否正确地驱动我的扬声器?”,这也是一个最难回答的问题,关键在“正确地”这个字上,几乎每一部扩音机当连接上任何扬声器都会产生一些噪音,但只有在扩音机完全控制扬声器的整个频率范围包括最强和最弱的讯号时才能说这部机可以驱动扬声器。
    一般人匹配扩音机和扬声器是以它们的功率数值作准则,现在扬声器厂家多数都注明适合他们扬声器的扩音机功率范围,通常会刊出最高和最低功率,例如可用的扩音机功率在15-75瓦之间,这表示该扬声器的效率可以用一部低至15瓦的小功率扩音机驱动至满意的音量,但扬声器的单元却容许用75瓦无削峰功率驱动,在这种情形下,扬声器的声音会比用15瓦扩音机驱动时更大,但这里却有一些混郩的问题。
    第二个最常被问到的问题是“最大的音量可至何等程度?”,许多HI FI迷从一部25瓦扩音机升级至40瓦,以为有了这额外的15瓦功率可使他们的系统显著增加输出音量,其实响度的分别很少,只有在大量增加扩音机功率时才能使音量产生明显改变,远比增加扩音机功率更重要的是扬声器由电器性能量转换成音响能量的能力和做此工作的效率。

名词解释
   
主动扬声器(Active Loudspeaker):
    这种扬声器的每个单元均用一部功率放大器直接驱动只播放一段指定的频带,采用电子分音器处理前级放大器输出讯号分开几段需要的频带输入各部功率放大器,与传统式扬声器或称被动式扬声器有别。

无残响室(Anechoic Chamber):
    全无回音的环境,传统式的频应曲线就是在无残响室中测试。

前障版(Baffle):
    在扬声器前面安装驱动单元的板。

平衡(Balance):
    表示扬声器的声音为中性,如果扬声器的低音或高音过多即非平衡,音色平衡的简称。

BEXTRENE:
    一种塑胶物质可用来代替扬声器的纸音盘,在1960年首先被英国广播公司采用,现在已进一步发展成聚丙烯等。

分裂(Break up):
    当扬声器音盘或半球形振膜到达不能再呈纯活塞式活动和开始变形的时候而产生失真即称为音盘分裂。

削峰(Clipping):
    因输入过荷而导致讯号电波的顶峰被削去,平顶的讯号具有高谐波失真。

音染(Coloration):
    形容扬声器音色平衡不良的一个不太准确名词,请阅读音染的一段。

分音(Crossover):
    一种电路可将讯号的整个频宽分成需要的几段频带输入不同的驱动单元,这种电路也可以包括时间延迟或均衡功能。

分贝(dB):
    与响度有关的单位(采用对数比例)

失真(Distortion):
    通常是指总谐波失真,在驱动讯号中出现的不需要的讯号谐波百分率,一般可用来表示扬声器引起不需要的声音改变。

动态范围(Dynamic range):
    扬声器所能播放的声音由最轻至最响之间的范围,通常用分贝表示,这与静态测量的讯号比不同。

效率(Efficiency):
    输入扬声器的一个电气性讯号能转变成多少音响功率输出的比率。

均衡(Equalization):
    将频应作需要的改变,在扬声器中均衡的意思是矫正不规则的频应。

音像(Imagery):
    适当录成的身历声音乐(音响)所获得的空间和透视感,包括深度与宽度。

阻抗(Impedance):
    在扬声器中表示给予扩音机的电气性负荷,扬声器的阻抗会跟随频率而改变,例如规格中的8Ω阻抗只是一般性数值,阻抗用欧姆作单位测量是为了方便,其实它包括电阻和电抗性两种元件的合并特性。

中音(Midrange):
    人耳听觉最灵敏的一段中间频率,在三路扬声器中通常采用一个中音单元播放这段频率,在二路扬声器中可能用低音单元或高音单元处理,视乎分音点位置而定。

相位(Phase):
    一个正弦波“领前”或“落后”第二个相同频率正弦波的分量,二者的差别用相位角来描述,两个正弦波的相位相同可彼此增强,如相反则互相抵消。

粉红色噪音(Pink noise):
    用作测量的一种混合频率噪音,在每个八度音程内均具有相同分量的能量,白色噪音(White noise)是在所有频率内均有相同的能量。

主中音(Presence):
    由2K至5KHZ的一段频带,它可以决定主唱者的人声或主奏者的乐器声向前突出效果。

反射(Reflex):
    扬声器的一种低音负载设计,在声箱中采用反射孔调节低音单元特性,可以改善效率但却牺牲一些控制。

灵敏度(Sensitivity):
    扬声器从一个已知的电气性输入所能转变成的音量。

传输线(Transmission Line):
    一种与低音反射式扬声器相似的低音负载设计,但需要有一条具有整个波长体积的传输线。

高音单元(Tweeter):
    一种小型的驱动单元专为播放高音和扩撒高音而设计。

低音单元(Woofer):
    一种驱动单元只为在低频中工作而设计,在二路分音系统中所谓的低音单元多数应称为中/低音单元才更合当。

转载自《音响技术》
作者: zgmfx10akira    时间: 2012-4-30 16:07
LP完全发烧手册(一)--唱盘与唱臂特性影响重播音质

    唱盘的工作不仅要提供唱片准确稳定的转速,并且还要支持唱臂与唱头循迹,唱臂的性能受到唱盘的限制,实际上唱盘唱臂和唱头是三件不可分离的东西,因为当你想测试其中一样的性能时必须与其他两样一同工作。今日传统式唱盘主要分胶带驱动和直接驱动两种设计,它们各有自己的优点,如果设计和制造精确,带动和直驱唱盘都能达成理想的工作。

    70-80年代,直驱唱盘虽然流行,但并未影响高级带动唱盘的地位,如今许多声誉昭著的带动唱盘仍受到发烧友的热爱,事实上带动唱盘可以做到最佳的避震效果,尤其是越来越流行的副底座(Subchassis)悬挂设计特别令人满意,副底座是一块用弹簧支持的悬浮式板,弹簧安装在唱盘主座上,由于转盘和唱盘都安装在副底座上而马达则装在主座上,马达与转盘之间用胶带环套,因此有效地隔离了马达振荡,同时副底座也可以避免受外来的机械振荡和音波振荡影响,对重播音质的清晰度可以明显改善。目前不少采用副底座的带动唱盘为三点式弹簧悬挂设计,但是单用垂直弹簧支持副底座还会发生摇摆,为了进一步稳定唱针循迹,有些唱盘还采用了水平弹簧悬挂系统。

    为了要保持唱针准确循迹,唱臂的轴承必须稳定和摩擦力低,此外唱盘的轴承也一样重要,在转动时一定要十分顺滑,绝不能产生任何振荡,摩擦力也需要尽量减少,带动唱盘可以用较重的转盘增加转动的惯性来达成持续速度稳定效果,直驱唱盘的转盘直接安装在马达轴上,用石英锁或其他侍服系统控制速度的准确,直驱唱盘只能靠避震脚隔离外来的振荡,因为马达与转盘直接耦合在一起,如果马达工作不够顺滑宁静必然影响转盘和唱针循迹,幸而直驱马达转速很慢,但仍然有超低频振荡问题,一般直驱唱盘为了减轻马达的负荷,所用的转盘重量较轻,虽然用电子化控速,从测量数值来看似乎甚佳,但用轻转盘因惯性动力少,会产生动态扭力变化问题,并且也容易在转盘和唱臂上产生谐振,这就是许多轻型直驱唱盘音质欠清晰的原因。

    唱针在唱片上循迹时每平方寸面积上的压力高达三百吨,因此经过高电平讯号刻纹时,唱针与片纹的磨擦力增加可能将转速拖慢,这种现象在轻转盘上最明显,如果采用重型转盘由于惯性作用可以矫正速度变化保持转速持续稳定,使抖摆率减少,所以高价的发烧级唱盘多数均采用重唱盘的设计。

唱头与唱臂配合需要注意低频谐振点
    唱针装在针杆上,针杆与唱头内有弹性的物质连接,这个弹性的大小即为唱头的柔顺度,唱臂质量轻重与唱头柔顺度高低配合会产生不同的低频谐振点,如果唱头与唱臂的谐振频率在耳闻范围以内就会对唱头的输出频应有很明显的影响,谐振频率导致唱头输出频率范围中在某几点特别增强,例如在极低的耳闻频率中谐振增加了唱针活动幅度,在最高的耳闻频率中则使唱针的振动速度提高,这都影响到唱头的循迹性和音质。

    如果唱头和唱臂配合所产生的谐振低于耳闻频率范围和高于弯曲或偏心唱片产生的超低频,就可以避免影响循迹,唱头的输出也可以更平直,理想的谐振频率应在10Hz附近,不宜低于7Hz或高于15Hz,这个谐振频率是由唱头柔顺度与唱臂质量的配合决定。一般而言,高柔顺度唱头应配轻质量唱臂,低柔顺度唱头宜配重质量唱臂,唱头的柔顺度在说明书规格上可以找到,唱臂质量虽然在规格上不常注明,但凭唱臂的形状与结构可以估计,通常直线形唱臂和唱管较细的一类多属于轻质量唱臂,有些臂管用碳纤维或聚合石墨等原材料制造更能减轻质量,S形唱臂的质量多数会比直线形唱臂重,当然也有些例外的情形,总之,如果唱臂的质量集中在接近轴承部分它的有效质量一定较轻,一般唱臂为了配合唱头柔顺度的提高都趋向减轻质量设计。

唱臂循迹误差应小心调至最低
    固定框轴的唱臂因为活动是弧线性,所以不可以在整个唱片纹范围保持无轨误差,不过只要唱头的位置适合与唱臂补角正确,就可以将轨误减至最小,调校轨误需要用一种简单的测量器,价钱不贵,HiFi迷不可缺少,如果在距离唱片中心二寸半位置将轨误角调到接近零,在片纹的其他部分轨误亦不会太大,假如不超过2度是不易听出循迹误差失真,唱臂的有效长度减少轨误,但却增加了唱臂质量,现在多数唱臂的有效长度为9寸左右,很少有超过12寸的设计。

唱臂向心力需要偏压补偿
    弧线循迹唱臂的另一个问题是会产生向唱片中心活动的趋势,称之为向必力,唱臂上心须装置偏压补偿,调准后才可保持唱针对两边音槽有均衡的针压,由于唱臂向唱片中心活动时向心力逐渐改变,所以唱臂的偏压补偿也需要随着唱臂活动位置而改变,目前的设计不外三种,包括静态,动态和磁抗原理,只要设计和调校准确,均可达成正确的补偿效果。

    直线循迹唱臂理论上可以达成无轨误的循迹,实际上今日最精密的直线循迹仍然会有0.2度左右的轨误,当然这样小的误差是可以忽略,直线循迹唱臂一般都采用光电感应伺服系统控制用马达驱动唱臂活动与唱针在片纹中活动速度同步,光电伺服系统的工作原理并不复杂,当唱臂无片纹的正切循迹角出现偏差时,就会有一个微小的光速照在光敏电阻止,这个讯号策动伺服马达稍为移动唱臂直到光敏电阻不再受到光束照射为止,但因为马达矫正唱臂活动和停止的时间总有一点延迟,所以不可能保持轨误绝对为零。

抖摆率数值可作参考不同测量方法不能比较
    唱盘的抖摆率数虽然需要参考,但抖摆率却不能表示唱盘重播音质的优劣,而且测量抖摆率并没有一个统一的标准,用不同的方法测出的数值有很大的分别,所以只有用相同方法测量的抖摆率才可以比较,一般厂家喜欢用WRMS数值,因为百分率是抖摆变化的平均值,它的数值较小,显得更有吸引力,但却没有太大的意义,德国工业标准(DIN)方法测量抖摆率是连峰值计算,故百分率数值较大,可靠性亦较高,不过通常测量唱盘抖摆率均采用一个固定音调,这与实际使用时播放音乐的复杂音调有差别,因为当循迹时针压随着片纹的电平改变也会影响轻转盘的速度稳定,只有重型转盘才能保持稳定转速,抖摆率也真的降低。

隆震与讯噪比表示噪音高低
    唱盘的隆震(RUMBLE)是规格中更重要的一项,采用分贝数值表示从马达和转盘轴承产生的振荡,严重时可以用耳朵听出,想知道唱盘隆震多少只需在播唱静乐段时扭大些扩音机的音量,应该听不出低频哼声增加最理想,假如有明显的哼声从扬声器播出,唱盘便会较高的隆震。

    另一与噪音有关的数值是讯噪比,这是测量音响系统中连接上唱头后的背景噪音,只要将扩音机与唱盘连接,输入选择调在唱盘位置,开启电源掣不用转动,将音量逐渐扭大,如果只能在距离扬声器很近时才能听出嘶声或轻微哼声那已合格,假若扭大些音量已听到哼声,表示唱臂马达泄漏磁场被唱头拾取或者其他部分产生交流声影响唱头。
   
    还有一点很值得注意的特性,这就是唱臂谐振,测量时需要用特别的试测唱片,这个测量可以显示唱盘与唱臂受音响回授的影响,但一般唱盘的规格中多不将它列入。不过自己也可以用简单方法试测唱盘回授的敏感性,只需将唱臂降下使唱针压着静止的唱片上,将扩音机音量扭到正常聆听位置上,用手指连续敲唱盘面板,如果听到扬声器发出清楚结实的声音属于正常,若发出拖长的颤抖声而且混浊不清,那就是有音响回授问题,垫上特制的避震脚可以改善。

唱片发生谐振亦能影响音质
    唱片胶本身是一种容易产生谐振的物质,在重播时如果发生谐振必须使唱片紧贴着唱片垫,因许多唱盘上的垫都做成脊纹形,虽然比较美观,但却使唱片与垫之间有空气存在,结果更容易使唱片谐振,较佳的设计是用平面垫接触唱片纹,更有效的办法应采用唱片稳定器,有些设计良好的稳定器还能矫正不太弯曲的唱片,如果你的唱盘马达扭力较弱,应避免使用金属饼型唱片装,否则可能给马达带来过多的负荷以致影响速度准备,但可用塑胶制的唱片钳,现在也有附加式真空吸力唱片垫,不过有的唱盘不合用,而且售价十分高。
作者: zgmfx10akira    时间: 2012-4-30 16:07
LP完全发烧手册(二)--调整LP唱盘的八大基本功

    在LP时代,许多人终其一生听LP唱片,然而,他们可能连唱头要调整三个角度都不知道。只知道唱头锁上唱头盖,加上适当针压就能唱出声音了。从「知」的角度来看,他们可说是糊里糊涂的听著唱片。从「不知」的角度来看,他们才是真正幸福的LP迷,因为他们从来未曾感受到调整唱头唱臂的痛苦。

    调整唱头唱臂有什麽痛苦呢?第一:声音不稳定。往往今天听了好声,明天声音就跑掉了。至于为什麽声音会跑掉?从来这就是无头公案。也因为声音不稳定,LP时代邀请人来家里聆乐时,往往就因为声音跑掉而尴尬极了。第二:越调越迷糊:每一个人在调整唱头唱臂时都想要越调越好,但往往反覆调过几次之後,听觉越来越迟钝,越来越迷糊,也越来越不敢确定到底哪一次声音最好。调到後来,经常就是心神耗尽,疲劳崩溃收场。第三:变数大多。就以唱片本身来说好了,唱片弯曲不说,每个厂牌的唱片厚度还不一样。唱片弯曲其他的调整就都白费了,因为所有的角度都会不正确。而厚薄不同也让费心调好的垂直循轨角V.T.A心血泡汤,因为我们争的也就是那零点零几公分的差异。第四:要非常小心。为什麽非常小心是痛苦之一?当然罗,因为只要您一不小心,昂贵的唱针就会被您弄断。唱针一弄断至少就要花个几千几万,您不会心疼痛苦吗? 基於这四大痛苦,所以今日CD盛行真是救苦救难菩萨,让大多数人从苦海中解脱。奇怪?既然听LP唱片那麽的痛苦,为什麽还有人甘之如饴呢?其实答案也很简单。第一:听LP唱片有成就感。调整功夫的高低直接就影响到声音的好听与否,功夫不够,声音就不好听;功夫好,大家都称赞。因此,听LP唱片比听CD要来得有成就感。第二:LP是类比的声音。类比声音里有数位声音所无法企及的许多细节,而且音质也更自然。这也是许多人仍不放弃听LP唱片的主要原因。

    对于从LP时代跨到CD时代的LP迷而言,调整唱头唱臂的一些基本功夫他们皆已具备。而对于那些要从CD时代跨入LP领域的新LP迷而言,他们恐怕就没有这些基本功夫。因此,我在这里想以最简单的方式来为这些新鲜
作者: zgmfx10akira    时间: 2012-4-30 16:07
发烧诊所——唱盘科

    声音被污染——所谓音质污染,即是说音质总有一种不干净的感觉,但又不是严重失真,不干净与失真是两回事。
1、垂直循迹角度之调整
    调校唱臂的高度可以改变唱头之垂直循迹角,一般而言,我们打横用眼与唱臂拉成在同一水平,唱臂如果是水平状态便可行。如果唱臂太高(承轴点高过唱针点),声音便会变得不正常,太紧而又有多余的噪音。如果唱臂是不能调校高度,那么便需要找一些介子或垫片之类的东西装在唱头壳与唱头之间,令唱头的垂直循迹角尽量接近理想的数字。
    假如这也没有改善的话,就应该详细检查唱针尖是否干净无污垢,而且最好有放大镜去观察一下钻石针尖的磨损程度。唱针损耗得太历害便必须更换一支新的。   

2、检查针压
    众所周知,不同的唱头是需要用不同的针压,但不经常更换唱头的人,很多时会忽视了尾铊的刻度。用上了一段时间,唱臂后的平衡铊便会慢慢移位,使针压也因而改变。所以,如果你拿放唱臂时用得太多力或动作过快,你便需要经常检查针压刻度表的数字了。
    针压过轻时便会令声音变得飘浮不稳。当然有些人是不依照厂方定下的最适当针压,按其喜爱去调校针压,但无论如何,针压应调校在最适当数值之前后两成范围之内。
    声音失真——耳朵明显听得到难入耳之失真声音。失真有时是全部,有时只是部份,如右边声道之人声等。

3 、检查针尖是否磨蚀,有无污垢     这虽然是玩音响的人必已知道的基本常识,但往往有很多初哥都忽略了。有时是针尖粘着尘而引致失真,有时是因为唱片太过污糟所致,因此,大家在听唱片前一定要将唱片清洁一番,养成一个好习惯。
    对于一些初哥来说,好可能由始至终都只用一只唱头,唱针经长期使用便会磨损,一般唱五百小时便要换上一支新唱针了。如果是换唱头时,最紧要拣一些输出适合扩音机的输入灵敏度的产品,因为输出太强可能令扩音机过荷,听录音电平特别高的唱片时便好有可能引起耳闻失真。

4、检查反偏压调节器
    任何一部唱盘都设有反偏压调节器,作用是抵消因物理现象令唱针向转轴内倾斜的力,使唱针不会“侧埋一面”。反偏压调校不准便有以下的问题出现。完全没有或过少调校反偏压会令右声道声音出现耳闻失真。过大的反偏压便反会令左声道产生失真。因此之故,反偏压一定要调校在正确的位置(与针压的数值相同),这会帮助声道之定位更准确。
    如果调校准确也没有用,那么便要检查针压,因为针压太轻而引起耳闻失真的例子彼彼皆是。
    低音模糊——低音不清晰、含糊有混浊感。

5、改正唱盘的倾斜度
    低音混浊不清通常是音响回输所引致。唱盘侧了(并非在水平)会增加引致音响回输的机会,所以唱盘一定要在水平面上,不得有“侧埋一边”的情形,调校妥当唱盘的水平不但可减低音响回输,而且更可使唱头与唱臂能正常工作。  
    如果调正唱盘水平都无改善,试更换唱盘的摆放位置。一般房间的四只墙角会有低频驻波,唱盘摆在墙角会容易引起音响回输,因此应尽可能将唱盘摆离墙角。

6、试除下防尘胶盖
    唱盘的防尘胶盖面积阔大,容易收集声音的压力。尤其是揭起尘盖时,唱盘所受的振动就越大。这会使低音变得混浊不清,有模糊之感觉。放下尘盖也一样会引起低音混浊,而且更夹杂着更高之频率谐振,产生不正常之回音效应。因此之故,听唱片时最好将尘盖脱掉!
    如果除了尘盖都无效,大家不妨试将尘盖放下,在盖面放上又厚又重的书刊之类的东西。这对于一些重量轻的唱盘会更有效。     中音刺耳——这是代表声音令人听到耳朵疲劳,皆因刺耳。弦乐声变成“Key”声,人声失去柔润之美感,变成不想听的刺耳声。引起这个问题的原因,是中高频段有尖峯(Peak)所致。

7、试换唱头壳
    唱头壳产生谐振时会令中音频段产生起尖峯,这现象尤其经常发生在轻质量之唱头壳身上。转用一只由铝合金削成之唱头壳会令这个问题消失,不家不妨一试。
    遇上换唱头壳都无济于事时,可以检查唱盘讯号接线。一些长而廉价的讯号线最好不用为佳,换上质素佳的接线会有改善效果。假如扩音机上有唱头电容值选择时,用电容值最低的讯号线是比较好。

8、在唱头壳上加上阻尼物
    用胶布将唱头壳的表面全部帖满,连手提杆也需要捲有胶布。由于唱头壳贴了胶布会增加重量,因此便须再调校唱头的平衡与针压。
    如果试过仍然无效,可以在臂管部份贴胶布。整支唱臂捲密胶布就会增加活动质量,破坏音色平衡,所以最好只在两处(头和中间)贴上1厘米阔的胶布,这样应该会收效。
    唱片中心位置声音失真——这个现象经常发生,体验过的人应该有很多。主要原因是直线速度由唱片的外围开始向圆心逐渐变慢。

9、检查悬垂距离     无论“S”型唱臂也好、“J”型唱臂也好,两者都必定会产生循迹误差。因此,它们都采用了特定的长度及补偿角度去令这个循迹误差减至最低。唱头的悬垂距离一定要准,不准便会增加循迹失真。举例说一支25厘米长的唱臂,悬垂距离改变5毫米便会令近圆心处之唱头,循迹角改变1度(一个很大的失真数字)。循迹角失真会令声音产生耳闻失真,尤其是当唱针循迹唱片内近圆心位置的坑纹时。因此之故,这个悬垂距离(Overhang)一定要按照厂方所定的数值去调准,不可马虎。
    假如调准仍有失真,那么便要检查针尖,钻石针尖蚀了便容易产生可闻失真。

10、试换唱头
    刚才已经提过,由于唱片近圆心部份的直线速度较唱片外围部份为慢,因此循迹时便考起唱头了。唱针循迹唱片内围时颇为吃力,尤其循迹高频率之片纹时更感困难。柴田、椭圆形针尖比圆锥型针尖有更佳循迹能力,因此大家在换唱头时,不妨查一查以前所用之唱针是属何型!
    换唱头当然要再次校准水平、垂直高度、针压、反偏压等调节。     高音不足——总而言之是高音不足,不足之程度是包括少量不足,以致严重不足。

11、试换唱头
    这个情形多数是发生在动圈唱头身上。如果换用其他唱头便可解决,就证明是唱头与放大器之间的匹配不良。假若升压牛或放大器的输入阻抗比唱头的负荷阻抗更低时,高音必定出现不足之情形。  
    如果换了唱头都一样感到高音不足,大家可试不用升压牛,直接将唱头输出接到扩音机。由于升压牛只得3及10欧的低输入阻抗,所以假如唱头的负荷阻抗高过10欧时,首先便会令高音出现不足之情形。   

12、试转用其他唱头之负荷阻抗数值
    有时你的唱头负荷阻抗可能有30欧,但你却将扩音机的输入阻抗调在10欧,检查有没有搅错。这个场合便应将扩音机的输入阻抗拨在40或100欧。MM头负荷阻扩多数是47千欧,如果你将它接在33千欧左右较低输入阻抗的放大器时,高音一样会不足,但程度就应该没有MC头那么严重。
    如果你只MC头没法解决高音不足的情形,不如索性将它驳在扩音机之MM头输入级,虽然输出会细一些,但如果无高音不足的情形,那么便可证实是扩音机之MC头输入阻抗过低引致。     声音轻而太浮——主要是声音欠缺厚度,有时也缺少了重量和重心感。   

13、试换唱片垫
    调准所有应该调校的部份后仍是声音轻浮的话,大家可试换用其他唱片垫。事实上太硬的胶垫与及太薄的垫都会令音色有轻浮的倾向。因此用一些适当厚或铺上胶布的唱片垫便会令音色的平衡度更佳。  
    如果唔敢确定是否唱片垫引起,大家不妨在唱头壳上加阻尼物,应该一定有改善。

14、试用唱片压(稳定器、铗)
    唱片由于是承放于唱片垫上,所以如果不将唱片紧贴在唱片垫面便可能令声音大打折扣,变得轻浮。因此之故,大家最好采用唱片压放在唱片上,令唱片与唱片垫有更加密切的接触,从而令声音更理想。
    除此之外,你可以将唱重略调重一点,但不可超过适当针压之二成。       定位不明确——人声的定位不准,乐器的定位凌乱等情形。

15、检查唱头是否装得妥当
    唱头安装完毕后请大家在面前检查一下它有否倾斜了。倾斜的唱头固然不可正确检拾左、右声道之讯号,而且更会产生不良之循迹活动。因此在安装唱头上唱头壳时便需要留意螺丝是否两边平均,有没有一紧一松的情形。
    如果唱头无装斜,那么便要检查唱盘是否在水平面,如果唱盘侧向某一边,唱头左右所受的力便不平均,令左、右声道输出不平衡。

16、调节反偏压器
    如果反偏压不足,向唱片中心那边的片纹便会施予针尖更大的压力,使左声道的输出增强。因此之故,请大家务必校正反偏压。
    如果校正都无改善,那么请再次检查唱盘有没有偏侧,前侧、后侧都会令定位不明确。
作者: zgmfx10akira    时间: 2012-4-30 16:08
唱头的寿命

    每当我们提及到一只唱头的寿命,首先令人联想到的就是其唱针的寿命。究竟一支钻石唱针有多久的寿命呢?一般来说是大约五百小时。有人曾询问过多间唱头制造厂,他们的答案是四百至六百小时,五百小时这个数值只是取其中间数而得来。每日听两小时的话,大约可唱九个月;三小时的话,五个半月左右。普通LP大碟A、B面加起来大约有四十五分钟播唱时间,因此大概可唱六百六十张。在五百小时中唱针所走过之音槽总长大约相等于由东京到名古屋的来回路程。  
    刚在说厂家们的答案是说四百至六百小时,其实这并不是他们吹牛,而是从很多间大厂调查得出来。要解释为什么他们不能明确说出一个肯定数字,我认为原因是基于各种不同之条件而使到寿命也各异吧!究竟又是什么条件呢,让我告诉你们吧!

钻石针尖有平有贵
    首先就是钻石的硬度。人人都知钻石是坚硬无比,但一粒钻石之中,有硬的部份,亦有软的部份。钻石是结晶体,当然有结晶轴,假如接触唱片音槽的部份是硬的一面,当然是没有问题,但相反如果是软的一面时,那就会大大缩减其寿命了。将小如微尘的钻石针尖放大观察,是可以分为两种不同之构造。  
    粘合型针尖是在金属棒之末端用加工手法粘上钻石粒子然后将钻石打磨成针状。这种廉价唱针接触到音槽之部份才是钻石,钻石之上是金属棒子。情形就刚恰似一支刨尖后的铅笔,木的部份是金属,铅芯是钻石。这种粘合型号针尖是不能控制钻石的本体是否四边都是在结晶轴上;另外一种针尖是整支由钻石制成,因此可以考虑到结晶轴方面。无论如何,如果忽视了结晶轴,要将针尖打磨得理想,实在是十分困难。
    大家看看附图便清楚估计得到,整支由钻石制的针尖是较为昂贵。一般情形下,二百元以下的唱头及一些平价唱盘上附有之唱头,其针尖主要是粘合型。而剩下来的唱头,包括中级以上的唱盘的唱头,都是使用了整支的钻石针尖(非针杆),即是说,基于结晶轴而导致其寿命的差别,是可以首先从唱盘的售价去推断。  
    虽然钻石是世界是最坚硬的物质,但奇妙的是,它也会被柔软的塑料唱片纹磨损。究竟钻石怎会被磨蚀呢?以下有两种不同的说法:
    最可信的说法是,由于唱针在唱片音槽内磨擦产生了高热。针尖表面的温度此时会升至160摄氏度,但从针之表面千分三毫米下之内部温度,就只相等于室温。这个数字虽不是实际测出,但是从钻石与塑胶之间的磨擦抵抗特性所计算出来的数字,仍相当可信。举例说室温是20摄氏度,那么温度差便有140摄氏度了。由于这个如此大之温差,钻石表面便好似鱼鳞一样,慢慢一层层剥落下去,最表面的一层马上与钻石分隔,形成磨蚀的现象。这是个有力的解释。   

唱片污秽是致命伤
    第二个令钻石针尖磨蚀的原因,是与用者的使用方法有重要关系。最大的问题,莫过于唱片上的污秽、尘埃、油脂等等。大家相信也曾有过以下的经验吧!当播唱一张十分污秽的唱片时,音质是无比的难听、干涩刺耳。音质之所以劣化,完全是因为尘埃污秽。大家不妨细看唱针的针尖部份,唱过污秽唱片后的针尖,一定会在针尖周围附满了一团尘。唱针尖因为被一层尘包裹着,便不能与唱片音槽得到最密切的接触,因此当循迹唱片时便会在音槽内胡乱左抛右抛,引起音质严重失真。此时的针尖一定像一把锉一样,随着震幅磨擦着唱片内两旁的音槽,音槽本身倒不是问题,但唱针便会因此容易变形,产生很多杂音。  
    即使唱片是经过清洁,外看十分干净也好,在唱片纹之中也会遗留下一些肉眼看不到之微尘。唱针在那里走过时,就好像一架汽车驶在一条凹凸不平的碎石路上,车軚(唱针)受猛烈震荡,马路(音槽)上碎石横飞。这并不是笔者吹牛,而是由于大家看不见而忽略了吧!  
    假如拿一部电子显微镜将唱片内的音槽放大成一幅活动画面的话……。它就简直是美国大峡谷一样,有着连绵不绝的山脉,而山谷的形状与深度就是大家从未想过之千变万化。唱针尖穿过唱片纹由于表面带着高热,因此手指纹留下的油脂、清洁液过多留下之湿气,加上唱片纹内的微尘,便会令唱针经常受到碰撞,有时严重到可能会跳针……。简直就好似宾虚的战争场面一样。
    因此之故,微尘之数量便能左右唱针的寿命,当然唱片越干净,唱针的寿命便可延长。清洁唱片是理所当然的事,考虑到希望唱针有更长的寿命时,笔者在此诚意希望读者诸君今后能加紧清洁阁下之心爱唱片!切勿偷懒!   

针杆塑胶阻尼器衰老后会劣化音质
    另一方面,唱臂与唱头的正确装嵌、调校也是绝不许有错。如果唱针能正常与唱片音槽接触,应该没有问题。  
    唱针平均寿命是四百至六百小时,主要是视乎钻石针尖的磨损程度。参看附图,大家会比较容易理解唱片纹、针杆与唱头的震动机械。针尖就是装嵌在针杆之末端。针杆的任务是传达后面磁铁(MC头则线圈)的活动至针尖上。(附图是MM头)。用“感应杠杆”去形容针杆就最适当不过。中央部分支持针杆的东西叫阻尼器(Damper)。阻尼器是作为支点去支持着针杆活动之时,又可抑制针杆之共震。阻尼器的用料,为了满足两方面之要求,便使用了橡胶。不幸的是,这只橡胶便是祸的根源。  
    举例说,当你遇上一只十分之靓声的唱头时,用开那只便因此被迫打入冷宫。好了,假使你将它放入抽屉内,十年后再偶然拿出来唱,怀着与打开陈年干邑的瓶塞一样的心情将唱针放在唱片之上,那种与十年前不相似的声音,实在奇怪……。
    虽然针尖之钻石并没有刮蚀,与新货差不多,但由于有十年时间没有使用,针杆上之橡胶阻尼器经多年时间而产生变化,已经完全变质。我之所以举这个例,是我有过类似的经验,那天我在抽屉里取出一支放置已八年的动磁式唱头唱针,试装回在动磁头上听听其音质,出乎我意料之外,声音竟像发自一部老爷收音机一样,绝不HI FI。这个故事告诉我即使是新唱针也会经时间变迁而老化。

唱头寿命的计算是要考虑其内部各方面
    关于钻石针尖之寿命,以上已提及过,但讲到唱头的寿命,单留意针尖部分其实是不足够,大家必须要顾及到阻尼器等机械震动部分之寿命。笔者之橡胶变质硬化的经验,其实不单指唱头,凡是用橡胶带的机器也有同样的问题,例如录音座与带动式唱盘等,这些器材绝不能长期不开机,至低限度每个月开一次是一般音响常识。
    还有的是,假如唱臂调整不良、唱头受很大负担,阻尼器因疲劳会变形,即使唱针不受影响,但震动系统的机械会因此宣布提早“玩完”;另外,如果唱针(唱头里)周围布满污尘,由于针杆受污尘阻碍而难于正常活动,也会导致音质失真。
    再说一次,钻石针的寿命据厂家说是从四百至六小时,但条件是唱头性能没有衰退的情形下。所谓唱头性能之衰退,主要迹象是高音少了及失真增加。因此令我想到,假使唱头是用到性能衰退,有损害唱片之危险及声音有明显失真为止,唱针便可以唱超过一千小时了。
    另一方面,根据顾客交回唱头制造厂换针的“验伤”报告指出,绝大部分都不是因为钻石针被磨蚀;针尖因长期受污渍灰尘引起的顽固污秽而不妥、阻尼器变质而不妥,或者因清洗唱针过勤而令针杆变形之类的情形十分之常见。甚至有些是因为唱头内之震动系统不良所致,这些交回工厂去换针的情形,实在与钻石针尖被磨蚀无关。
    因此之故,关于唱头的寿命,除了要视乎针尖的损耗程度,还应该将唱头内部各震动的机械部分计算在内。即是话,在记录使用唱头的时间之余,亦应该要经常调准唱臂及清洁唱片。这样大家的唱头都会更长的寿命。
作者: zgmfx10akira    时间: 2012-4-30 16:08

唱盘的正确调校
    以下是一些正确调校唱盘的贴士,各位发烧友如能遵守,一定会有更佳的唱片重播效果。  
(一)唱头位置调校
    唱头的位置,必须调校在最准确的地方上,角度也一定要准确,否则严重影响重播效果。就算你有最高级的转盘/唱臂/唱头的组合,假如唱头的位置调在不正确的地方上,可能只得普通套机音色或甚至更差。 要调校唱头,使之在最佳位置和最佳角度,有三个地方是要注意:第一,为了使唱针能完全垂直在唱片槽里循迹,或说避免侧面循迹误差,可以向前或向后移动唱头位置,如唱头只能牢牢的装在唱头壳上而又不能移动的话,就要将整支唱臂移前或移后了。量度仪器方面最好采用一些随唱臂或有些唱盘附送的咭纸,将咭纸的小圆孔套在转盘的转轴上平放在唱盘垫上,咭纸上有两点,分别代表唱片的外围的第一条纹与转至近中心时的最后一条纹,首先将唱针放到最外的一点上,然后在唱头前面观察唱头是否能与点前的横线平行,如出现偏侧,就试将唱头的位置移后或移前,以求调在唱头能与横线平行的最佳位置上。以相同的方法再将唱针放在剩下的一点上,同样观察唱头能否与点前的横线平行。如两点都没有问题唱头移前移后的工夫便大功告成。
    第二、唱头的方位角是否在水平位置,这个调校更简单,如可以的话,旋转唱头到你认为是水平的位置,然后取一面镜子,放在唱盘垫子上,再将唱针放在镜子上,然后在唱头前面看看,镜里唱头的倒影是否与唱头对称,有没有偏向左或偏向右,务求要唱头的倒影与唱头能百分百对称,这样唱头的水平调节工夫便告妥当。水平调节不当,会影响声道分隔能力。 第三,最后看看唱头的高度是否正确。唱头的唱针在不加任何针压时,亦即唱臂在完全的平衡状态时,唱针是否刚刚落在唱盘垫之上(记着是不是压着唱盘垫),如果不是就要调校唱臂的高度,当然有些唱盘的唱臂是不能调校高度,但如可能的话,也要将唱臂的高度调至最准确的位置。
(二)收紧螺丝
    当你完成唱头的位置调校后,你一定要固定它在唱头壳之上,螺丝一定要收紧,好紧。如此音色会靓些,但收紧至什么程度才算理想呢?绝对不可以像大水牛一样去扭紧螺丝,因为可能会弄毁唱头的外壳或唱臂结构等。回答上述的那条问题是没有一定准则的,因为每个唱头的外壳与唱头壳,甚至螺丝的制造材料也不同,所以很难回答将螺丝扭至那一程度才是理想。建议大家在认为已是最紧最紧时,向后退回八分之一转(即45度),那点应该是最理想的位置。
    又选择螺丝与丝母也不能马虎,尼龙或塑胶的螺丝和丝母是最差的材料,大家切记不可使用。普通铝质的也算不过不失,但最好还是用一些钢造的螺丝与丝母,效果最佳。 将唱头装上唱头壳时,最佳的方法是先将唱头壳除下来,装上唱头后才套回臂管上,但有些唱头壳是与唱臂管连体设计,是不能除下来,这时候你便应将唱臂管除下来,才将唱头装上唱头壳上。这样,唱头的安装工夫便办妥。
(三)循迹力与偏压
    令人感到惊奇的是原来有很多人仍然不知唱头循迹力的重要性。不是其物理上的影响——这是人所共知;而是它对音色平衡的影响力。只调整循迹力0.05g,也会有可闻的音色分别。基本上低的循迹力会令低频轻而薄,高频光辉;高的循迹力会令低频过重,音色混浊。在两者之间取得一个合适的循迹力,便有最理想的音色。  
    一些测试循迹力的特别唱片,其实功效不大,因为单是测试某一个频率的循迹力是不准确的,其实不能代表了一段真实的音乐演奏。要测验你唱头的循迹力,最好使用一些钢琴音乐或大合唱等,因为假如循迹力不佳时,会很容易听到音色的变化。但要知道循迹力的表现是随着唱针移动至近中心的唱片末段时越入越差,所以不可单试某一段唱片纹。
    唱片的偏压往往使唱臂受一种向内移动时的向外反压力,引致声道分隔能力变差,而影响音质。和调校循 迹力一样,最好使用音乐的片段来测试,单一频率的测试是没有意思的。
    增加循迹力会减少垂直循迹角度,相等于将唱臂弄低了。所以增加循迹力会改善音调平衡,但如将唱臂高 度轻微校高,就会将定位与生动感变坏,所以如果你是减轻循迹力,最好尝试将唱臂高度调低。
(四)唱盘的承托
    将唱盘放在一个稳阵的地方,是人所共知的知识,最好就是找一张专用来承放唱盘的台去承唱盘,例如英 国Sound Organisation的唱盘台;又或可找一张轻但坚固的茶几去承唱盘,虽然是多花一点金钱,但对重 播效果有改善也是值得的。  
    如果你是将唱盘放在组合柜或其他柜里,应将螺丝转入木板内,但不可整粒螺丝转入木板里,要留下螺丝 头暴露于木板上,然后之上再放上一块尺寸与唱盘一样的实心坚硬木板,然后才将唱盘放在板上面,这个 避震法据说是一位美国发烧友想出来的计仔,闻说效果倒不错!
    原理很简单,因为承托唱盘的木板,物理学上是一件低通滤波器,是很容易传导低频的震荡。而选用轻的 材料因为重量是能量储存器,所以材料越轻,其储存的震荡能量便越少。所以将唱盘放在一张大而重的台 上或放在摆满唱片的柜里时,会受很大的储存能量影响,使动态减低,音像显得模糊。螺丝的原理是将木 板连唱盘与组合柜隔离,所以受到的震荡也减至最少。
    唱盘受侧面传来的震荡,往往是比从垂直传来的震荡大很多,所以在设计唱盘承托器时,最好考虑这个问 题,就是尽量避免侧面震荡。
(五)唱针清洁
    不知有多少人知道用火柴盒侧面的火药面擦唱针,是有最佳的清洁效果,和有最佳的重播效果,大家妨一 试,但如果因此弄毁你心爱的唱针的话,我们恕不负责,因为这只是专家的意见而已!
    如用传统的清洁方法,即用擦涂一些清洁液在唱针上扫几次,清洁液与扫最好采用Disc Washer Kit。因 为它被一致公认为其有基溶剂品质最高,短毛唱针扫设计出色而不浪费清洁液,对清除唱针上的顽渍很有效。  
    使用电子唱针清洁器,效果也不错。当唱针放到能活动的垫上时,唱针的污秽便会当在垫上,但这类电子 唱针清洁器有很多牌子的产品,所以选择时要留意那一款效果比较清洗唱针时,擦唱针的方向要留意,一定要从后拉向前,绝对不能从前扫向后,或从旁边扫唱针,因为唱 针的悬挂系统会因此受损;又清洁时,应将扩音机的音量旋至最低,以免损害扬声器。如果肯花多一点, 购买一个放大镜也是个不错 的主意,对检查唱针尖的情形更一目了然。 好,才买那个。
作者: zgmfx10akira    时间: 2012-4-30 16:08
LP唱盘基本介绍
1.马达与转盘
A. 马达型式
感应马达,磁滞马达
    利用交流电的频率变换产生的涡流推动马达,以特定频率的交流电源直接供电,有50Hz与60Hz电源专用的区别。他的好处是转数不随着负载或电压而改变。
伺服马达
    利用伺服线路来控制马达转数,可以藉由转速感应方式,改变稳压电源的输出电压高低;或利用晶体震荡器的脉波,来维持马达的正确转速。
B. 传动方式
直驱DD︰马达轴心直接连结转盘,不藉由任何机构传导动力。
惰轮︰马达动力藉由一个橡皮轮推动转盘,橡皮轮是否呈圆形无变形关系传动的顺畅。
皮带︰马达轴心与转盘之间以皮带连结传导动力。
复合︰例如以皮带带动惰轮,再以惰轮带动转盘。 C.转盘质量与惯性
    转盘的质量越大,外来因素对转速的影响就越小,也越能平顺的转动,并且可以抵抗外来震动的影响。但是重量越大的转盘,所需要的轴承越坚固,马达的激活力量也要越大。
D.底盘悬吊
硬盘︰不施以弹性阻尼或悬吊的方式,直接将转盘各部分零件固定在基座上,或采分离多件式以隔离马达等产生的震动,防止互相干扰。为了抵抗外来震动的影响,硬盘多半藉由加大本身质量来减少外力引起的震动。
软盘︰以悬吊与阻尼方式,将转盘的部分组件悬浮在底座上,藉以隔绝外来或内部的震动。
2.唱臂
A.唱臂型式
直切臂︰唱头依照通过唱片圆心的直线来运动,唱针在每一个位置都与音轨保持正切方向的相对运动。
曲臂︰唱头的移动呈现一个弧度曲线通过唱片,不论唱臂的臂管呈现何种形状,唱头都会以一个补偿角度安置在唱臂上。
直臂︰唱臂臂管呈直线。
S臂︰唱臂臂管呈S型弯曲。
J臂︰唱臂臂管在尾端弯取。
作者: zgmfx10akira    时间: 2012-4-30 16:08
关键词:唱臂与谐振

SME Series V 唱臂 杯与纸巾的试验
    由唱针至唱臂的振动过程中,假如我们没有放任何减少振动的物质在两者之间作缓冲的话,则无论任何唱臂,这种振动仍然会由唱针传导至唱臂,关于这一点,以下再作详细的解释,但假如曾用铅笔去敲击唱臂来判定唱臂的质素的话,便很容易明白这一点。
    举一个例。如把一包纸巾塞入咖啡杯中,然后放在桌上或杂志上,再用指甲敲击杯边,便会听到清脆的声音。而把纸巾取去,再重复敲杯边的动作,同样可以听到清脆的声音。原因是只用纸巾这种软材料去作为咖啡杯那样硬的物质的阻尼器时,效果是不会明显的。
    正确防振的方法是要把阻尼体放在震源和受震动的物质之间。如上例,把纸巾放在指甲和杯边之间,便不会产生清脆的敲击声。
    在唱臂的情形,把软材料放在唱臂管中或把软胶贴在唱头壳上是不能阻止谐振的,况且不够硬的物质是很容易受到外来振动的影响。
防振三个要素
    以上简单的例子可能解释尚嫌不足,但可以撮要成以下三点。
一、硬而重的物质在强烈振动时很易将振动传至轻而软的物质。
二、相反,轻而软的物质,其轻微的振动是很难传播到硬而重的物质的。
三、如要防止震源附近的物质受到振动,就要将后者变成又硬又重。或利用弹簧或空气做阻尼体,这就是防止振动的基本原理。
高顺性的唱头和唱臂
    另一基本原理就是将那些高顺性的唱头装在硬质唱臂上,这样唱针的轻微振动便不容易传到那硬而重的唱臂上,所以便减少了唱臂谐振的机会。
    不过,仍然有人认为高顺性的唱头和轻质唱臂是合作得很最好的。我们可以先从唱头的支点开始研究,便可明白这种想法其实是错误的。
    唱头的针尖是用尽可能最小的钻石所制,而与硬而轻的针杆连接,为使针杆在低针压的情况下仍然活动自如,在针杆和唱头之间便只能用很弱的阻尼体,而唱头磁体则必须够强力,以求达到高讯噪比的要求。
高顺性的迷信
    以上的说法是合逻辑的,但问题是为什么许多人喜欢用高顺性的唱头?弱的阻尼体事实上可以延长低音频的响应,但同时可以减弱高音频的响应,我们当然假定唱片的物理性状不变,不过要求高传真度的人士都希望得到清晰的音响,而清晰的音响又往往与高音频有直接关系,可惜高顺性唱头不能产生较佳的高音频响应特性。
    为什么会有倾向于选用高顺性唱头的情形出现呢?因为高顺性唱头只是用较弱的阻尼体,唱臂虽则不是太硬,但仍然勉强可以产生尚算清晰的声音。但并不表示更轻的唱臂将会产生较佳的效果。
    如果针尖的振动传到唱臂,一部分的谐振会传到唱臂的基底,然后再折回针尖,这时唱针已经在唱片上拾取了新的音频讯号,且和上一个讯号合起来引起唱针的移动。严格地说,唱针在唱片音槽上循迹便不准确。失真和唱针移便出现,而最坏的情形是唱片音槽也受到影响。
    咖啡杯和纸巾的试验已经显示出阻尼体放在臂管内是无效的。如果把臂管割开两段,然后把阻尼物质放在中间,情况又如何呢?不过这种做法却会减弱臂管硬度和抗弯性。
善用阻尼物质问题迎刃解
    以上的问题似乎都找不到解决的方法。我们必须解决的是除去振动的能量。 这能量既然部分被唱头拾取的以电流形式存在的能量。阻尼物质除了可以消除假谐振之外,亦同时消除了部分原来的讯号。因此唱臂便可以令到唱头的原音发生改变或引起失真。
    因为高顺性唱头的唱针只用弱的阻尼体连接唱臂,如果唱臂中轴的阻尼大,唱臂便不能移动,唱针本身也不可能单独移动,这在水平移动和上下移动两方面都是一样的。
唱臂与唱头关系
    唱臂最重要的作用是和唱头和作,令唱片再生出完美的音响,更准确的说,唱头的功能是要准确地重现唱片音槽中所藏的信息,唱臂的功用便是要保持这种能力而没有减弱它。
    因为唱臂和唱头的合作在播送唱片的过程中是非常重要的,所以在音响领域的早期发展中便已开始研究如何去改进唱臂和唱头。
    目前有一种趋向是认为唱头对音质有直接的影响,而唱臂只是有辅助的作用,所以只是对改良唱头方面有较多的研究,而忽略了唱臂。
    多数的用家都认为:在播放唱片时,唱头、扩音机和扬声器都是同样重要的,而用于构成唱针尖的物质,针杆的设计,音响系统的结构,磁体的质素等等因素都与重放音质大有关系,唱头的理论在音响的早期发展中已有详细的解释,最近唱头质素比以往更有进步,这在原料和组合技术方面都表现出来。
    那么唱臂的地位又如何呢?我们可以认为有些人用木质的唱臂已经感到满意的了。有些人士则只要少些跳针便满意了。或若能进一步消除了向心力便更佳。不过有些人却要求由唱头的阻尼物质和唱臂有效质量共同决定的固有谐振频率在十赫兹左右,方为理想。
    在唱臂移动方面,有人喜欢动态平衡,也有人认为采用油阻尼才是最好。最近亦有些论调认为重型唱臂对于低顺从性唱头最为合适。而轻型唱臂则对高顺从性唱头最佳。
    我们亦听闻唱头壳和臂管的接驳,内线圈的结构和原料的问题。为什么会有这么多不同的意见呢?这完全是因为唱臂的理论发展比唱头慢的缘故。我个人认为唱臂的理论仍然是未曾解决,我们可能忽略子一些非常重要的因素。
播唱唱片过程中唱臂所扮演的角色:
    在唱臂设计中,我们可能把一些最重要的因素反而列为次要。我们不要从头开始。让用家和厂家重新地去想一想,在播唱片的过程中,唱臂扮演一个什么角色?
    而与其跟随如唱片、唱头、唱臂这个排列程序,就不如先从振动开始谈起。
振动的基本因素
    假如某物件发生振动的话,它亦可令其周围的物件振动,这种性质是非常重要的,究竟引起振动传播的是空气?是纸还是钢?各种物件所含有的物质对旁边的物质受影响而振动,两者是有关系的。
    在日常生活中,我们也可察觉到这种情形,当然以上的理论牵涉到期货许多因素,其中三个是最基本的:
一、振动中的物质是什么?
二、受影响而振动的物质的大小。
三、传递振动的方向。
    我们先试行了解振动物件对其周围环境有何影响?然后再从受影响的各方面去看,无论从发出振动或接受振动的那方面来研究,振动的影响力都牵涉同样的因素。
一、什么物质所制造,重量如何?
二、物体置于何处?立点如何?是平面或是斜面等等。
三、从那一个方向受影响?
考虑振动的问题,以上的因素其实是最基本的。
    你曾经见过有人用一支钢笔或铅笔去敲击唱臂管,然后说:“这支唱臂可以产生好的声音。”在播放唱片的过程中,震源是一张用聚乙烯化合物做成的唱片,用木铅笔或金属笔对振动的质素和大小是没有关系的。而且传递振动的方程亦不同。唱片的振动是由唱片本身传到唱针尖,再对针杆,阻尼体,唱头,唱头壳,最后才传到唱臂管。故敲击臂管的试验是无意义的。
唱臂原料密度总量要高
    要防止唱臂谐振出现,应该在谐振未出现之前做功夫。正如应该先安装保安措施去防范窃匪入屋,而不是等贼人破门入屋之后才去捉贼。所以,高顺性唱头应该尽量坚硬,而又不会在中轴产生阻力。高硬度的意思不单是指在结构上够硬,而且是表示密度和重量都高,为了要减少摩擦,内线圈和支点附近都要十分平滑。
双刀承轴效果理想
    另一方面,枢轴附近用高阻尼体来减少谐振是不适当的,枢轴必须前后左右都平衡,而臂管的中轴在平面上也一定要十分平衡,而制造这样一支唱对唱臂,讲便容易,但制造便不容易了。不过在SAEC唱臂厂中,我们曾经试过实现了这个理想,我们的唱臂长度是十分精确的,是以微米(百万分之一米)作单位计量。
    我们亦发展了双刀刃承轴系统。高硬度臂管和植连唱臂到臂架上的新方法。甚至用超级重量的唱盘座来改良唱臂的功能。为了使唱片更具刚性,我们出品了一种金属转盘硬垫。我们的阻抗匹配接线可将唱头输出的讯号完全传送到扩音机而没有损失。
    我们虽然有了进步,但我们并未完全满意,亦未能解决所有的问题,不过最低限度我们已弄清了主要的几点。特别是读者对唱臂设计方面真正重要的问题已有了较佳的认识。
作者: zgmfx10akira    时间: 2012-4-30 18:08
唱头的种类与阻抗

LINN Ekos唱臂及K18唱头    唱头是一套音响系统的“源”,如果“源”有问题,后面的机件也发挥不了作用。唱头有压电式、半导体式、电磁式、动圈式(动圈其实也是电磁式的一种,但是因为它的输出低,特别将它分出来)。压电式很少会用在真正的Hi-Fi系统上,如果你一定要用这种唱头,则在选扩大器时,前级部分必须要有高输出唱头插口,而不能用一般的电磁唱头插口;如果没有高输出唱头插口,可以用Aux插口替代,但要加一个简单的等化电路(电阻、电容各一而已)。半导体唱头,有很好的高频响应,很可惜没有能打出天下,主要因为它必需要配一套特殊的等化及扩大电路,相当复杂,前级扩大器上都没有这种设备,所以,当你在购买半导体唱头时,不能只顾“头”还得将这套特殊的电路设备一同买下,否则将无法匹配。
    电磁唱头,有动磁式、动铁式二种,是目前使用最广的唱头。这种唱头的负荷阻抗绝大部分都是47KΩ,所以前级扩大的唱头输入也绝大部分设计为47KΩ。在选配时,要注意,二者的阻抗是否相同,或者相近。有些专为四声道用的唱头,它们的阻抗是100KΩ。有人觉得四声道用的唱头的高频响应更好,又是Shibata唱针,用在立体唱片上岂不是更好,但是要注意100KΩ和47KΩ相差了一倍,如果要用,就得找输入阻抗为100KΩ的前级,或者将普通前级上的两个47KΩ电阻换成100KΩ,否则由于二者的匹配不当,高频不会好。
    动圈式唱头,是目前“头”中极品,大部分的动圈唱头输出电压都非常低,如果直接接到前级上,将无法得到正常的输出,所以必须要用升压器或动圈唱头专用前——前级扩大线路的前级扩大器经扩大后再输至前级扩大器。二者的效果以前——前级扩大器较佳,但也非常昂贵。另外一法是选用附有前——前级扩大线路的前级扩大器,可以直接接动圈扩大器,方便得多。有极少数动圈式唱头是高输出型,可以直接接电磁唱头输入,用这种唱头可以方便不少。
    另外还有一种唱头,不大为人注意的,是静电式唱头,或者称之为电容式唱头,其作用和电容式麦克风相似,将两块极板并靠在一起,唱头使极板振动,板间的电容量改变,成为信号输出。这类唱头由于极板的数量非常轻高频响应极佳,水准不在动圈唱头以下。而它的阻抗,经唱头内自附线路的处理后可以和5KΩ和100KΩ的阻抗都能配合,非常方便。
灵敏度及过荷值宜重视,唱头特性须与前级吻合
    唱头和前级的搭配,除去负荷阻抗之外,还要注意前级扩大器的唱头输入电压范围。在前级扩大器的规范上,有两个数值:一个称作灵敏度(Sensitily)以mV为单位,它代表在那样大的信号输入下,将音量控制器开到最大,扩大器可以达到额定的输出功率,或者是前级放大器可以达到额定的输出电压。第二个数值称之为唱头输入过负荷电压(Phono Overload),也是以mV为单位,代表唱头的输出电压如果超过该值,扩大器就将过负荷。由于这两个数值的限值,选配唱头时就必须在其范围之内。
    唱头的输出电压,是以1000Hz的信号,以3.54cm/sec的速度录在唱片上,作为测试的标准信号,唱头的负荷阻抗为47KΩ。在这种条件下测得的唱头输出电压,就是它的标准输出电压,它的值应当与扩大器的唱头输入相近。唱片上的最高信号速度,常会达到30至40cm/sec,偶尔高频率的锋值更可能达到80cm/sec。一般的唱头,在1cm/sec的信号之下,多半都会产生1mV左右的电压。因此前级扩大的唱头过负荷电压,理论上至少也应当有40mV,否则将因削锋而产生失真。当然过负荷电压能更高就更好,如果这个数值在100mV以下,就要注意了。
唱头唱臂配搭关系重大,轻臂宜配高顺服度唱头
    唱头和前级的配搭如上所述,读者已可略有概念,至于唱头和唱机的关系,有些地方也得注意。唱机用何种驱动方式,和唱头的关系不大,重要的是所用的唱臂。灵活性极高级唱头,必须配用灵活性高的唱臂,如果二者不能匹配,会引起失真、共振、唱针跳槽等现象。因为唱头与唱臂配合之后,必然会有一个二者合成的谐振频率,如果谐振频率太高,会影响低音的清晰,造成失真;如果太低,又会因唱片的不平,中心孔不正等,而产生谐振,影响到唱头的循轨。这一类的谐振频率,多在2Hz至10Hz之间。所以唱头与唱臂的合成谐振频率必须要高于此一范围。由于上下二者的限制,唱头唱臂的合成谐振频率,就只有在7Hz至15Hz之间,才是最好的情形。
    但是唱臂制造者从不公布它们的唱臂与唱头的合成的质量有多少,而且唱头规格中所标示的顺服度,并且不标准,会有很大的出入。余下来的唯一办法,只有靠粗略的估计了。因此,一只顺服度极高的唱头,必须配用质量极轻的唱臂,才能避免接近于4Hz左右的谐振频率。如果唱臂并不是很好,冒然配用这种高级的唱头,不但不能改善音质,还可能更糟。当你觉得音色不佳,而音响店的推销员又向你推荐换唱头时,首需留意唱臂的品质能否和所推荐的唱头相配合。不然的话当你觉得声音更不满意时,下一步他就要劝你换喇叭了;原因也许是他不知道是唱头太好,也许是想籍此向你推销一对比唱头贵上几十倍的喇叭;买支唱臂或唱机,究竟还是小数目,比不上买一对喇叭。
    反之,如果唱臂质量极轻,但却用了一支顺服度差的唱头,则谐振频率会升高,进入音频范围,使低音模糊,低频响应不佳,甚或引起声音回授。好在这种情形不多见,因为低质量的唱臂非常贵,很少人会用这种高贵的唱臂去配一支廉价、顺服差的唱头。
作者: zgmfx10akira    时间: 2012-4-30 18:11
唱头讯号连接

SME Series V(下)唱臂及其姊妹之作Series IV(上)     现在常用的唱头大多数都是磁性设计,输出很低,传输这种微弱的讯号必须尽量减少阻力,以免造成讯号损失和影响音质,近年来设计唱头唱臂以及讯号线与插头都特别注意到这一点,但是单靠良好的设计还不够,我们平时在使用和保养上也不能忽略这种问题。
    重播唱片有时会出现音质不良的情形,假如不是因为唱片本身录音低劣或唱针循迹不良,那么多数是由于讯号传输中间有了阻滞,轻者形成输出减弱或音质变劣,重者可失声,通常往往在一边声道发生,检查故障必须从唱头开始,最容易发生毛病的地方有以下几处;动磁唱头的唱针可以拔下来,但这个设计主要是为了换针简便,可是有些人却养成一个坏习惯,在清洁唱针时经常把针拔下来,虽然操作比较方便,但这样做可能引起唱头插入后位置不准确或松驰,有时发现声音变劣,只要把唱针往里面推一下就能回复正常。许多唱头上连着一个唱针的保护罩,因为要避免谐振,所以做得很紧,掀起或放下时也可能影响到唱针插入的位置,导致声音不正常,值得留意。为了避免以上问题,尽可以不拔出唱针和经常放下再掀起针罩,有人甚至主张除掉它来减少重量和消除谐振。
唱头壳接线插 很容易会出毛病
    在唱头后边的输出插头和唱头壳连接线也是容易出毛病的地方,由于传统式连接方法用小插座,假如套在唱头输出插头上不够紧密就会形成讯号传导不良,甚至慢慢松脱下来,也有些插头与插座大小不配合,假如插头太紧的话,应该换适合的连接,若想用镊子强迫套进去,一不小心会折曲了插座与焊线部分,再弄直后表面上虽然似乎没有不妥,但却可能已经弄断接线或呈半连接状态,所以安装唱头时应该特别注意。此外如果插座或唱头输出插头表面起氧化膜也会影响音质,需要清洁干净再连接。  
接点镀金有理 抗氧化接触佳
    再往后边应检查唱头与唱臂的连接部分,一般唱臂与唱头壳用EIA式四点连接,目前多数产品在接触点部分镀金,但仍需要保持清洁,因为四点接触面不大,连接后注意锁紧。最后再检查唱盘与前级放大器的连接部分,如果采用普通镀镍的莲花插座和插头,要勤于清理勿使表面生锈,镀银和镀金插头插座受氧化腐蚀较少,但表面的镀膜也会影响讯号传导,所以不要以为用金银插头可以置之不理,有一个办法值得推荐,就是用清洁的插头和插座连接外,我面用绝缘胶布包裹,一来可以隔离空气,二来也可以防止插头松脱。
金插头价虽昂 实用物有所值
    金插头的价钱较普通插头贵很多,但不易受氧化腐蚀是最大优点,表面虽然也会起锈膜,但一经揩抹又恢复光泽,容易清理,银插头的讯号传导特性最理想,但抗氧化能力不及金插头,最容易生锈的是镀镍插头,如果暴露在潮湿空气中半个月已面目全非,而且受腐蚀的表面不能再回复光泽,不过这三种价钱不同的插头在全新状态下实际上对讯号传输的阻力都十分低,只要能保持清洁,都适合作微弱讯号的传导。
连壳设计唱头 方便兼且合理
    这两年来有不少唱头与唱头壳作整体式设计,不单止减少了重量,同时也避免唱头与唱头壳连接部分发生毛病,目前这种产品多数采用EIA式插头,只要用这种标准的唱臂就可以直接连接,使用相当方便。  
   在另一方面,今日很多新设计唱臂与唱头壳用长针式插头连接,四支针与插座连接之后,上面再用螺丝扭紧,由于接触面积增加了很多,讯号传导的阻力更小,而且稳定性高,和唱臂与唱头壳固定式连接的效果接近。
   唱臂内的讯号导线质素也要求愈来愈高,为了减少电阻、电容和电感,现在的高级唱臂内部已采用制作非常精密的李兹线,每条线用许多支极细的细缘纯铜丝合成,获得优异的特性,有些更将左右声道的导线作相反方向扭铜线,消除磁场对频应的影响。
唱盘至扩音机神经接线影响重大
    由唱盘至扩音机这段连接线应该尽量采用高质素产品,它们的电气特性对音质很有关系,质素好的讯号线因减少讯号传输损失,使重播音质更清晰,虽然价钱较普通讯号线贵些,但物有所值。
应用清洁**,善后工作重要
    有些人喜欢用市面上可以买到的电气接触点清洁剂喷在插头和插座上,初时似乎可以改善讯号的接触,但由于这类清洁剂多数为四氯化碳的混合液体,本身带有粘性,如果喷在插头和插座上之后暴露在空气中很容易附着尘埃,结果形成一层油泥,更会影响讯号传输,假如使用这种清洁剂的话,记着喷完之后用布揩抹干净。其实电气接触点清洁剂主要是改善大电流开关挚的接触而用,对于低电流讯号的接触点并不太适合,不过表面生锈的莲花插头和插座可以用这种液体揩抹。
    现在大多数唱盘与扩音机之间都采用莲花插头的讯号线连接,我们必须要注意插头与插座是否配合良好,太松或太紧都不理想,太松固然会接触不良和容易脱离,太紧不能插到底也可能形成传输讯号的故障,不宜马虎了事。DIN插的质素一般逊于莲花插,接触面积较小,除了使用方便之外别无优点,不值得推荐,最好的当然是专业用之RNC接驳器,互相锁紧特别稳定可靠,现在只有少数极品扩音机上才使用。
纯铜高级讯号线Monster设计精
   连接唱盘的讯号线在中心导线部分的质素高低固然对讯号传输形成不同的阻力,隔离网部分担任回路,它的质素也同样重要,所以讲究的设计将内导线用纯银制造,隔离网用镀银的纯铜丝编织,最近MONSTER CABLE公司制造了一种高级讯号线,在内导线部分采用105支超精细的李兹线,每支线均用纯铜制,表面绝缘,这种设计达成了最大的讯号传输面积和最低阻力,同时不会衰减超高频响应,而隔离网部分则用百分之95的纯铜丝紧密编织屏蔽交流哼声与无线电高频率干扰。
绝缘体质地重要,新材料减少损耗
    讯号线的绝缘胶皮质素对讯号的传输也有影响,这点可能很多人都不知道,一般塑胶绝缘层有吸收微弱电流作用,用于讯号线上并不适合,现在高级讯号线已采用聚丙稀原料作绝缘层,使讯号的损失减至最少。
作者: zgmfx10akira    时间: 2012-4-30 18:14
因“头”而痛的原因

    唱头是Hi-Fi的起点,它的质量及设计关系到整套音响系统的重播效果,不少发烧友也因“头”而痛。让我们看看原因的所在。
唱针的有效质量
    唱头中,由唱针、针杆,以及动子(动磁、动圈等)所有随唱针而振动的部分,它们的总质量,称为唱针的有效质量( Effective Tip Mass)。有效质量,并不能以每一个组件单独计算,因为它们的相关位置和总质量有极大的关系。唱针与动子等所组成的振动部分,多半都是由一个支点支撑,以杠杆式的作用,将唱针的振动传到后方。所以要减少动子对有效质量的影响,方法之一是加长支点与唱针之间的距离。但是针杆增长之后,本身的重量也增加,同样会影响到有效质量。至于唱针本身对有效质量的影响,并不因针杆的长短而有所不同。  
    这些因素之间的关系,如图一所示,当针杆加长时,动子对有效质量的影响减小,针杆对有效质量的影响增加,而唱针的影响则保持不变。由图中可以看出,三者所合成的总有效质量,只有当针杆在某一长度之下,才会达到最小,这一点称之为针杆的最佳长度,而并不是针杆越短就越好。因此,我们在选择唱头时,针杆的长短,并不代表性能优劣。同时针杆的长度还要考虑到使唱头与唱片之间能保持适当的距离。
    此外,动子的振动必须使唱头能产生适当的电压输出。而电压输出的高低,与动子的大小,以及振动的幅度有关。动子增大固然可以增强输出电压,但连带使质量也增加。如果增长唱针与支点间距离,动子的振动幅度又将减小。所以二者之间,也有严格的条件限制。对唱头设计人而言,上面这些因素,有任何一项不妥,就必须全部重新设计。有时设计点上所求得的最佳结果,还会发生制造上的困难,又得全部推翻,重新开始。
    唱针的有效质量必须轻,是因为针尖要追随唱片的音槽作快速的移动。根据力学的定理:力=质量X加速度。由于唱片所造成的针尖加速度,有时会非常高,要想减轻它所受的力量,唯一的办法只有减少质量。   

垂直循迹力
    垂直循迹力(Vertical Tracking Force),又称针压。是唱臂施加在唱头上的压力,使唱针能与音槽壁保持适当的接触。但是唱片所用的塑胶,并不是一种坚硬的物质,而是稍具柔软性,在受压的情形下会变形。图二是受压变形的特性曲线,当压力低于某一限度时,塑胶的变形处于它的弹性变形范围内,当压力消失后仍然可以回复到原来的情形。当压力超出此一范围时,就进入了塑胶变形范围,压力消失后也不会再回复到原来的形状,而成为永久性的变形。成为失真与杂音之源。
    音槽壁因受压而变形的情形,因音槽的形状而有所不同。如果是平滑,没声音调变的音槽,针压大约要高到三公克左右才会产生永久变形。但在有调变的音槽中,针压将随调变的情形而改变。当调变强烈、针尖加速度高的部位,音槽壁上所受的压力也会急剧增高,一旦超过弹性变形范围,就会造成唱片的永久伤害。这一点也正说明了为什么唱片上频率高而声音强的部位,特别容易受损。此外,它和唱针的有效质量也有密切关系,根据前面所提到的力学公式,如果唱针的质量大,音槽调变所造成的加速度高,则音槽壁所受的力也大。
    我们常会有一种错误的观念,认为音槽壁的磨损完全是由于垂直循轨压力的关系。实际上,磨损是由于唱针与音槽之间的摩擦力而造成的。只要唱针的形状正确,加工磨光良好,磨损几乎近于零。但是如果唱针的形状不良,磨光欠佳,则唱片被磨损将是无法避免的事。所以,在音响器材中,任何钱都可省,唯有唱针的花费决不可省,更不可贪便宜去买不是原厂的唱针。

顺应性
    顺应性(Compliance),又称为灵活性,顺服度。是唱针推动动子所需要的力量,其强弱由动子支撑物的 柔软程度,以及针杆的长度而定。支撑较硬,所需力量也较大。但支撑物的硬度并不是固定的,而是随频 率的增高而增加,也就是当频率增加时,顺应性会变差。因此,制造商所发表的顺应性,并不能代表唱头 的性能。真正有意义的,应当是与频率相关的动态顺应性Dynamic Compliance),但是由于目前还没有订出标准的测试法,所以厂家也无法公布数字。
    不过静态的顺应性,也并非全无价值,它可以表示出垂直循轨压力的最大限度。当垂直循轨压力增加时, 由于动子支撑物的柔软性,唱头与唱片之间的距离会减小,在适当的压力之下,针杆及动子恰好处于最适 宜的动作位置上。垂直循轨压力不当,将会影响到针杆与动子的振动情形,造成失直。
    如果垂直循轨压力过轻,唱针将无法保持与音槽壁的良好接触,有时会被弹离音槽,当它落下再度与音槽 接触时,冲击力足以使音槽壁受损,留下永久性的伤害(图三)。所以,只有顺应性极高的唱头,才可以用极轻的循轨压力。但是当顺应性较低,而必须用较高的循轨压力时,压力以及加速度施于音槽壁上的力 极易超过唱片的弹性限度,造成音槽的永久变形。
    受顺应性影响而施于音槽壁上的力量,只有当唱针作大幅度摆动时才会大量增强。在唱片上,只有强大的 低频段,才会有这种情形。所以顺应性只会影响到唱头的低频循轨性,而顺应性低时,也只会使强大的低 音段受到损伤。

谐振与唱臂
    任何物体,都会有一个它本身的自然振动频率。如果外来的力量使物体产生振动,它的频率恰与物体的自 然振动频率相同时,物体将会产生强烈的振动,称之为谐振(Resonance)。
    唱头装置在唱臂上,它们会有一个合成的谐振频率,如果这个频率是在唱头的工作范围以内,则每当唱片上出现此一频率时,就会引起唱臂产生谐振(图四)。轻者造成失真,严重时将使唱针跳出音槽、损毁唱 片。因此唱头与唱臂的合成谐振频率,必须低于唱片上的最低频率。但是如果太低,又会接近于唱片弯曲不平,或中心孔不正,所引起的极低频率振动。因此,唱头臂的谐振频率应当在15Hz左右,低于唱片上所录下的音频,高于唱片不平,心孔不正所产生的极低频。
    唱臂各部分的重量,它们的分布情形,以及唱头的重量,合在一起称之为唱臂的有效质量。有效质量与唱 针的顺应性,就是影响谐振频率的两个因素。如果唱头本身非常轻,顺应性也高,就应当配用轻质的唱臂 ,反之则应配用重质唱臂。不如此正配,很可能会因为谐振频率的产生,而使唱头的特性变坏,甚至无法 使用。在唱臂的尾部加装阻尼物,可以改善这种情形,但并不能根除谐振频率的产生,所以最好的方法还 是从基本上使谐振频率保持在十余Hz左右。

谐振与失真
    唱头本身还有另外一个谐振频率,也就是唱针有效质量与唱片材质的柔性所造成的谐振,它的频率多在15 Hz-50Hz之间。由于唱片所用材质的柔性,几乎都非常接近,可以视为是一个一定值。所以唱头的谐振频 率可以完全由唱针的有效质量而决定。质量越轻,谐振频率越高,但是我们并不希望频率太高,以免接近 唱片上的低频,而致造成失真,严重时也会使唱针跳槽,伤及唱片。但是,我们也不希望唱针有效质量太重,影响到顺应性与垂直循轨压力。因此在设计唱头时,就不得不用适当的阻尼物以改善这种情形了。
    最后还有一个谐振,就是唱针的针杆,它会使动子产生不应有的振动,造成谐波、以及互调失真。针杆还会产生一种不应有的水平振动,使动子的位置超出正常的工作范围、产生额外的信号,成为谐波与互调失真。
    顺应性过高,并不一定有益,因为动子的位置非常容易偏移,同样会造成失真。
    上面所谈的,都是机械性的困扰,而在磁与电两方面,也有很多问题存在。如果磁力线的变化不能与动子 的振动保持完全一致,就会产生失真。动子受外力的影响,不能保持在正中的位置上,或者是因为制造不 良、位置稍有偏斜,都会造成失真。这种非线性的失真,受唱针制造的精密度影响极大,因为不论是动磁 式、或动圈式,那一片诱发信号的小小动子,是装在唱针的针杆上,而不是在唱头内部。不是原厂制造的 廉价唱针,往往难以达到高度精密的要求,装到唱头上,位置稍有偏差,失真就在所难免了。
    磁滞现象,也会引起少量的失真。好在由于动子的振动幅度不大,由磁滞所引起的失真并不严重,只要在设计上予以改善,将不会影响到唱头的特性。
    唱头中的线圈,是真正产生信号电压的原件。由于磁力线变化,而在线圈中诱发出的电压,是否能精确无 误的传输到扩音器中,主要取决于线圈的阻抗,以及扩音器上的负载。而阻抗的大小,视线圈的圈数,以及铁心的特性而定。阻抗越高,输出的信号受扩音器负载的影响也越大。唱头所接续的负载,除前级扩音 器的的输入电阻之外,还有由唱头到前级输入间信号线的电容,以及前级本身的电容。这些电容与线圈的 电感,也会形成电的谐振,影响到声音的品质。至于动圈式唱头,因为阻抗非常低,信号线的容量反而影 响不大。如果加用升压变压器,则变压器及扩音器间的信号线就应当注意电容量的大小。

串音
    在立体唱头中,由于设计及制造的影响,某一声道的振动,无法做到完全不影响另一声道的要求。因此, 二声道之间无可避免的会有串音产生。不过正常的串音,并不会影响到音质,只会使左右声道的分离度减 弱而已。但是如果唱头本身有失真产生,则加上串音的影响,将使音质低劣。针杆的谐振,动子位置偏移 ,顺应性过高,都会使串音增强、失真增大。此外若唱头在唱臂上的安装位置不当,以及唱臂本身的谐振等,也会增加串音。
    唱头,虽是一个小配件,但是因为在制造上对精密度的要求非常高,再加上在设计上有许多相互抵触的限制,造成鱼与熊掌不可得兼的困扰,欲求达到完美境界,确非易事。

作者: zgmfx10akira    时间: 2012-4-30 18:14
清洁唱片 !

    工具多箩箩没有一种绝对理想,用得不得其法心爱唱片会损毁,本文提供几种有效而可行之方法     凡是玩音响的人或者是唱片收集者对于他们心爱的唱片之维护可谓无微不至:置放时不能斜着,不能平着,也不能压着,室温太高了不合适,太潮湿了也不行,使用时更是小心翼翼,生怕将手指上的油垢弄到了唱片上,钻石唱针更是每隔一些时候就得检视一下,免得针尖磨损了后会刮坏了宝贵的唱片。由于唱片可能是多半听音乐的人最大的投资,更加上近年来唱片价格飞涨,许多专门供人维护唱片的产品应运而生。 最普遍的唱片清洁器可推唱片刷子,早年的刷子多半是由绒布制成,但是由于绒布的纤维太粗,除尘之效率不高,同时反而亦有将尘粒压入唱片沟纹中之危险,所以目前高级唱片刷多半不是绒布型的。绒布型的刷子尚有制造静电之可能,如果不与除静电液同时使用,唱片上之静电会大大增加,而吸引了更多的灰尘。若干年前,市面上出现了一种纤维往一面倒的唱片刷,可将灰尘从唱片沟纹中被掏出来,不幸这种唱片刷之纤维仍然太粗,并且仍得与除却静电的液体合用,否则效果不彰。
    唱片清洁液或除却静电液之使用与否是多来被争论的话题,有人不愿意用液体,因为他们认为凡是液体一定会留下渣子,产生杂音,并且如果有化学成分,塑胶会变质而使声音变劣,制造这些液体之厂商却引用了各种实验室之报导,保证他们的药水不会留下任何痕迹,即使有也少得不会引起任何不良后果。实际上,药水本身中之滓渣的确非常少,但是如果使用不当,液体经常会将唱片上的油垢溶入沟纹中而产生更多的杂音,并且溶解了的污垢,会粘附在唱针上而形成泥球,如果不经常清除针尖,不得再生音质会受到影响,而且严重时更会使得唱头无法循轨。如果你每隔几张唱片就得清除针尖,否则会产生泥球,那么唯一的方法是将所有唱片彻底地用洗唱片机一一清洗过。

碳纤维刷兼有导电作用
    几年前有人发明了碳纤维的唱片刷,碳纤维不但非常纤细并且有导电的作用,所以使用时不必依靠除静电液之帮助,而可以达到减少静电之效果:当静电被消除后,唱片失去了吸引灰尘的能力,而可以很容易地被清除干净,须注意的是,使用时的压力不能太大,轻轻地让刷子与唱片接触即可,唱片转二、三圈后,才将刷子徐徐向外或者向唱片中心处横向移出,移动时刷子得与唱片保持接触,一直等整支刷子脱离唱片沟纹部分为止,如果硬将刷子向上提起,唱片上会留下一道灰尘。
    目前市面上碳纤维唱片刷之厂牌不少,其中比较著名的包括Decca,Goldring,Zeepa, Hunt等等。
    除了唱片刷子外,有人喜欢在放唱片时便同时使用所谓唱片清洁臂,早期的Dust Bug曾经风行一时,有人坚决不赞成它们的使用,因为据称,由于它们与唱杆同时使用在唱片上,而清洁臂之纤维实际上是在“唱”唱片,这些音波虽然能量不大,但是会从唱片之塑胶中传至唱针处而被拾检出来,而减低了再生音乐之清晰度,这说法似乎很有道理,如果不信,可以将Dust Bug 之类的清洁臂放在转动的唱盘上,你实际上能够听见它们“唱”唱片的声音。
    英国曾经有人做过如下的实验,一张特制的唱片之一部分沟纹是没有声音的,如果将唱片清洁臂放在有声音沟纹部分,而将唱头放在没有声音的部分,则从唱头中可以传出刷子在唱片上所造出的声音,这表示,如果不必要,最好不要在放唱片时同时使用唱片清洁臂。
    与Dust Bug相似的唱片清洁臂之种类繁多,有尼龙纤维制的,有松鼠毛的,亦有碳纤维式的,有些很轻,但有些却重得会使皮带传动式的唱盘转速减慢,所以使用时得留意,这些不同的式样中,碳纤维式的可能又占了点优势,因为其除尘效果特佳之故,不过碳纤维之刷头会常脱毛或变得纠结在一起而失去效用,所以得必须经常换新。

灰尘粘附唱片乃静电作怪 除静电枪有效但不受欢迎
    大家都知道,灰尘之所以粘附在唱片上,其最大的原因是因为静电的关系,上面提过,如果使用除静电液则可减少静电,但是液体许多人不爱使用,因此,有人发明了粘性的滚筒以及去尘之化学薄膜,前者使用起来非常方便,似乎很有效用,但是到底这些粘性的物质会不会留在唱片上?这些问题仍没有完美的答复,因此有些人不愿意冒险使用,后者亦非常有效,但是使用时极为不便,要在唱片上涂上一层化学液体,等它干成一片薄膜时,再将其揭下,手续复杂并且费时,所以使用的人并不多。      能够除却静电的静电枪最近似乎越来越少见了,可能是因为它有伤人的危险性,同时亦可能是因为它的功能可以以静电刷来取代的关系。许多人有了静电刷以后,静电枪懒得用了。实际上,静电枪使用在底片或幻灯片上特别有效,喜欢自己冲洗照片的人不妨一试,另外,许多年来一直使用在摄影界的一种刷子也因为它能够消除静电的功能而流行于音响圈,但是由于它的纤维太粗,所以没有碳纤维刷子来得适合。

洗唱片液种类多 湿洗法不用为妙
    使用在唱片上的化学药水原先仅为除静电,后来逐渐发展成多种功用的药剂,有些有滑润的作用,有些有保护塑胶的作用,有些更声称会使再生的音响效果更加提高,许多有名的音响专家试用以后表示这些药剂的确有功效,但是亦有些人反对这种作法,他们认为药剂多半会使声音变劣,其中最常被提出之缺点为再生音乐之细节会由于药剂之敷用而减少。
    用来维护唱片的器材之中最积极的可算是洗唱片机了,洗唱片机不是新玩意,英制的Keith Monks在市场上已经多年,但是由于价格昂贵,所以一直不能普遍,使用者多半为电台或者是贩卖音响器材的商号,后者用它来代客清洗唱片。

洗唱片机昂贵 不过最为有效
    年来,一两家工厂曾经企图推销比较价廉唱片清洗机,但是并没有成功,最近两家美国厂推出了几型清洗机,一家名为VPI,亦一家为Nitty Gritty,价钱非常合理,约在美金两三百元之谱。这些清洗机之效果极佳,一张唱片在一两分钟之内即可清洗完毕,没有任何其他方法可以更彻底的去清洗唱片。经过处理的唱片可以说是一尘不染,许多原本已经脏得不能使用的唱片经过清洗之后和全新的版本差不多。
    由于脏是造成唱片杂音之主要原因之一,所以唱片经过清洗之后之杂音量会显著地减少,地下杂志Absolute Sound之主持人Harry Pearson甚至于宣称,全新的唱片经过清洗之后声音亦会改善。
    唱片清洗机之缺点有二:第二,使用之清洁剂可能会伤害到塑胶而导致声音之劣化,许多专家警告使用者不得多次清洗同样的一张唱片,否则有害,他们相信清洁剂会破坏塑胶中的稳定原素而使塑胶变质,但是不少实际上使用唱片清洗机的人却无法印证这种说法,纽约有一家专门播放古典音乐的24小时电台之节目部主任曾经对我说,他们每张唱片在播放之前均一定经过唱片清洗器之清洗,他并不相信频繁的清洗会伤害到唱片,我认为,也许化学作用需要长时期才能显露出来,所以最好还是不做不必要的清洗。唱片清洗机的第二个缺点是它在工作时所发出的振耳欲聋的吼声,尤其当穿插在美妙的音乐之间,更是使人无法忍受,如果读者没有听过,那么家庭使用的真空吸尘器也许可以使你体会到它们的威力。相信不久的将来一定会有非常安静的机器上市。
综合上面之讨论所得到的结论是:
1、凡是化学剂均最好少用在唱片上。
2、唱片清洁臂如果会“唱”唱片,那么最好不要用。
3、唱片刷中以碳纤维式的效果最好,但是它们不能与任何液体直接接触。
4、唱片清洗机是凡是唱片收集家均应具备的一项器材,但是清洗唱片得节制。
多年来的经验使我认为最简单,最省时,最省钱,而且最安全的维护唱片的方法是:
1、绝对不让手指碰到唱片之沟纹部分。
2、绝对不局部使用清洁剂。清洁剂仅限于唱片清洗机使用。
3、唱片在播放之前后一定用碳纤维刷将灰尘清除过(费时约10分钟)。 当然,由于我住的地方气候并不潮湿,所以没有唱片上霉的危险,同时唱片几乎从不会与烧菜时的油烟接触,所以积集在唱片上的灰尘多半是干性的,如果以上两种情况无可避免,那么唱片柜内不但要保持干燥,而且在烧菜之油烟未散之前不得听唱片。万一唱片受到霉及油烟的侵害,那么唱片清洗机是必需的。

清洗唱片贴士
    水质一定要纯在未停笔之前,要向各位提醒一件事是,如果没有唱片清洗机,那么使用温和的清洁剂及温水来清洗唱片亦未尝不可,但唱片在以清水冲净了之后必须要彻底风干。另外得注意的是,由于自来水之品质随地而变,如果自来水中之矿物质或者其他杂质成分高则不宜用来洗唱片。最容易决定水质的方法是一茶匙自来水倒在一块干净透明的玻璃上,待风干之后,检视是否有过分的沉澱成份遗留在玻璃上。如果自来水不适用,那么蒸馏水则为最理想不过了。

作者: zgmfx10akira    时间: 2012-4-30 18:15
DECCA 唱头最经得起时间考验

    玩音响、听音乐已十几年,使用过的音响器材也可算不少,现在回想起来,的确有不少令人难忘的经验,例如说,第一次从电晶体机换到真空管机所受到的震撼,第一次听到静电型耳筒之清晰,第一次经验到超低音之浑厚等,但是音响器材似乎不管当时有多好,不久之后就被后起之秀所取代了,可谓“人上有人,天上有天”。尽管不知换了多少扬声器、扩音机、前置、唱臂,十几年来,在我心目中,有一件器材迄今仍占有崇高地位,不知多少次想将它换下来,但是终究不成功,弄来弄去,它又回到设置之内,因为纵使它在某些方面不能和它的挑战者相比,但是总括而言,它仍然比较优秀,这件器材的名字是DECCA唱头。

十多年前亮相貌不惊人
    我第一次听见Decca唱头之名字是在一九七O年左右,当时,一家在纽约东城的高级音响店老板对我说,他认为Decca唱头是世界上最好的唱头,但是他说,Decca马上就要出新唱头,叫我稍微等等,因为新头要比旧头好得多,我左等右等了不知道多久,新头仍然没有上市,不过当时我已经有了几个极有声望的磁头,所以并不急,心想,Decca即使好,也不可能好到那里去,这时,这家店刚得到Audio Research在纽约市之总经销权,生意相当兴隆,但是为了要更进一步的推销Audio Research器材,他们特别整修了一间聆听室,专门置放ARC之器材,整个房间之内只有一对Magneplanar扬声器,但是我总觉得声音不对劲,不知是喇叭不好还是房间有问题,由于经常到这家店到泡,所以逐渐对ARC设置之音响效果变得熟悉,有一天,走进了这聆听室,第一件使我感到惊讶的事是,音响效果好极了,我连忙问店主他们改换了什么地方,回答是,一点都没有变动,他们当时正在试听一个顾客送来修理的唱盘,我凑过去一瞧,只见一个精美无比的唱盘,唱片是由五个金色的樁子予托住的,唱臂的设计亦非常奇特,像个中国古式的打油杓,沿着唱臂看到唱头壳处,只见一个黑漆漆的方块,哪像是个唱头?再仔细一看,方块前头印了二个白色的小圆圈,小圆圈下赫然有ffss SC4E之字样,一问之下,才知道这原来就是Decca唱头,看起来真貌不惊人,但是声音却是如此之美,当时下决心“就是它”,新的Decca 5号也不等了,但是竟然全纽约没有任何店有得卖的!市场上充满了Shure,Stanton,ADC,但是就是没有Decca,不过皇天不负有心人,几个月后,终于被我找到了一个来源,于是一口气买到好几个,还顺便买了一支Decca International 唱臂,回家花了一个周末的工夫将它装妥,音效简直美极,又甜、又透而且还带有权威性,好像在对听者说:“只有我的声音是正确的。”,原来好几张唱片我一直认为录音很差劲,但是用Decca都变得很像样了,许多从来没有注意到的音乐细节也都一一呈现在眼前(的确像是可以看到演奏的乐器一般),所有的唱片好像都是第一次听到一般,这种感受实在新奇,因为当时做梦也没意料到一个小小的唱头会造成如此大的分别。

一听钟情
从四到六成为忠实信徒
    可以说从那时候开始,我就变成了一个Decca的忠实信徒,迄今十几年,Decca从4号升到6号,我对它的热衷一直未减,在这段期中,不少MC唱头及Stax CPX静电唱头曾经使我有点“移情别恋”,但是总是听了不久就开始怀念Decca,最后不得不又将它装回去。终于不得已只得多添唱盘,因为Decca唱头调整不易,不适于经常换上换下,同时,如果唱盘不止一个,那么可以使用不同的唱头,我的理想是一个MC,一个MM,静电或其他的设计,另外一个为Decca,但是这个安排并不太成功,因为经常我的三个唱盘上所装的都是Decca唱头(Decca有各种不同的型号的)。

因爱慕作深入研究资料寸厚
    自从我使用Decca以来,我即开放收集有关Decca之资料。现在档案约有一寸厚,其中包括所有我读过有关Decca之文章及测验报导以及与友人或Decca厂讨论Decca唱头之信件等。有些资料是在产品规格单上所找不到的,例如,一位住在英国Leicester的老先生来信告诉我说,Decca唱头之设计者,原先是位妇女士,后来开刀转才变为男性,听说这位先生在唱头设计方面相当有权威性,他的论文经常被专门讨论唱头设计的文章所提及。   

设计者由女变男富传奇遭遇
    为了要写这篇文,我曾经多次写信到Decca总公司去请求他们供给我资料,不幸由于Decca改组,当事人均改换,所获得的资料并不多,尤其Decca唱头的历史更是没有任何线索,但是Decca ffss Stereo头在1958年伦敦的无线电展览会上即已展出,据当时报章之报导,Decca唱头很显然比其他的唱头优秀得多,Decca厂所以在当时即能开发如此高水准的唱头与它多年制造唱片,刻片系统以及唱头的累积经验很有关系。

经过十年改进达到完美阶段
    随后十年,Decca唱头多经改善,到了Decca 4号时,能够改善的地方似乎均已达到完善地步,唯一的缺点是所有的Decca头必须与Decca唱臂合并使用,但是许多玩音响的人士却希望能够将Decca头装在他们自己喜欢的唱臂上,Decca应了这个要求而推出了至今尚极受推崇的4RC及C4E唱头,但是由于它们的重量很高(约14克左右),逐渐不合当时玩家的要求,Decca在1970年左右终于完全改变了唱头的外形以及内部构造,虽然唱头设计原理一成未变,Decca 5号因此诞生,Decca唱头的外形以及内部构造迄今未变,目前在市场上的六号头与五号的外形完全一样,不同之处完全在内部。最近Decca厂非正式的透露他们准备推出七号,不过看Decca厂目前情况,七号可能在一时半刻内不会实现。
    Decca唱头严格说起来是MI型的,因为发电方式是以一铁片在磁隙中活动而导致电流,但是Decca却与一般的MI唱头有天地之别。实际上,Decca与市面上所有的唱头均不同,一般唱头钻石针尖上的振动均得传至针杆的尾端然后才被检拾出来,Decca工程师认为不论针杆之材料为何,均无法将很细软的振波不受影响地传到针杆后端,如果针杆中间再加上一个橡皮悬挂系统,那么振波被改变的可能性更大,因此,普通一般唱头都多少有层雾,Decca工程师称之为“针杆雾”Cantilever haze。而Decca解决这困难的方法是将检拾线圈置于针尖四周及上端,非常直接,因此,Decca唱头的声音很显然地要比其他唱头明朗而通透。Decca唱头的另外一个特点是在于它的针杆,普通针杆是圆筒型的,而Decca却形如锅铲,而且还有一条向后拉线绑在针杆尖端处,针杆从唱头腹部垂直向外伸出,形状极为与众不同,五号头以前的各种型号更是将整个唱头的活动部分,线圈,磁极以及出端等都建造在一块磁铁上,唱头的身体即是这块磁铁,因此才会重达14克,随后由于磁铁制造技术大增,Decca乃能将原先的大块磁铁之体积缩小了百分之九十还不止。

设计自成一格有三个线圈 只用三条线“和差式”接驳
    Decca唱头中有三个线圈,其连接方式是所谓“和差式”(Sum and difference),因此向外的出端只有三条一左、右以及中线,与普通的四条线稍有不同。
    Decca唱头另外尚有一个特点,唱头本身阻尼之使用得非常少,针杆片后端是被紧紧夹在唱头身上的,加上那条拉线,整个振动系统非常坚实,唱片转动时向前的拉力对它完全没有影响,这也是Decca头清晰之原因之一。六号头针杆上的阻尼较五号大有增加,但是其阻尼物质仍然不是悬挂系统的一部分,所以并不影响工作效能。
    Decca目前在市场上的六号头约4.5克重,唱头本身分为两部分,一部分为唱头的发电部位,另外一部分仅是一个唱头座,座上有三支出端,安装时可以将唱头座先装在唱头壳内,然后才将唱头的另一部分插上去,由于唱头插入拔下很容易,所以切换两只不同的Decca唱头是最简单不过。这个特色给使用者带来了很大的便利,但是也遭受到许多玩家的攻击,这个问题下面再详谈。

文章刊出引起共鸣甚感快慰
    在四月份的音乐与音响杂志,我曾经写了一篇有关Decca唱头的文章,这篇文很显然地引起了一些读者对Decca唱头的好奇心,有些同好更基于我的推荐而去买了Decca头,我在纽约也收到了几封读者,写来讨论Decca头的信,我非常高兴能够得到一些读者的共鸣,前几天尚接到一个读者从克里夫兰州来的长途电话,告诉我他对Decca唱头之热衷,据他说,自从换上了Decca头(约在一两星期前),他每天都请朋友到家去听音乐,他说,他从来不知Jazz at the Pacon Shop (Proprius 7778-79)这张唱片之录音会有如此高的水准。几个星期前,有人送给了他一个五号头,但是他无法将它调整适当,于是打电话来问我,我给了他几个建议,结果效果大增,使得他忍不住要打电话来告诉我。

一经比较优点出众不能抗拒
    对于使用者说来,一个调整适当,搭档不离谱的Decca头,不论是那一型号(1号到6号),它的特点与其他唱头比较之下很快就会显露出来:
1、Decca头的中音部分非常充沛而有实质,但是绝不侵人,无论乐声或人声均有使人觉得有浮凸玲珑感,其他唱头与其相形之下,立刻会显得没有body。Decca的声音并具有权威性,不像一般唱头之中气不足,这种权威性非常能够令人注意,使人不得不仔细听。以Decca头播放录音良好的歌剧唱片,例如Pavarotti及 Sutherland之杜兰多公主(梅塔指挥),卡拉扬新灌的Parsifal(DGG),拉汶指挥的魔笛(RCA),甚至于已经有二十年历史由休提指挥的尼布龙指环(Decca-London)等,保证会使听者欲罢不能。
2、Decca低音低沉而有劲,绝不含混膨胀,有人说Decca最大的优点就是在低音,Decca低音会很显然地比其他唱头的低音较有轮廓感,很可能是因为其低音之瞬间反应极佳之故,钢琴之低音键声绝不会像海棉一般地松驰,或像敲橡皮轮胎一样死沉沉的感觉,大提琴及低音提琴的拉弓声亦非常显着,不会有“一团低音”的情况,经常,换上了Decca反而会使人觉得低音变少了,但是仔细听会发现低音并没有少,所少的是其他唱头低音部分之混浊声。
3、Decca头的高音部分所受到的议论分歧,主要是因为有些Decca头(尤其是五号头)在18KHz处有峰值,有些头因为品管不良,峰值超出范围而造成刺耳的现象,使人无法接受,但是如果峰值不超出设计规格,Decca之高音美如柔丝细水,Decca六号头之峰值已被推出20KHz以外,所以高音之表现一般非常良好,但是仍然有人喜欢MM或MC高音之飘然感而认为Decca之高音有点过分实心。
4、Decca唱头的立体感较普通唱头来得明显,主要是因为它少了一层雾的关系,而台面之纵深,横宽以及高度不论在任何情况之下都能保持一定的尺度,这个能力对于音乐之再生非常重要,影象稳定,乐器人声在**时不会有扩散的现象,空间与实体分隔清楚是Decca头最大的几个优点。
    如果使用Decca而无法感受到以上数点,那么不是唱头本身有毛病就是调整设置不理想,为了要 达到发挥Decca优点,使用者必须得花一点时间去做一些实验研究,但如何去实行?本期由于篇幅的关系,无法向各位报去。下一期,我会继续与各位讨论Decca唱头,包括1、如何调配Decca唱头,2、Decca头之特性以及它们再生音乐的影响,专家们眼中的Decca唱头,4、Decca唱头经过特殊改善了后之音响效果,其中包括Decca Van peu Hul等商业性之产品。

作者: zgmfx10akira    时间: 2012-4-30 18:16
功放技术指标的解读与应用。

以清华大学TW-2008X世纪版为例
1、输入灵敏度:200mv
2、谐波失真度:0.01%
3、输出功率:2×100W(RMS.8欧)
4、信噪比:96dB(不计权)
5、频率响应:3-156KH2(-3dB)
6、阻尼系数:280
①输入灵敏度200mv,是指功放输出额定功率时所需最小输入信号电压,其要求输入≥200MV即可,如小于此输入值,功放将达不到额定输出功率。CD、VCD、DVD一般输出为2V,大大高于200mv,使用决无问题(一般国际标准在150-220mv之间),此项可忽略不计。
②谐波失真度:这是功放一项极重要的指标,谐波失真是非线性失真的一种,它是放大器在工作时的非线性特征所引起的,失真结果是产生了新的谐波分量,使声音失去原有的音色,严重时声音发破、刺耳。谐波失真还有奇次和偶次之分,奇次谐波会使人烦噪、反感,容易被人感知。为何有些功放听起来让人感到烦噪,感觉疲劳,就是失真较大所引起的。对功放影响最大的就是失真度,一般高保真要求谐波失真在0.05%以下,越低越好。TX-2008能做到0.01%, 应该说是不错的, 进口高档功放可做到0.002左右,令人玩味无穷、久听不厌,就是因为做到了极小的失真度的原因。
除了谐波失真外,还有互调失真,交叉失真,削波失真,瞬态失真,相位失真等,由于篇幅关系暂免叙述。总之,诸多失真是影响功放质量的罪魁祸首。考核功效的优劣,首先要看它的失真度。
③输出功率,功率问题最令初哥们迷惑,其各厂家标识也很混乱,下面逐一讲解:
A、额定输出功率,称为(RMS),指放大器输出的音频信号在总谐波失真范围内,所能输出的最大功率,是最常见的,也是比较实在的标注。
B、削波功率,指放大器输出正弦波信号刚刚开始削波时的功率,它比额定功率要大1.6-2倍。
C、音乐输出功率,指输出失真不超过规定值的条件下,功率放大器对音乐信号瞬间最大输出功率。简称(MPO)。
D、峰值输出功率:功放所能输出的最大音乐功率称为峰值输出功率,简称(PMPO),它不考虑失真,通常为(RMS)功率的8倍左右,它的出现是厂家出于商业目的,并无实际意义。早期双卡录音机大都用此功率来标注。那么(RMS,8欧)又是什么意思呢?是指8欧情况下可输出额定100W功率,如在4欧情况下,还可增加1.5-2倍的输出功率(这要看机器内部变压器的容量和用管数量了)高档功放甚至可以工作在2欧,主要是功放内部        用料的功率富裕量因素决定的。一般甲乙类功放最低只能工作在4欧以上。
通常功放标注以(RMS)具多,用它来选配音箱与之配合是比较妥当的。
如何来验证功放的(RMS)功率呢,业余情况下有二种简便的方法:①用功放输出电压有效值的平方与负载的比值来表示,即P=V2/R,P为有效功率,V为功率输出端交流电压,R音箱标称阻抗。如测得交流摆幅为20V,音箱阻抗为8欧20×20÷8=50W,音箱4欧时=100W,所得结果为近似值。②直观估算法:一般甲乙类功放,如采用300VA电源变压器,按效率70%计,即300×0.7=210W÷2=105W(每声道)也就是这台功放输出功率最大不会超过2×105W,反过来计算,如果2×100W的功放,按要求那么它所采用电源变压器的容量一定不会小于300VA。TW-2008完全符合这一要求,还留有不少的余量。
一些进口AV功放,5-7个声道、每声道总标百余W,总功率上千W,但电源变压器就那么大,天晓得他们是用什么功率标准算出来的,日系AV最明显,总以6欧来唬人,真正按8欧算出来有实足的100W(每声道就不错了)用过AV功放的人都知道,大动态时往往显得脚软。故我常推荐购AV功放,最好选择中档以上,否则形同鸡肋。
④信噪比:数值越大越好,一般用(S/N)表示,用信号功率Ps与噪声功率Pn的比值的分贝数表示,S/N=10lgPs/Pn=20lgVs/Vn(db)(公式不好打,只好改为左视)
式中Vs、Vn分别为信号电压与噪声电压。信噪比与输入信号电平的增加,信噪比也逐渐加大,但当输入信号电平达到某一数值后,信噪比基本保持不变,按目前高保真要求。信噪比应达95dB以上为好,进口高档机往往可达110-124dB,其性能可想而知了。再说计权问题,有的信噪比后面有A计权字样,A计权是指将噪声信号通过(附图)所示计取曲张加权网络后测得的结果,由于人们对于高、低频段的噪声相对来说不太灵敏,所以出现了(附图)所示形状的曲线,计权噪声更加直观地代表人们实际感受到的噪声信号状况(图打不出来,请见谅)。总之,信噪比越大,表明混在信号里的噪声越小,放音质量越好,便重放音乐清晰,干净而有层次。
⑤频率响应,早期俗称功率带宽,指谐波失真不超过规定值时,功放的1/2额定功率频带宽度,即有高低端下跌一半(-3dB)的两个频率点之间所包括的频带,称之为功率带宽,它很有实用价格。如日本安桥AV功放早期频响为20-30KHz(±0.5dB)现采用(WRAT)宽频技术后,频响达50-100KHz(+1-3dB)。高级进口功放,低频可从0Hz开始(直流化),因为功放在满额定功率工作是很少见的,如果放大器工作正常,频率响应一定非常好,几乎是一条直线,通常可远远超出可听音范围(20-20KHz)。TW-2008x功放频响达到(3-156KHz-3dB)确实是不错指标了。几乎可以完美再现各种音乐的细节,实属国产之精品。
⑥阻尼系数,(主要是对低频而言,是直接影响低音音质的极重要的技术参数),敢标这个技术指标,说明该功放设计达到了一定的水平,一般功放不给出这个指标,众所周知,喇叭的口径越大,低音相对就越好,但音盆越大其运动惯性也随之加大,此惯性使它很难与音频信号同步运动,往往表现出的声音混浊不清,尤其在低频欧100-400Hz,容易造成声染色,使人听起来模糊不清,很不自然。为什么有些烧友家中的音箱中喇叭,低频信号强时颤振不止,低音老感觉不干净,这就是音盆惯性所引起的。
音响工程师们注意到这一点,对功放采取一些技术措施,如选择多管并联,低内阻(毫欧级)大功率管,提高±工作电压,选择优质线材等,极力提高阻尼系数,使它能够针对喇叭惯性运动,产生“电阻尼”作用,使音盆的运动与音频信号同步运动,尽可能使音盆在驱动信号结束后很快恢复到零位(即中心位置),这种阻止效果就是阻尼系数(D来量),D=Rs/Ri,Rs=喇叭音卷阻抗,Ri=功放输出内阻,D越大,音盆与信号同步效果就越好,低音就越纯越干净,重放效果就越好。早期功放阻尼系数要求10-50,现在的功放可以做几百甚至上千。TW-2008能做到280也确实不易了。
转换速率:功放的转换速率(Siew rate),它极大地影响着高音重放质量与性能(一般厂家不给出此项指标)转换速率越快,高音音质就越佳。越能准确地捕捉到稍纵即逝的高频信息,(选用运放的烧友都知道,尽量选用宽频响,高速率型的,如AD847转换速率达300V/us.就是考虑转换速率问题)。高档功放可做到十几至几十V/us,低中档功放都根本不敢标出,这种转换速率的数值高低,与设计,用料有密切关系,但也不宜太高,太高会产生人耳听不见的超音信号,指20KHz以上,不但对改善音质无作用,反而容易烧坏高音喇叭,不过正规厂家设计时都会考虑这个问题,高级功放往往会采取可调转换速率技术。一般控制在12V/ms左右为佳。一句话,较高的转换速率,可以保证较优秀的高 频重放特征。

作者: zgmfx10akira    时间: 2012-4-30 18:16
音箱技术指标的解读与应用。
下面以法国劲浪907Be书架箱为例:
1、承受功率:90W
2、频率响应:50-37KHZ-3dB
3、称称阻抗:8欧
4、灵敏度:89dB
5、净重:12kg
6、体积:H×W×D  420×231×348
①承受功率90W,指谈箱非线性失真不超过规定值(一般为1—5%),可连续工作馈入的平均功率,也称额定功率,它是动态指标。在实际使用中,尽量不要长时间工作在90W以上,但短时间是容许的,也是不可避免的,因音频信号中含有大量的焠发信号。特别有些CD试音碟,瞬间动态极大,往往超过正常信号N倍。有不少初哥们,用<阿姐鼓>来试低频,往往将功放音量旋至接近或超过12点位置,常造成打底、拍边现象,甚至烧毁喇叭,要特别注意,尤其对进口书架箱,它们一般过载能力不是很强。(主要出于商业考虑,承受功率越大,价格相对就越高)。国产的相对要好一些,由于长期受计划经济影响的延续和国人较诚实的态度,留有的功率余量要大一些。如“飞乐……南鲸等”。不过也不要怕,音箱必竟是来用的,不是看的,短时间2倍于额定功率没有问题,最高可达到4倍(极短时间内)。
一般平时欣赏音乐音量控制在3-10W就可以,10W是什么概念,你可用万用表,测一下功 放输出红黑二端,交流摆幅至9-10V(指8欧音箱时),那时的输出功率就在10W左右,计算方法:交流电压(V)的平方除以音箱阻抗(欧)等于功率(W),此时响度已经能感觉到低频的震撼了。
②频率响应:(50-37KH2-3dB)也称有效频率范围,是指给扬声器加以恒定的信号。由低频到高频所辐射的声压随频率而变化的特征曲线,国际电工委(IEC)规定,平均声压级降低10dB作为扬声器的有效频率范围,现在看来这一标准太低了,现在的厂家标准大大高于此标准。
如果音箱频响中不注明负多少dB,那么频响指标就毫无意义,劲浪所标出的很清楚是-3dB,反映出该箱有着一条极为平坦的频响曲线,就单项指标而言,它的重 放音质一定不错。反之,有些进口箱也可标准-6dB,低档货标-10dB,有的干脆不标故意来迷感人。同一音箱所标注的频响,因下降分贝值不同,数值也将不同,
如劲浪箱:50-37KHZ-3dB
也可以标:45-40KHZ-6dB
更甚者标:38-42KHZ-10dB
干脆不标:32-37KHZ
所以看频响指标,一定要注意下降分贝值,才有参考意义(前面50HZ数代表低音频率越低越好,后面37KHZ代表高频率,越高越好。此款劲浪907Be音箱,标准严谨,指标颇高,性能肯定不错。
③阻抗8欧,扬声器实际阻抗是具有随频率变化的特征,称为扬声器阻抗特征,它在低频共振频率f0时呈最大值。待过了共振频率f0频率逐渐升高时,阻抗会出现一个最小值这时的阻抗就称为额定阻抗,这句话可能不好懂,说通俗一点就是在低频共振频率上升拐弯处时的对应阻抗,就为额定阻抗。它一般是音圈直流阻抗的1.05-1.1倍,如8欧额定阻抗,实测音圈直流电阻在7.2左右。阻抗多少欧并不影响音质,只是给配功放时作为参考值。一般家用音箱在4-16欧之间,选择8欧较好,尤其是作中环音箱,将来升级主箱时容易匹配一些,因为AV功放大都不建议你用低于4欧的音箱。
④灵敏度89dB,是表示扬声器电一声换能效率的量化指标,通常用分贝数表示。特征灵敏度就是给扬声器输入IW粉红色噪声电功率时,在距扬声器轴线IM测得的声压级(在消音室里测量)。
灵敏度指标的高低,对选配功放有一定的意义。因行业上习惯定义:每相差3dB,响度也就相差一倍,也就是说在给音箱馈入同等功率时,如90dB的音箱,就要比87dB音箱,所体现出声音响度要大一倍,以此类推,93dB就大2倍……。
市面上常见家用音箱大都在84-94dB之间,我把它们分为三个等级:①低灵敏度的,84-86dB
                    ①中灵敏度的,87-89dB
                    ①高灵敏度的,90dB以上
在选购音箱时尽量选用中,高灵敏的(87dB以上)尤其是玩AV,一般AV功放功输出功率有限。反之,则必须配大功率AV功放,不然的话推动低灵敏度音箱对(如丹拿,AAD等),为取得某些音响效果,不得不人为加大AV功放的输出,对功放是不利的。当然如真正玩Hi-Fi则另当别论。
⑤净重12kg,好理解,一般音箱越重越好,箱体结实有利于消除共振现象,国际标准重量单位为kg,我国常用公斤来表示。
⑥体积,一般以毫米或厘米计,国际上已有按英寸计,1英寸=2.54厘米,大家换算一下就行了。H代表高,W代表宽,D代表深。
⑦另音箱还有一个重要的失真度指标,一般厂家不愿标出。失真度包括谐波失真,互调失真,相位失真等,常用百分数表示失真度的大小。音箱的失真度一般在2-5%,进口名牌较好的型号可控制在1%左右,厂家不愿标出的原因是与其它音响器材相比,如功放,CD机等,失真度都在万分之几至十万分之几,唯独音箱在百分之几太丢人了。为什么我们常说音箱是音响器材中最博弱的环节,主要是指它的失真度。在电声转换过程中,很难消除一些机械的、几何的、电磁等方面的影响。所以厂家干脆不标出此项指标。

作者: zgmfx10akira    时间: 2012-4-30 18:17
世界上最好的电容
--21款Hi-End电容大对决

电容是高传真度设备里不可或缺的重要组成部分,将能量储存在正负电极之间形成的电场中。两个薄膜状的电极(通常使用金属制成)被一层电介质隔开,并折叠或卷起来,就成了薄膜电容。电极的材料有铝、锡、铜、银或者合金。电介质可以是任何绝缘的材料,例如空气、玻璃、陶瓷、云母、纸、聚脂薄膜、聚苯乙烯、聚丙烯或特氟隆(聚四氟乙烯)。最好的电介质材料是真空,其次是空气,第三是特氟隆,随后才是聚酯,聚丙烯,油等材料。
电容的一个重要用途就是信号耦合――通交流隔直流,它使得音乐信号(交流)可以自由通过而直流电压无法通过。没有电容是完美的,任何电容在传输信号的时候都会有不同程度的信号损耗,特别是非Hi-Fi的电容的信号损耗是很大的。理论上的解决办法是采用直耦电路来取代耦合电容,但是任何有电子知识的人都知道,直耦电路不仅实施起来困难而且应用范围有限,很多情况下无法使用直耦电路取代耦合电容。那么,另一个解决方案就是努力去寻找最好的耦合电容来降低信号损耗,这就是我们组织这次评论的主旨,我们花费了16个月的时间来聚齐了所有最顶级的21款hi-end电容。(自从直耦电路被或多或少的奉为hi-fi设计的“圣杯”,有时一些肆无忌惮的hi-fi厂商会慌称自己的器材是直耦设计。例如价值$350,000的WAVAC SH-833,厂家宣称“无电容设计”。但是著名杂志Stereophile的编辑John Atkinson先生却在在电路板上数到了4个电容,其中有两个明显是在信号通路中。)

评测电容介绍

表格1.列出了所有评测的电容以及参数价格等信息,这些电容中欧洲和美国的电容占了大多数,中国和前苏联各有一个品牌,根据作者的了解,不少欧洲或美国的电容实际上也是在中国生产制造(made in china),而且这一趋势还将继续发扬壮大。
所评测的21款Hi-End电容使用的电介质有油浸纸、聚乙烯、蜂蜡、纸、油、特氟隆或者以上材料的混合物。使用的电极包括锡、铝、铜、银和金银合金。少数电容厂家不愿透露电极使用的金属材料或者合金的成分。电容的结构有将金属箔和电介质薄膜卷在一起滚压成型的,也有采用现代金属工艺直接在电介质上沉淀金属形成电极的。传统的金属箔和电介质薄膜制成的电容有较好的音质,但是价格也相对昂贵。经济型的现代金属沉淀工艺制成的电容品质也在音质上迅速追赶上来。
     所有参评的电容都可以在美国的代理商或网上购买到,我们还收集了各个电容厂商的官方网址,以便感兴趣的人获得信息或者邮购。表格一中的价格是2005年10月份北美的参考价,实际价格可能有所不同。
此次评测的有效性同其它科学试验一样,评测的结果是和评测的方法以及环境相关的。

首先,关于所评测电容的任何结论都仅限于发烧器材信号偶合的应用。不能把此次评测的结论扩展到分频器,电源,收音调谐电路和高频滤波等应用。例如,在收音调谐电路中使用的电容最关键的参数是温度稳定性,以防止频率漂移。因此广泛使用银云母电容和陶瓷电容,虽然这两种电容用做信号偶合的效果是声名狼藉的。

其次,虽然我尽力使此次评测涵盖尽可能多的Hi-End电容,但我不可能对所有的电容进行评测,请谅解有可能你最爱的电容并不在此次评测之列。所谓,鱼与熊掌不可兼得。像Solen和Xicon这样的电容虽然非常经济,但却算不上真正的发烧。作者予以评价是由于它们在音响界的广泛使用。

第三,出于评测完全透明的精神,此次参评的电容都是在美国或者欧洲的零售店购买的。除了V-cap电容是从厂家打折购买,因为没有其它的购买途径。Mundorf cap(M-cap)电容是一家厂商朋友送的,这家厂商在自己的产品中大量使用该电容。从零售店购买电容可以防止电容厂家刻意的提供精选的样品,同时作者也可以保证完全公正的对待电容,而不必考虑照顾厂商的面子。这也是汽车工业已成型的评测标准。
不幸的是,发烧音响杂志没有足够的财政来源以此行事。但作者非常幸运的得到了一位有强大财政后盾的发烧友的资助,他也一直在寻找最终极的信号偶合电容。

第四,任何对音质的主管评价都是来自于作者个人的口味和听觉,并且和整个音响系统相关。可能和你听到的声音有差别。因此,非常有必要简单介绍一下我整套系统和我聆听的软件。

评测的平台和方法
所有的电容都连接在作者仿制的Audio Note M7前级的信号输出偶合位置。为了对整套**系统提供和资助的发烧友的身份保密,我不能透露这套**设备的具体细节。但是,我可以向你保证,这套**系统是我曾经听过的三个最好的**系统之一,整个系统价值远超出25万美金。这套系统原来使用的前级,是Audio Note原厂的M10,用来推动同厂最顶级的后级单声道模块:乐音211。我认为这套极度解析,极度发烧的**系统是一个非常理想的平台,可以完全忠实的反应出每一个电容的优缺点。

我的聆听曲目是60%的大规模交响乐和30%的小型室内乐,例如小提琴协奏曲,还有10%的古典爵士。评测曲目来自于一个可观的LP收藏,包括经典音乐 45 再版, RCA Living Stereo (许多第一版), Mercury Living Presence, 以及operatic London pressings的全集。

通常,在器材评论中,不可避免的会提及播放某些具体唱片的效果。但这样评论会使这篇文章过于乏味冗长。因此我会避免谈论具体某张LP在某个电容上的声音。尽管没有统一的声音评价标准,作者会从普遍认可的角度来评价声音,着重在动态,音色,细节,和声场等。
      所有的电容都采用0.1uF/600VDC,如果没有600V的型号,会选用最相近的电压型号。21款电容都经过至少500小时的白噪声煲过。然后所有的电容被顺序安装在M7前级中,进行聆听。我们进行了两轮比较,第一轮从最便宜的电容开始听到最昂贵的电容;第二轮则用来确定第一轮的结论,并特别在特点相似的电容间进行对比。

电容等级

我们将电容分为不同的几组分别评论,首先评测最低等级的电容,等级仅仅根据声音划分,和价格无关。不要对D级别的电容不屑一顾,对于大多数的人和系统来说,D级的电容已经远远好过他们系统中曾经和正在使用的电容。C级为少数几个特别的电容保留的。B级电容则已经非常优秀,但是昂贵到没有器材厂家愿意使用它们。我们仅仅有两个电容被划分入A级,我保证他们的声音比B级的电容好的高过一头还要再多一个肩膀。

无级

太好了,以至于划入任何等级都会被谴责,没有任何突出的短处(作者此处是反语,没有突出的缺点,就是缺点都很突出),这一组包括Solens,Xicon和Jupiter,他们用在Hi-End器材中都有不可原谅的缺点。

Xicon

这一组中最便宜的电容,使用现代金属沉淀工艺处理的聚丙烯制成。我们无法得到进一步的详细资料,厂家也没有自己的网站。

声音明亮,动态,还算中性。它因为过度提升高频而造成的明亮的音色在亚洲地区被称为“快”(为了不造成混淆,需要明确指出在美国所说的“快”通常是指动态好)。我曾经非常疑惑为什么Xicon在古董器材维修方面这么流行,它的声音特色正好用来调教某些太慢太暗的老器材。此外,大多数的古董器材维修商在更换零件的时候是非常在意他们的钱包的,再考虑到古董器材通常需要更换一大批的电容,因此Xicon成为了他们的第一选择也不奇怪。

Solen/PPE 和Solen/SM

在Hi-End厂商中Solen电容毋庸置疑是被最广泛使用的,你很难在打开一个Hi-Fi器材的机壳的时候看不到Solen电容。我们评测的两个Solen电容虽然结构不同,但是有着相近的声音。

依照厂家的说法,此电容拥有超高频特性,损耗率低于0.01%;介电吸收常数小于0.01%;绝缘阻抗大于100 k MΩ/mfd;电介质使用的是聚丙烯薄膜。

Solen电容相对Xicon电容是一个进步,但仍不尽人意,声音比较缓慢。声音总体来说,中频稍有突出。很明显,这不是一款动态电容,其它就没有什么特别的缺点,也没有什么优秀的地方。因为价格低廉,而且有非常可观的批发折扣,因此也就不奇怪应用的这么广泛了。

Jupiter Beewax(蜂蜡)

这是一款自诞生以来就颇具争议的古老电容。蜂蜡浸纸在1940年以前被广泛的用做电介质,然后就渐渐销声匿迹,一直到21世纪,Jupiter才让蜂蜡浸纸电容重见光明。蜂蜡在技术上有很多不足之处,首先蜂蜡很容易融化,流失了蜂蜡之后电容就会失效。其次蜂蜡电介质从现代的标准来看有太大的失真和漏电。但还是有一部分人始终认为蜂蜡电容具有音乐味,Jupiter发现了这一小部分市场的需求,因此又把这个史前恐龙带了回来。

这里有一些我从官方网站摘录的描述:“我们相信电介质是电容最重要的部分”“纸的成分和处理方法是关键,使用蜂蜡浸制是很好的方法”“蜂蜡含有的天然蜂胶是非常好的抗氧化剂,同时也是抗真菌剂,抗细菌剂和抗病毒剂”嗯,具有超强“保健效益”的蜂蜡是否也确实可以带给我们好听的声音吗?不是。事实上,在我们的天价**系统上,蜂蜡电容失真太大而且匮乏动态。对于厂商来说有利的结论是,蜂蜡电容的失真会使初级发烧友感觉声音非常温暖,并且可以很好的改善数字味。和前面两款电容不同,蜂蜡电容相当昂贵,大概要17美元。如果从此次评测的性价比上来说,这款电容无疑是在21款中最差的,我强烈的反对任何人使用这款电容,这个史前恐龙的时代已经过去,它不应该属于这个世纪。

REL/PPMT

REL(Reliable)是电容界的另一个巨人。它也同样给发烧厂商非常优惠的批发价格,同Solen一样,REL的电容也是随处可见。PPMT是REL令人眼花缭乱的产品线中相对便宜的型号。

淡而无趣的声音,其它方面,它算是一款是比较中性的电容,没有太大的缺陷也没有什么另人兴奋的地方。这款电容算是接近E级的底线。

E级

俄**用特氟隆电容

我为电容划分等级是非常小心和严格的,如果不是因为如下的两个缺点,这款精工打造的电容完全可以得到C级的评价:1、不管使用白噪音煲多久,仍然有些呆板的音色。2、低频的重量感和冲击力稍有欠缺,这对于大多数发烧友来说都是个大问题。除此以外,这款电容拥有另人无法相信的解析力,仅仅有三款贵很多的电容在解析力上和它在一个档次。这款电容也非常的中性,有极好的动态。对于现有器材低音过重,并且追求高解析力,中性音色和大动态范围的人,这颗电容无疑是一粒仙丹。作为前苏联的军用过剩品,这款电容可以经常以2~3美元的价格在eBay上购得。同时要明白这款电容的个头是非常大,而且引线也和传统电容不同,请确认你有足够的空间安装它。

这款电容是E级电容中的老大,同时也是性价比最好的几款电容之一。

North Creek Music/Crescendo

使用电介质薄膜和金属箔卷制。引用厂家的话“1995年开发的,专为旁路(bypass)大容量电容设计,特殊金属的薄膜电容。Crescendo旁路电容拥有丰满流畅的中频和中高频,它最独特的地方是音色甜美和令人回味。”
非常中肯的评价,特别是另人回味的特点,但它仍然不够完善,和更高级的电容比起来动态差了很多。不过它的音色的确不错。特别值得一提的是Crescendo原本是为了音箱分频器设计的。一些我信任的Hi-Fi高手看起来非常赞赏这种用法,特别是用做旁路电容的时候,我把这个评测的机会留给读者。

D级

Mundor/Supreme

就是众所周知的M-cap Supreme,这款德国的电容使用金属沉淀工艺处理的聚丙烯薄膜,拥有极好的低损耗特性。根据厂家的声明,所有的M-cap电容都拥有以下特性:
1、 特别的无电感缠绕技术:每一颗电容都有两个独立电容采用隔行的方式缠绕而成,恰好使两个电容的电感相互抵消。两个电容采用串联的方式,这意味着,要生产一颗1uF的电容,则需要两颗2uF的电容隔行缠绕在一起――而在传统工艺则可以生产出4uF的电容了。
2、 使用了可用到的最好的原料:M-cap Supreme电容所使用的聚丙烯薄膜拥有超低的损耗特性。
3、 坚固的塑料和铝容器:防止麦克风效应,保护重要的小信号细节。

M-cap Supreme是实至名归的High-End电容,在测试的这段时间里,它靠实力赢得了荣誉。它被划分在D级只是因为竞争太残酷了。它还原了一个巨大开阔声音现场,拥有极好的深度。细节和音色都非常出色,唯一在解析力上比刚高档的电容差了一点。我们评选它为高性价比电容之一。

Mundorf/Supreme 金银合金

M-cap的顶极电容,却有些另人失望,价格非常昂贵,因为“导电材质使用了99.99%的纯银,并掺入了1%的高纯度金。金的加盟改变了银的晶体结构,使得导电率达到了最高点”

它保持了Supreme电容的所有优点,并且在各方面都有所改进:更好的解析力,更好的动态,更好的音乐味,更好的声场,等等。不幸的是,它的声音并不比它的弟弟M-cap油浸银膜电容好。因此它没有被划为C级电容,虽然它在D级电容当中是最好的。

Audience Auricap电容

这款现代金属工艺制成的电容自从被Jenna Labs的Jennifer标称其音质超过260美金的特制特氟隆电容之后,就拥有一大批狂热的追随者。有一位工业巨匠同时也是LP发烧的领军人物Walker Audio的Walker先生却持有完全相反的意见。不幸的是我们无法得到这款真空密封的特氟隆电容。否则我可以作出自己的比较评价。无论如何,这款电容拥有世界级的中性声音,唯独欠缺的是顶级的解析力和动态。另外两款特氟隆电容V-cap和俄罗斯军用电容都可以在这两个方面轻易的把它打败。这款电容拥有极好的平衡度,它什么都好除了不能使人兴奋无比。概要的说,他是一款Hi-Fi厂商梦幻级的电容。
Auricap电容过去的价格非常诱人,在得到了很多评测人的肯定之后,供货商开始渐渐的提升价格,在过去的三年中,它的价格涨的惊人。虽然如此,它仍然是非常值得购买。

Hovland Musicap电容

这款金属箔和电介质薄膜电容席卷了全球的超高档音箱分频器市场。官方网站声称:“Musicap拥有非常好的动态,速度,正确的音色和深远的声场,引人入胜”
所有这些都在信号偶合的测试当中得到了证实。“目前为止可以买到起最有音乐味的电容”,就象它的名字那样,这款电容真的是非常有音乐味。但音乐感无法比及一些名次在它之上的电容。听过Audio Note的银电容之后再听这款电容就明显的很痛苦了。在音乐性一组的对比中,它被天下无敌昂贵的Audio Note银电容在各个方面一一击溃。作为一款卓越的电容,它稳固地在D级占有一席之地。

卡达丝黄金比例电容

它的特点是“两个黄金比例的电介质层被金属层隔开,造成了‘能量按比例释放’。能量释放的总数和比率被按照恒定的黄金比例分配到两个电介质中。这种合成的电介质消除了单层电介质的共振,并提供了很好的层间阻尼。”使用黄金比例是非常闪亮的主意,可是不管理论上如何天花乱坠,它到底是一个宣传的噱头还是真正的校声手段呢?结论是:这个电容有非常顺滑的音色,好的解析力,很好的音乐味。黄金比例绕法的确有效。我很赞赏这家公司的官方网站,他们显然没有说大话。

TRT Dynamicap

有两个版本的Dynamicap电容,一种专为电路设计,另一种专为分频器设计。我们评测的是专为电路设计的版本,厂家的官方网站有大量的吹嘘文字,其中一个网页上写到他们的比“所有其它电容”有更多的动态,更好的音乐味,更中性的音色,更高的透明度,另一个网页上专门说明为什么其它电容都不如他们的电容。如此大量的“豪言壮语”使我不得不对这款电容心存戒备。幸运的是,Dynamicap的确实现了大多数的“豪言壮语”。那是一种醇厚的另人喜爱的声音。鉴于它的名字的含义,首先值得赞赏的就是动态。从它的标价来说,这是一款值得购买的电容。但是,不管官方网站说的如何动听“纯净,透明,空气感,开阔,速度超过任何电容”,它始终在各个方面都远远落后于,举例来说,V-cap电容。

C级

因为5款C级电容中其余4款全是油浸,因此我们先来评测这款非油浸的电容。

REL/Exotica PCU

REL电容家族中的Exotica线产品,使用金属箔和电介质薄膜的结构。PCU电容使用铜箔作为电极,拥有一个非常有音乐味的声音,一流的解析力和动态,流畅的音色。不幸的是,它的声音不如油浸电容那样自然,泛音丰富,虽然只差了那么一点。否则,我可以自信地宣称这款电容在C级是最好的。另外,虽然它的价格比Jensens高出很多,但是你可以得到更多的动态和可靠性。我会对后一点做出详细评论。

油浸电容

C级剩余的四个电容都是利用油作为电介质,具体以油纸或者油浸聚丙烯的型式。读者请注意我们只有三款电容超过了这些油浸电容的声音,只有最苛刻的发烧友才能感觉它们的不足。因为这些油浸电容都表现出类似的声音特性,因此我将先介绍相似之处。油浸,特别是油浸纸膜是最古老的电介质材料之一,在现代电容器出世之初就被广泛采用。另一个古董级的电介质材料――蜂蜡在这次评测中并不理想。油浸是否能逃过同样的命运呢?自从蜂蜡电容让我大失所望之后这个问题就一直困扰着我。但另一方面,油浸电容自从它诞生之日起就一直保持量产,从来没有被淘汰,是否达尔文的进化论预示着它拥有超凡的音色呢?
这四款油浸电容在此给予了进化论彻底地肯定。使用古老的油电介质并不会使油浸电容像某些人想像的那样混浊和染色。它们全部都是非常中性而且自然的声音,虽然他们的解析力不能和三颗最顶级的电容相比,但不亚于上面几乎所有评测过的电容。
通常人都误解油浸的声音应该温暖的。如果有人想要使用油浸电容来校正过于干瘦,太数字味的系统,结果是会非常失望得。我们测试的所有四款油浸电容都没有温暖特点。“它们只是听起来十分正确,拥有现场音乐丰富的泛音。”这段Jensen官方网站上的描述真实的反映了油浸电容的特点。

一些人认为油浸电容声音昏暗模糊,我完全不同意这样的说法,至少我测试的这四款油浸电容不是这样。另外一些人主张油浸电容有油滑的感觉,这可能听起来太搞笑了,我却真真切切的体验过这一点。那时我还是20多岁,耳朵听力超出两万赫兹。

几年前我还能够通过声音是否有油滑的味道,而轻易的判断出信号通路中是否使用了油浸电容。但是现在不行了。年华似水,残忍的机体衰老逐渐侵蚀我的听力,现在的我几乎听不到19.5k以上的任何声音。我仍然记得在新泽西音响协会在Anna Logg家中的会议上,人们都非常惊讶我居然可以听出来一台新开发的BAT VK-75SE中使用了油浸电容,后来确认是使用了Jensen的油浸。
下面单独的介绍每一款油浸电容。

Audio Consulting油浸电容

生产这款电容的是家瑞士公司。它还生产“声名狼藉”的纯银电阻买到了几百美元一个。官方网站对他们的油浸电容有如下声明:

名表故乡瑞士本土的机器加工和装配工艺,误差低于10%。
用油填充金属容器的结构带来了高的电介系数并可以有效阻尼震动(特别是在喇叭分频器中)。
在高温的环境,例如电子管功放中,不会引起容量衰减或容量波动。(测试条件:56天工作于70度高温。)
使用天然油。
仅仅使用了纸电介质。(没有混合高分子材料,例如聚丙烯。)
特别的防水油漆,防止潮湿环境。(专为热带条件设计)

显而易见,厂家在为电容校声的时候也在努力让电容保持高稳定性。对于大家来说这是一件十分重要的事。不幸的是,我没有条件亲自测试这款电容长时间工作的可靠性。众所周知,油浸电容,像蜂蜡电容一样,可靠性往往声名狼藉。在讨论Jensen的时候我们会继续讨论这个问题。

这款Audio Consulting油浸电容是这次测试的四款油浸电容中最好的一个,最好的解析力,最多的空气感,最高的动态,最迷人的音乐味….数不胜数。另外它可以支持非常高的电压。它的个头可真说不上小,如果你打算购买它,请先确认你有足够的空间可以安装它。可是千好万好,它还是有一个致命的缺点,就是它的价格。65美金一支,只有Audio Note的银电容的价格超过了它。而且更不幸的是,它比天音级的V-cap特氟隆电容49.99美元的价格还要贵。在自由经济市场里,我想不明白为什么有人会买它而不是V-cap。

Jensen油浸铝箔和油浸铜箔电容

伟大的Jensen帝国自从1917年成立以来,就从未停止生产油浸电容,甚至在70年代晶体管和电解电容组成的日本“高档”器材充斥市场的时候。随着80年代电子管浪潮的再度兴起,Jensen对油浸电容的信心再度被充分地认可。Jensen公司曾经有过辉煌的历史,现在依然是全球最大的高档油浸电容制造商。

我们测试的两款Jensen电容,一款使用铝箔电极,另一款使用铜箔电极。它们有一些共同的特性(来自Jensen):
引线采用纯银,轴线设计,直接密封焊接到电极终点上。电极终点连接于外层的金属箔,最靠近外壳的金属箔端有垂直线标记。
电容密采用酚醛朔料密封入铝管中。
最小误差:容量等于和小于0.1uF的电容在-20~30%,容量大于0.1uF的电容在-10~20%

我们测试的两个电容中,铜箔的声音在各个方面都要远远好于铝箔,特别是解析力和音乐感。因此,只要你负担的起,买你能够买的起的最好的金属箔。你可能觉得我对Jensen电容声音的评价太简单了,因为我就是以Jensen为蓝本来描述这整个一组油浸电容的。其实,铝箔Jensen应该排在D级,列在这里是特别表彰它多年持续地生产。

Jensen还有一款使用银箔的电容,我非常希望可以评测它,不幸的是这个愿望没有实现。

Jensen油浸电容在这一组中是比较便宜的,我在强烈推荐它的同时,也提出以下警告。
首先,Jensen是一打电容里误差最大的,在现代工艺下,这是非常糟糕的。好在偶合应用时对于声音来说影响不大。

真正的问题是可靠性,根据Jensen的官方网站,它们的油浸电容在85度的高温下仅仅有250小时的寿命。对于Jensen的解释你可能要跳起来,“实际电器中的温度要比85度低的多,因此寿命一定可以成指数延长。”因此而吃到苦头的厂商不在少数,我不会泄漏这些厂商的名字,免得它们被关于Jensen可靠性的询问而打扰。如果你真的对这些厂商的恶梦体验感兴趣,只要去Google或者audioasylum.com的博客搜索一下就知道了。基本上,如果你要使用Jensen,一定要确认你的机箱温度保持凉爽,并且在使用半年之后就应该每季度检查一次,如果看到任何变形,污点,漏油等现象,立刻更换它们。

Mundorf Supreme(M-cap)银膜油浸电容

M-cap银膜油浸电容是2004年的新产品。 引用厂家的描述:“Supreme油浸银箔电容是现代金属工艺处理的油浸聚丙烯电介质电容,使用无感缠绕技术,高纯度的银作为电极层,绕组中充满了特制的油。油的选取经过了最完备最详尽的实验和聆听比较。最终我们恰好得到了一个全面,顺滑富饶和多姿多彩的声音。”“这个电容可以反应最好的细节,表现最细微的差别,因此可以使音乐更鲜活多汁,而且没有刻意强调任何东西。”

这是一个卓越的电容,拥有非常流畅的声音和世界级的声场。

尽管它不是Mundorf产品线中最昂贵的电容,但它却是这家德国厂商的最好听的电容。它使得M-cap的其它电容,包括Supreme和金银箔都甘拜下风。“这也是第一次油浸电容的设计被成功的同世界知名的高稳定性的现代金属工艺薄膜电容以及无感缠绕法相结合的结果”。我相信其它高档器材厂商也许将会很快的选择M-cap电容取代Jensen,以取其可靠性。

B级

REL/Exotica TFT电容

这款B级唯一的电容是REL电容家族中的Exotica线产品中最昂贵的特氟隆电容。厂家的官方网站声明:“我们制造世界最好电容”。这便是他们所指的电容。虽然它远远好于我们已经评价过的电容,但还是毫无疑问地逊于V-cap和Audio Note银电容。

当三年以前第一次遇到这款电容时,我立刻被它中性动态的声音以及其它所有的优点给震翻在地。在当时,那是一种惊人的体验,如果这篇文章写在当时,我一定会立刻宣称这是这个世界上最好的电容,确认厂家网站上的说法,并大肆宣传这款电容的神奇。

现在我不会再这样作了,因为今年听过了两款难以置信的电容。虽然Exotic TFT是一款非常出色的电容,但是我推荐多花不到20%的钱去买有相似的风格但是在每个方面都好了太多的V-cap。

坦白的说,除非只有8美元的价格差异能够让买家的会计师大皱眉头,我无法想象任何人会舍弃V-cap而去买REL。当然厂商总是会首先考虑批发折扣和成本。事实上我知道一家非常卓越的厂商Atma-sphere因为Reliable Capacitors给它非常优惠的价格而使用他们的电容。
A级

V-cap TFTF特氟隆电容和Audio Note银电容是两个当今世界上最顶极的电容。我对于他们的热爱和赞美永远都不会显得过分。事实上当我写到这一章节时,我的心都开始剧烈的跳动,还伴随着口干舌燥,手心出汗,瞳孔放大等症状。就在今年我第一次听到他们的声音的时候,两次我都几乎不能把我的下巴从地板上收回来。这种体验相当于在Hi-Fi王国中的宗教信仰转变。我希望我能够在我的发烧生涯中更早遇到他们,真是相逢恨晚。无缘早遇的原因其一是V-cap特氟隆电容是一个崭新的2004年底才被一个非常小的公司开发出来电容;其二是Audio Note银电容过于昂贵,虽然它在市场上已经存在将近20年。以后我决不会在顶尖器材信号偶合的应用上使用除了V-cap和Audio Note银电容以外的任何任何一款电容了,他们就是这么好。(V-cap 和Audio note都有油浸电容,我不评测他们是因为V-cap的最小容量是1uf,而Audio Note的油浸电容直到6年前还由Jensen代工)

V-cap TFTF

这是一款相当新的产品,由Chris VenHaus先生开发。Chris先生因为在自己的网站和博客上发表各种线材制作配方而闻名于发烧界。

我曾按照他的建议使用非常细的银线(0.125毫米)制作信号线,直到今天,除了Omega Mikro以外,市场里再也找不到其它信号线能够比我这根家庭自制的线更好。当我今年早些时候知道V-cap电容的存在时,我就对自己说一定要评测这款电容。

引用Chris的网址,这款V-cap TFTF特氟隆膜锡箔高保真电容是经过广泛的研究,由电子、化学、材料科学等各个领域的世界最著名的顶尖专家以及音响界的顶尖耳朵组成的开发小组研发出来的。虽然特氟隆是仅次于空气和真空之后最好的电介质,但它并不是很一个容易使用的材料。使用特氟隆薄膜一个最大的问题就是微孔渗透,它形成于制作薄膜的过程,当薄膜在缠绕电容的过程中被积压之后。微孔渗透可能造成相邻电极层之间的微放电。微放电的积累效应是电容的退化和性能的降低,特别是信噪比。V-cap设计团队解决这个问题用上了瑞士制造的缠绕机器和自己独有的工程学绕线筒。这样在绕制电容的时候可以在特殊的特氟隆薄膜上保持轻而稳定的张力,就这样就极大的解决了特氟隆薄膜上微渗透的形成,减少麦克风效应,提供一个难以凌驾的坚固度和质量控制。

为了取得进一步的提升,V-cap的工程师还发明了一种新的绕制方法,叫做:Variable Stage Quadrant Dielectric (V.S.Q.D.).。这种独特的绕制方法是电容技术的一个重大进步,因为它从三维方面降低了微渗透,确保超低噪声,长寿命,并且作为其它低品质电容的校正电容并联时高频延伸自然,没有高频疲劳。

Chris一定是用尽了所有的投资为最苛刻的发烧友打造了这款不计成本的电容。现在用户可以即拥有油浸电容的滑顺,流畅和音乐味。又可以有很好的精确度,透明感和细节。听到和感觉到真正的低频下展,同时不损失一点控制力。使你陷入天鹅绒般黑暗背景下的全息声场,同时,还能享受到油浸电容才可以拥有的流畅中频和自然的音色。V-cap TFTF可以重放出一件乐器的另人无法相信的质感和准确度。在这个电容的设计过程,没有任何细节被忽略。甚至包括18AWG的实心铜引脚和环氧树脂都从音乐味和细节两个角度精心挑选。

虽然我事先已经对厂家的大肆宣传心怀戒心,但是当我终于装上这个电容之后,我立刻被震住了。在我的一生里,从来没有体验过或者期待过体验这样一个伟大的电容。

然而我感到很伤悲,作为一个器材评论员,我总是想要第一个报告另人激动的产品。可惜我被Arthur Salvatore先生抢了先机。Arthur Salvatore先生是一个著名音响作者,他恰恰在几个月前在他的网站上报告了V-cap特氟隆电容。

让我感到安慰的是,我仍然是第一个在中国音响杂志上介绍这款伟大的V-cap电容的人,但对于时机一從即逝的遗憾不会那么轻易消散。

V-cap TFTF的声音到底有多好?除了引用厂家观点,我还要借用Salvatore先生的12定律来证明你必须信赖V-cap。

1. 它是我听过的最中性的声音。
2. 它我听过的是最快速和最富有细节的电容。
3. 它提供最自然的质感,空间感和小信号细节。
4. 它是最纯净的声音。
5. 它是我听过最直接和最透明的电容。
6. 它是我听过的最激烈动态的电容。
7. 它提供最大的分离度和最小的同化。
8. 它是我听过电容中有最机智的电容。
9. 它的声场是最聚焦的。
10. 它有我听过的最紧凑最干净最自然最有力的低频。
11. 它拥有我听过的最高的频率延伸。
12. 它拥有我听过的最低的背静噪音。

读者可能注意到一些句子和词语是斜体,那意味着我有不同的结论。记住Salvatore先生从来没有机会评测昂贵无比的Audio Note银电容。后者则是V-cap在争夺电容之王时的最大竞争对手。

虽然12定律减少为10定律,这仍然足够使Chris先生,V-cap电容之父,成为音响王国的上帝。这就是V-cap电容应得的荣誉!

除了非常好的声音,Chris先生还指出,V-cap TFTF电容要比其它电容都更耐高温,在电子管机器中常见的高温环境下仍然可以保证信号传输的准确性和稳定性。事实上,Chris先生对自己电容的可靠性如此有信心,干脆提供了终身质保。

关于V-cap TFTF电容需要补充的一点是,要褒开一个V-cap特氟隆电容,需要难以置信的400-500小时。而没有褒开的V-cap电容的声音是不可理喻的难听。它可以把你带入声音的地狱之旅。一定要注意。

正当我要宣布V-cap电容是世界上最好的电容的时候,Audio Note银电容出现了。

Audio Note银电容

根据厂家的声明,这款银电容使用99.99%的纯银箔,20根银编织线引出,坚固的无磁铜管。他们使用了高质的聚酯薄膜取代油浸纸电介质,并且发现这是在声音和稳定性间最好的平衡点。

然而,每个人首先会注意到的关于Audio Note银电容的事情是它飘在云尖的价格。因此,虽然这款电容已经上市10年多了,仍然很少有人购买,或者认真的评测它。

让事情变得混乱的是,日本有一个Audio Note,英国也有一个Audio note。

我们评测的这款Audio Note 银电容是来之英国的Audio Note,而不是日本的Audio Note。这里有一些2005年12月份北美市场上的银电容价格信息。
0.10 μf $155.80
0.22 μf $202.95
0.47 μf $332.10
1.00 μf $481.75
2.20 μf $902.00
3.30 μf $1,389.90

觉得太昂贵了?再来看看日本Audio Note的价格,这是1992年日本Audio Note银电容的价格。
0.05 μf &pound;270.00 ($475,2005年12月的汇率)
0.10 μf &pound;540.00 ($950)
0.15 μf &pound;845.45 ($1,488)

还想问其它容量的价格吗?是不是太惊世骇俗了。而且上面表格中的价格还是1992年,距今有13年的通货膨胀。为什么日本和英国的产的电容价格差异如此巨大?显然有强迫症倾向和顽强性格的日本人一直坚持在显微镜下用纯手工打造电容,甚至电容用的银箔都是手工拉制的。那么日本版的声音就真的比英国版的声音好吗?这个问题的答案我一直没有找到,而且我可能永远也不想找到。记得我朋友天价的Audio Note 乐音211单声道后级上有最原始的日本版银电容。我们没有把它拆下来比较,因为:

1. 拆焊和重焊的过程不可避免的会降低Audio Note乐音 211出厂时的校声,甚至可能因此失去机器原本的品质。
2. 就算我们发现日本版的银电容好过英国版的银电容,设想一下,声音的提升能有价格的差异这么大吗?

英国Audio Note的Peter Qvotrup先生一直在为降低银电容的价格而非常努力地工作,可目前0.1uF电容155.8美金的价格还是很难让人接受。它比所有其它的电容要贵出一大节。在美国你要为它缴纳的购物税都要比我们评测的大概一半电容的价格都要高。

但是,在顶极系统中,你为它花费的每一分都是值得的。

简单的说,这一款电容具有最多细节,最自然的质感,空间感和小信号细节。这些细节包含难以置信的复杂丰富的泛音,连V-cap都无法相提并论。而且,这个电容拥有难以形容的音乐味,远远超过现有的任何电容。有人指出因为评测环境是一台仿制的Audio Note M7,那么肯定和它自己的电容搭配的非常好。为此,我特意把这款银电容放入另外一个高档前级中试听。结果,这些魔法般的品质依然存在。

对于我来说,鉴别出一个世界级的音响产品最可靠的方法就是情感反应。如果我的情感被声音打动,那么它一定是一款伟大的产品,而相反的情况并不能说明什么,因为不能排除我可能当时情绪不好或者有别的因素。在我刚开始评测Audio Note银电容的时候,所经历的情感风暴几乎使我窒息了。

V-cap在10定律闪烁光芒,就像Salvatore先生说的,拥有最高的清晰度。那么Audio Note银电容,无庸置疑拥有最感性的音色。

对于大多数人,这就足以让他们认为这是世界上最好的电容。我正是我朋友的结论。他认为没有任何必要把银电容从Audio Note机器中换下来。如果说V-cap是电容世界的法拉利,那么Audio Note银电容就是劳斯莱斯。一个另人兴奋,一个奢华无比。一个征服了我的理智,一个抓住了我的心。做你自己的选择吧。


结论

评测21款电容真是一次奇妙的旅行。对于预算有限的消费者,俄罗斯特氟隆电容是最好的选择;如果追求合理价格和卓越的性能,选择Jensen和M-cap油浸决不会有错。对于毫不妥协的终极发烧友,Audio Note 银电容和V-cap TFTF电容应该是你唯一的选择。

可以想像,读者一定非常想要我在这两个最好的电容间确定一个优胜者。这真是一件困难的事情,因为最后的选择取决于你的系统,一个可靠的做法是在你的双声道系统中至少使用两个Audio Note电容来获取它魔法般的品质,然后其它的部位全部都要使用V-cap电容。最终我把电容之王的桂冠授予给V-cap电容,因为它是最平衡最百搭的电容。

作者: zgmfx10akira    时间: 2013-1-17 14:04

我国作为电子管生产大国,生产了大量的、形式用途各异的电子管,为了方便大家的认知,我国的电子管编号方法是根据汉语拼音方案的原则,采用拉丁字母作为型号的代号。按用途分,大体分为以下几种:

(一)、一般电子管的编号(包括接收放大管、小功率整流管、小型振荡管)

第一部分:表示灯丝电压伏特数的整数部分:

0表示冷阴极;1表示灯丝电压为0.7~1.2V;2表示灯丝电压为2.2~2.5V;3表示灯丝电压为2.8V;4表示灯丝电压为4.2V或4.4V;5表示灯丝电压为5V;6表示灯丝电压为6.3V;12表示灯丝电压为12.6V。灯丝电压在20V以上时,用实际电压数值表示,例如35则表示35V。

第二部分:表示电子管类型的字母:

D表示“二极管”

H表示“双二极管”

G表示“双二极三极管”

B表示“双二极五极管”

C表示“三极管”

N表示“双三极管”

F表示“三极五极管”

S表示“四极管”

J表示“锐截止五极管和锐截止束射四极管”

K表示“遥截止五极管”

T表示“双四极管和输出束射四极管”

V表示“二次放射管”

P表示“输出五极管和输出束射四极管”

A表示“变频管”

U表示“三极六极管、三极七极管、三极八极管”

L表示“横向偏转射线管”

E表示“调谐指示管”

Z表示“小功率整流二极管”

第三部分:表示同类型管序号的数字,无特殊意义。

第四部分:表示电子管的外形结构形式的字母

P表示普通玻璃管;K表示陶瓷管;J表示“橡实”管;G表示外径大于11毫米的超小型管;B表示外径为8~11毫米的超小型管;A表示外径大于4,小于8毫米的超小型管;R表示外径为4毫米和4毫米以下的超小型管;S表示销式管;D表示盘封管(灯塔管)。

无代号的,外径为19毫米和22.5毫米的小型管,俗称拇指管,例如6N1、6N2、6N3、6N4、6N6、6N10、6N11。

(二)高压、大功率整流二极管和充气整流管以及闸流管的编号

第一部分:表示电子管类型的字母:

E表示真空高压整流二极管

EM表示真空脉冲整流二极管

EQ表示充气整流二极管

EG表示充汞整流二极管

Z表示冷阴极闸流管

ZQ表示充气闸流管

ZG表示汞气闸流管

ZQM表示脉冲充气闸流管

H表示汞整流管(液体汞阴极)

Y表示引燃管

第二部分:表示同类型管序号的数字。

第三部分:没有代号(用破折号“—”表示)。对收信、放大管结构形状的小功率整流管、小功率闸流管和冷阴极闸流管,它的第三部分为表示结构形式的字母(类同一般电子管中的第四部分)。

第四部分:以分数形式表示,其分子表示该管的电流平均值的安培数(脉冲电子管以脉冲电流的数值表示);分母表示反向电压峰值的千伏数。

举例:

ZQM1—325/16表示该管为“脉冲充气闸流管”,脉冲电流为325 A,反向峰值电压为16 KV。

E1—0.1/30表示该管为真空高压整流二极管,电流平均值为0.1 A,反向峰值电压为30 KV。

(三)稳定管的编号

第一部分:表示类型的字母。

WY表示稳压管

WL表示稳流管

WF表示稳幅管

第三部分:表示外形的字母,与一般电子管的代号相同。

第四部分:没有代号。

举例:WY—3P表示该管为玻璃外壳的稳压管。

(四)发射管、调制管的编号

第一部分:表示类型的字母。

FD表示该型号为25MHz以下的长波、短波发射管

FU表示该型号为25~600MHz的超短波发射管

FC表示该型号为600MHz以上的厘米波发射管

FM表示该型号为脉冲发射管

T表示该型号为调制管

TM表示该型号为脉冲调制管

第二部分:没有代号。

第三部分:表示同类型管顺序号的数字

第四部分:表示冷却方式的字母。

S表示水冷式,F表示风冷式,Z表示蒸发式。

举例:FU—10S表示该管为25~600MHz的超短波发射管,冷却方式为水冷式。

(五)其他电子器件的编号

第一部分:表示类型的字母。

CK表示为磁控管;K表示为速调管;KZ表示振荡速调管;KF表示放大速调管;KB表示倍频速调管;B表示行波管;BB表示返波管;FZ表示噪声发生管;R表示放电管;RM表示谐振放电管;RQ表示高气压放电管;OQ表示十进位计数管;GD表示光电管;GDB表示光电倍增管;GZ表示光电增像管;DC表示静电测量管;LX表示录像管。

第二部分:对噪声发生管为表示同类型管顺序号的数字,对其他管无代号。

第三部分:用数字表示同类型管的顺序号,对噪声发生管没有代号。

第四部分:除变形字母的器件外,其余无代号。

以上编号只能大概了解电子管的基本情况,要知道管子的特性、参量、运用数据,请查阅电子管手册。






欢迎光临 热点科技 (http://www.itheat.com/activity/) Powered by Discuz! X3.2