用户
 找回密码
 立即注册
搜索

hifi基础知识——读完此贴你瞬间成为一等一的高手

 关闭 [复制链接]

516

主题

776

帖子

3403

积分

版主

Rank: 7Rank: 7Rank: 7

积分
3403
发表于 2012-4-30 15:40:06
本帖最后由 zgmfx10akira 于 2012-5-1 00:14 编辑

CD   
索尼和飞利浦公司联手研制的一种数字音乐光盘,有12cm直径和8cm直径两种规格,以前者最为常见,它能提供74分钟的高质量音乐。

CD-ROM   
用于存储电脑数据的只读型CD。

VCD   
采用MPEG-1压缩编码技术的影音光盘,其图像清晰度和VHS录像带差不多。

超级VCD  
VCD的改进产品,采用MPEG-2编码,图像清晰度得到了提高。

DVD
一种外型类似CD的新一代超大容量光盘,它将广泛应用于高质量的影音节目记录和用作电脑的海量存储设备。

MD
索尼公司研制的迷你可录音乐光盘,外型象电脑用3.5英寸软盘,但采用光学信号拾取系统,类似CD。MD使用高效的压缩技术来达到与CD相同的记录时间,音质则接近CD。

D/A转换器
数码音响产品(例如CD、DVD) 中将数字音频信号转换为模拟音频信号的装置。D/A转换器可以做成独立的机器,以配合CD转盘使用,此时常常称为解码器。

CD转盘
将CD机的机械传动部分独立出来的机器。

超取样
取样频率数倍于CD制式的标准取样频率44.1kHz,其目的是便于D/A转换之后数码噪声的滤除,改善CD机的高频相位失真。早期的CD机使用2倍频或4倍频取样,近期的机器已经达到8倍或者更高。

HDCD
High Definition Compact Disc(高解析度CD)的缩写——一种改善CD音质的编码系统,兼容传统的CD,但需要在带HDCD解码的CD机上重放或外接一台HDCD解码器才能获得改善的效果。

比特(bit)
二进制数码信号的最小组成单位,它总是取0或1两种状态之一。

比特流
飞利浦公司的一种将CD数码信号转换成模拟音乐信号的技术。

杜比B,C,S
美国杜比公司研制的系列磁带降噪系统,用于降低磁带录音产生的“嘶嘶声”,扩展动态范围。B型降噪系统能降噪10dB,C型增加到20dB,S型则可达24dB。

杜比HX Pro
不是降噪系统,而是一种改善磁带高频记录失真的技术,通常也称为“上动态余量扩展”。

杜比环绕声(Dolby Surround)
一种将后方效果声道编码至立体声信道中的声音。重放时需要一台解码器将环绕声信号从编码的声音中分离出来。

杜比定向逻辑
(Dolby Pro-Logic)
在杜比环绕声的基础上增加了一个前方中置声道,以便将影片中的对白锁定到屏幕上。

杜比数字(Dolby Digital)
也称为AC-3,杜比实验室发布的新一代家庭影院环绕声系统。其数字化的伴音中包含左前置、中置、右前置、左环绕、右环绕5个声道的信号,它们均是独立的全频带信号。此外还有一路单独的超低音效果声道,俗称0.1声道。所有这些声道合起来就是所谓的5.1声道。

AV功放
专门为家庭影院用途而设计的放大器,一般都具备4 个以上的声道数以及环绕声解码功能。

定向逻辑环绕声放大器
带杜比定向逻辑解码功能的AV功放。

杜比数字放大器
也称为AC-3放大器,一种带杜比数字解码功能的AV功放。

接收机
带有收音功能的放大器。

THX
美国卢卡斯影业公司制定的一种环绕声标准,它对杜比定向逻辑环绕系统进行了改进,使环绕声效果得到进一步的增强。THX标准对重放器材例如影音源、放大器、音箱甚至连接线材都有一套比较严格而具体的要求,达到这一标准并经卢卡斯认证通过的产品,才授予THX标志。

THX 5.1
基于杜比数字系统的THX。

DTS
分离通道家庭影院数码环绕声系统(Discrete-channel home cinema digital sound system),它也采用独立的5.1声道, 效果达到甚至优于杜比数字环绕声系统,是杜比数码环绕声强劲的竞争对手。

SRS
美国SRS公司的一种用两只音箱产生环绕声效果的系统。

分频器
音箱内的一种电路装置,用以将输入的音乐信号分离成高音、中音、低音等不同部分,然后分别送入相应的高、中、低音喇叭单元中重放。

双放大器分音(Biamping)
音箱的每一只喇叭单元由一个独立的放大器通道来进行驱动的一种连接方式。一对两分频的的音箱需要使用两台立体声功放和两对喇叭线。见“双线分音”。

双线分音(Biwiring)
用两套喇叭线分别传送音乐信号的高、低音部分的一种接线方式。双线分音需要使用具备两对接线端子的专门设计的音箱。

放大器
前置放大器和功率放大器的统称。

功率放大器
简称功放,用于增强信号功率以驱动音箱发声的一种电子装置。不带信号源选择、音量控制等附属功能的功率放大器称为后级。

前置放大器
功放之前的预放大和控制部分,用于增强信号的电压幅度,提供输入信号选择,音调调整和音量控制等功能。前置放大器也称为前级。

后级
见“功率放大器”。

前级
见“前置放大器”。

合并式放大器
将前置放大和功率放大两部分集中在一个机箱内的放大器。

胆机
电子管放大器的另一种说法。

额定功率
对功放来说,额定功率一般指能够连续输出的有效值(RMS)功率;对音箱来说,额定功率通称指音箱能够长期承受这一数值的功率而不致损坏,这不意味着一定需要这么大功率的功放才推得动,音箱的驱动难易主要由其灵敏度和阻抗特性来决定。也不意味着不能配输出功率大于音箱额定功率的功放。正如开汽车一样,驾驶300公里时速的跑车不等于就会发生车祸,你可以不开那么快。同样,只要音量不盲目加大,大功率功放一样可以配小功率音箱。

峰值音乐输出功率(PMPO)
以音乐信号瞬间能达到的峰值电压来计算的输出功率,其商业意义大于实际作用。PMPO功率可以比国际公认的有效值额定输出功率(RMS)高出3至4倍,例如早期的手提式收录机每声道RMS功率仅4、5瓦,但采用PMPO来标示,数值一下就可以增大到20W左右。

单端放大
功放的输出级由一只放大元件(或多只元件但并联成一组)完成对信号正负两个半周的放大。单端放大机器只能采取甲类工作状态。

推挽放大
功放的输出级有两个“臂”(两组放大元件),一个“臂”的电流增加时,另一个“臂”的电流则减小,二者的状态轮流转换。对负载而言,好象是一个“臂”在推,一个“臂”在拉,共同完成电流输出任务。尽管甲类放大器可以采用推挽式放大,但更常见的是用推挽放大构成乙类或甲乙类放大器。


功率放大器**放管的导电方式,有甲类(A类)、乙类(B类)和甲乙类(AB类)之分。

甲类
又称为A类,在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)的一类放大器。甲类放大器工作时会产生高热,效率很低,但固有的优点是不存在交越失真。单端放大器都是甲类工作方式,推挽放大器可以是甲类,也可以是乙类或甲乙类。

乙类
又称为B类,正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。乙类放大器的优点是效率高,缺点是会产生交越失真。

甲乙类
又称AB类,界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。

失真
设备的输出不能完全复现其输入,产生了波形的畸变或者信号成分的增减。

谐波失真
由于放大器不够理想,输出的信号除了包含放大了的输入成分之外,还新添了一些原信号的2倍、3倍、4倍……甚至更高倍的频率成分(谐波), 致使输出波形走样。这种因谐波引起的失真叫做谐波失真。

交越失真
乙类放大器特有的一种失真。这种失真产生的机理是因信号的正负半周分别由不同的两组器件进行放大,正负两边的波形不能平滑地衔接。

音染
音乐自然中性的对立面,即声音染上了节目本身没有的一些特性,例如对着一个罐子讲话得到的那种声音就是典型的音染。音染表明重放的信号中多出了(或者是减少了)某些成分,这显然是一种失真。

声压
表示声音强弱的物理量。

声压级
以分贝数表示的声压。

灵敏度
对放大器来说,灵敏度一般指达到额定输出功率或电压时输入端所加信号的电压大小,因此也称为输入灵敏度;对音箱来说,灵敏度是指给音箱施加1W的输入功率,在喇叭正前方1米远处能产生多少分贝的声压值。

电平
电子系统中对电压、电流、功率等物理量强弱的通称。电平一般以分贝(dB)为单位来表示。即事先取定一个电压或电流数作为参考值(0dB),用待表示的量与参考值之比取对数,再乘以20作为电平的分贝数(功率的电平值改乘10)。

分贝(dB)
电平和声压级的单位。

阻尼系数
负载阻抗与放大器输出阻抗之比。使用负反馈的晶体管放大器输出阻抗极低,仅零点几欧姆甚至更小,所以阻尼系数可达数十到数百。

反馈
也称为回授,一种将输出信号的一部分或全部回送到放大器的输入端以改变电路放大倍数的技术。

负反馈
导致放大倍数减小的反馈。负反馈虽然使放大倍数蒙受损失,但能够有效地拓宽频响,减小失真,因此应用极为广泛。

正反馈
使放大倍数增大的反馈。正反馈的作用与负反馈刚好相反,因此使用时应当小心谨慎。

动态范围
信号最强的部分与最微弱部分之间的电平差。对器材来说,动态范围表示这件器材对强弱信号的兼顾处理能力。

频率响应    简称频响,衡量一件器材对高、中、低各频段信号均匀再现的能力。对器材频响的要求有两方面,一是范围尽量宽,即能够重播的频率下限尽量低,上限尽量高;二是频率范围内各点的响应尽量平坦,避免出现过大的波动。

瞬态响应
器材对音乐中突发信号的跟随能力。瞬态响应好的器材应当是信号一来就立即响应,信号一停就嘎然而止,决不拖泥带水。

信噪比(S/N)
又称为讯噪比,信号的有用成份与杂音的强弱对比,常常用分贝数表示。设备的信噪比越高表明它产生的杂音越少。

正弦波
频率成分最为单一的一种信号,因这种信号的波形是数学上的正弦曲线而得名。任何复杂信号——例如音乐信号,都可以看成由许许多多频率不同、大小不等的正弦波复合而成。

波长
声波在一个周期内的行程。波长在数值上等于声速(344米/秒)除以频率。

屏蔽
在电子装置或导线的外面覆盖易于传导电磁波的材料,以防止外来电磁杂波对有用信号产生干扰的技术。

阻抗匹配  
一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出阻抗5-10倍以上,就可认为阻抗匹配良好;对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音箱,而晶体管放大器则无此限制,可以接任何阻抗的音箱。

煲机  新器材使用之前的加电预热过程,以便让器材的声音进入稳定的状态。

ADD
指CD唱片按模拟方式录音,按数字方式进行编辑和制作母带。

AC(Alternating Current)
交流电,指电流方向会作周期性改变的市电供电电源,英美多用60Hz,我国则采用50Hz的。

有源分频网络(Active Crossover)
指可将声频信号的频率组成分量(低音、中音及高音)在放大之前便进行分组而分别加到各自的扬声器系统去的一种有源电子网络。虽然有源分频网络多半均内装于超低音音箱之类的音箱之中,用以推动低音喇叭,但在多路系统中,也可单独使用有源分频网络。

ATRAC
指自适应变换声学编码。系一种由日本索尼公司在其推出的MD磁光盘录音机中所采用的低比特率数据压缩编码技术。

发烧友(Audiophile)
指对音响技术特别偏爱的那些人。

带宽(Bandwidth)
指一段频率范围,对于音频录音说来,带宽乃指声系统或录音装置所能包容的乐队演出或独唱演员演唱的频率响应范围;而对家庭声音重放装置说来,带宽则指系统重放时能“听到”的频率范围,通常在20Hz或30Hz到15kHz或20kHz的范围内。

双极式音箱(Bipolar Loudspeaker)
指发声单元分别指向音箱前方和后方且同相馈送信号的那种音箱装置。由于推动的信号为同相位的,故声信号不会有反相位的抵消,侧向的声辐射也不会有急剧地衰减。双极式音箱通常需摆放在离前墙较远处,以便让其后向指向的声波能有适当的反射。

连接电缆(Cables)
指讯号线或喇叭线,通常用导线的含铜量的纯度来表示导线的好坏,如6N便表示此导线的含铜量已达百分之99.99997。性能好的喇叭线多由多芯线组成,也有用单根或几根口径粗的铜线的。在有方向性的喇叭线上更标以箭头,指示从功放到音箱的接线方向,有些讯号线上也标有箭头,用于指示从信号源到功放的接线方向。

DAB(Digital Audio Broadcasting)
指数字音频广播。不论是调频(FM)还是调幅(AM)广播,皆为数字立体声,英国BBC电台正在某些地区试播,我国近年来也在广东、北京等地开始试播。DAB需用专门的接收机(收音机)来收听。

DAC(数模变换器,也称解码器)
指将接通/断开的脉冲信号变换为模拟声信号的数模(D/A)变换器。在CD唱机内均已装有DAC,但外装的DAC可让CD唱机或其它数字播放机音质升级。

DAT(数字音频磁带机)
Digital Audio Tape的缩写。指主要用于专业录音的一种数字录音装置,采用了同录像机(VCR)相似的旋转磁头。

数据压缩(Data Reduction)
指设法减少存储音乐所需要的数据量的一种技术。日本索尼公司在其MD磁光盘录音机中即采用了ATRAC压缩编码技术,而荷兰飞利浦公司则在其开发的DCC数字盒式磁带机中采用了类似的PASC(精确自适应子带编码)技术。此二种方法皆系采用数据压缩的方法来设法去掉那些人耳所听不到的数据。

DCC(Digital Compact Cassette)
由荷兰飞利浦公司开发的一种家庭用数字盒式磁带录音机,音质听起来已跟CD唱机的接近,但使用上不甚方便。由于与索尼公司的MD相互竞争而以失败告终,目前已逐渐在市场上消失。

DDD
指CD唱片的录音、编辑和母带制作均采用了数字处理的方式。

dB(分贝)
测量声压变化的单位,当有1dB的变化时,便能听出来差别,而在有+10dB的增加时,声音的响度将会加倍。

数码输出(Digital Output)
指可用外附的DAC来进行存贮或处理的数字信号输出,可以是电信号输出也可以是光学(光纤)输出。

偶极式音箱(Dipolar Loudspeaker)
跟双极式音箱在构造上相同,但前向及后向喇叭反相馈以信号,因此其声辐射图形呈倒“8"字形。多用作环绕声音箱。THX推荐环绕声音箱选用偶极式。

失真(Distortion)
指不需要的信号或是由设备所添加的对信号所产生的那些改变。

DVD
指用作家庭娱乐用的一种视频光盘。DVD碟片需用DVD播放机来播放。声像将在配有相应硬件的**电的荧屏或配装有DVD-ROM的台式计算机的监视器上显示。

DVD-ROM
指与CD-ROM相类似,但比CD-ROM更好的只读光盘,专供电脑使用,DVD-ROM可以有不同的存贮容量,单面单层的4.7GB和双层双面的17GB。

DVD-Audio
DVD音频唱片,目前为1.0版本,以24bit/192kHz为标准。目前尚另有一些按DVD-Video(DVD-视频)制作的音乐DVD碟,但与DVD-Audio不是一码事。

DVD-R
DVD家族中的一员,为可一次写入多次读出数据的DVD,DVD-R可以是单层的(3.95GB),也可以是双层的(7.9GB)。

DVD-RW
由日本索尼公司和荷兰飞利浦公司及美国HP公司联合推出的一种存贮容量为3GB的可擦除和可重写的DVD光盘,与DVD-RAM类似。目前尚在研制容量达12GB,从而可录入5小时电视节目的DVD-RW。

DVD-RAM
供计算机专用的一种可擦除可重写的DVD光盘,规定的存贮容量为2.6GB(单层)和5.2GB(双层)。

Divx
由美国Circuit City公司推出的一种租赁DVD碟片的特殊方式,一次性付款后,可连续观看48小时并可不退回,但再看得另行付费。

静电扬声器(Electrostatic Speaker)
指用高电压产生的电场力去推动薄而轻的振膜从而发声的那类扬声器。

颤动(Fluffer)
指录音磁带或唱片因转速有快速的变化而使音调产生起伏的现象,多由运转不灵所引起。

频率(Frequency)
通常将频率高的声音称为高音,将频率低的称为低音,可听的声频范围在16Hz到20kHz之间。

前端(Front End)
多指声频系统中的信号源,如LP密纹慢转唱机或CD唱机,有时也指调谐器(收音头)中处理从无线接收到的信号的前级。

赫兹(Herz)
频率的单位,1赫兹表示信号每秒有一次周期性的变化。

家庭影院(Home Theater System)
家庭影院装置系一种性能优异的视听器材的组合,它用来在家里营造出类似于在影剧院中观看演出时的那种声画感受。虽然目前大多数的影视器材,尤其是电视机的画质还不完全理想,但在投入一定数额的财力后,却可在音频方面获得甚为良好的音响效果。

MD机(Minidisc)
日本索尼公司推出的一种可录音74分钟,形状与计算机软盘相似,而尺寸为64mm的磁光盘机,MD磁光盘有预录型和可录型两类。

独立单声道功放(monobloc)
指完全独立的单声道功率放大器,因此,双声道立体声系统得用二台这种单独的功放。其好处是通道间完全没有交连之类干拢。

动圈式(MC)唱头
这种唱头将相对于固定磁铁作运动,以产生信号,不过输出比动磁(MM)式唱头的低些。

动磁式(MM)唱头
指相对于固定线圈作运动以产生信号的小型磁铁式唱头。

丽音(Nicam)
指音质与CD相当的一种电视伴音播送程式。

欧姆(Ohm)
对电流所产生的阻力的计量单位,音箱的阻抗值便是用欧姆来测量的。通常,音箱的阻抗越低,便越难于推动。

过取样(Oversampling)
用于DAC系统,当将取样频率升高时,转换电路的工作便更易于进行,且辅助电路也更易于滤去那些不需要的信号。

无源(Passive)
指那些不会将信号予以放大且引入的失真也极小的电路或器件。

唱头放大器(Phono amplifier)
由于LP唱机的唱头输出的信号电平要比CD唱机和磁带录音机的输出为低,因此,需要加一级专门的多半带有频率均衡的前级放大器,即唱头放大器。过去许多前置放大器或合并式功放中皆专门设有这样的放大器,但因LP逐渐退出市场,目前的放大器中已少备有这样的输入级。

量化(Quantization)
指数字声频信号中,用来表现各种不同幅度电平可能值的那些数字。

取样率(Sampling rate)
指数字录音机或播放机对信号取样的快慢程度,象CD唱机、DCC数字录音机和MD磁光盘机的取样率便选定为44.1kHz,即每秒44100个取样,而DAT数字录音机的取样率则选为48kHz或44.1kHz,DAB数字音频广播则采用32kHz的取样率。取样率决定了数字系统所能记录的最高频率,因此,目前正在研究高取样率的方式。如日本先锋公司正在开展的将取样率提高到96kHz的系统。另外,DVD-Audio也采用了96kHz的高取样率。

屏蔽(Shielding)
指为使导线或设备能与干扰隔开而采取的一些措施。

超低音音箱(Subwoofer)
指用于重放那些深沉的而由普通小型音箱所无法予以重放出来的低频段的特制音箱。

唱臂(Tonearm)
为唱机的一部分,其上装有唱头。

瞬态(Transient)
指乐曲(特别是打击乐)中那些短暂而有爆发性的声音,通常,这些声音是难于准确重放出来的。

三线分音(推动)(Triamping/Triwiring)
指与双线分音(biwiring)及双功放推动(biamping)相类似的一种功放与音箱的连接方式,不过此时需使用三对喇叭线/或三台功放,而且仅适用于三分频并带相应输入端子的音箱。

抖晃(Wow)
指录音机或录音座转速的缓慢变化所导致产生的不稳定的畸形声音。
AAD
指录音及后期制作皆为模拟(A)方式,而只有制片使用数字(D)方式的CD唱片制作。

A/B试听比较(A/B comparison)
指对两种不同的音乐重放方式进行的反复试听比较。

绝对极性(absolute polarity)
在用绝对极性正确的音响系统播放绝对极性正确的录音制品时,音箱所产生的正向声压便会和原始声音的正向声压一致。绝对极性不对时,便会有180°的相位差。对于有些乐器,有些人是能听出绝对极性的正确与否的。

电源净化器(AC line-conditioner)
指专门用来滤去交流供电电源中的噪声和防止音响器材受到电压峰值和浪涌损害的一种音响辅助器材。有些电源净化器甚至还可用来防止闪电的损伤。其实,电源净化器便是一种特别设计和制作的滤波器。

吸声材料(acoustic absorbed)
指任何一种能够吸收声波的材料,比如地毯、窗帘以及盖以厚实布套的家俱等等。

声扩散器(acoustic diffuser)
指任何能够扩散声波的材料或器件。

声反馈(acoustic feedback)
音箱发出的声音会使LP唱盘、话筒等拾音设备产生振动,此振动又被变换为电信号,并再次由音箱重放出来。在这种反馈过程中,振动因自身的反馈而会越来越加强。会场中的扩音设备因音量过大而发出的啸叫,便是这种声反馈。

吸声板(acoustic panel absorber)
指利用隔板作用来吸收从低频到中频的一种吸声器材。当有声波射到吸声板上时,吸声板便会振动,从而将声能变换为板中小部分的热能。

声学(acoustics)
指专门研究声音的一门科学。也用于指听音场所对声音的吸收反射特性,如“这间听音室的声学特性良好”。

交流同步电机(AC synchronous)
指转速由所加交流电的频率确定的那类电动机。大多用于皮带传动的电唱盘中。

AC-3
杜比数字(DD)5.1声道数字环绕声格式原先的叫法。

有源分频网络(active crossover)
指可将声频信号中的低频、中频和高频在放大之前便加以分割而分别加到各自的发音单元去的一种有源电子电路。虽然有源分频网络多用于超低音音箱中,但在多声道系统中,也可单独使用有源分频网络。

有源超低音音箱(active subwoofer)
指专门用于重放低频、并由内置功率放大器来驱动的那类音箱。

ADD
指CD唱片按模拟方式录音(A),而编辑和制片则均采用数字(D)方式。

模拟/数字变换器(ADC)
将模拟信号变换为数字信号的电路。

邻台选择性(adjacent-channel selectivity)
指接收调谐器能够选择所欲收听的电台并抑止邻近电台干扰的能力。

隔台选择(alternate-channel selectivity)
指接收调谐器能够抑止与所欲接收的电台相隔为二个台的其它电台的干扰的能力。

AES/EBU数字接口(AES/EBU interface)
一种传送数字音频信号的专业接口,AES/EBU信号线为使用XLR插头的平衡传输线。此外,也在某些消费电子产品中使用。是根据美国AES(声频工程协会)和EBU(欧洲广播联盟)来命名的。

逼人感(aggressive)
用于表示象要把音乐给抛投到聆听者面前的那种前推型演出的声学术语。

空气感(air)
用于表示高音的开阔,或是声场中在乐器之间有空间间隔的声学术语。此时,高频响应可延伸到15kHz-20kHz。反义词有“灰暗(dull)”和“厚重(thick)”。

气悬式唱臂(air-bearing tonearm)
指LP电唱盘的唱臂系用空气垫来支撑的一种唱臂。

气悬式电唱盘(air-bearing turntable)
指唱盘系由空气垫来托起的那种唱盘。

环绕感(ambience)
也称包围感。指电影伴音所产生的那种有一定规模和空间的包围感。通常是由环绕音箱来营造的。

安培(ampere)
电流的计量单位,用A表示。

解析(analytical)
指音响器材能巨细无遗的再现录音制品中的每一细节,但却用的是错误的方式,此种解析方式极缺乏音乐味。

模拟(analog)
指模拟信号的电压变化是对声波的一种模拟,也即电压会随原有声学波形而连续的变化。与在二进位中用0和1来表示的音频或视频信号的数字信号相对。

图像变形(anamorphic)
指影片或视频的宽屏幕图像在水平方向上用透镜或数字处理的方法加以“压窄”,以便能适应于标准的4∶3的幅形比。重放时,则通过“反压窄”将图像原有的幅形比予以恢复。图像变形的格式可在不牺牲分辨率的情况下,提供正确的幅形比。

消声(anechoic)
字面上讲便是“无回波”的意思。

消声室(anechoic chamber)
指一间没有反射的房间。在消声室的墙壁上均铺设得有吸声性能良好的吸声材料。因此,室内便不会有声波的反射。消声室是专门用来测试音箱、喇叭单元等。

清晰(articulate)
指表示音响器材能够清晰的分辨音调的声学术语。

防滑调整(anti-state adjustment)
指加装在唱臂上用于调整加在唱臂上的力,从而抵消唱臂会自然内侧滑动的倾向。

幅形比(aspect ratio)
也称宽高比,即显示荧屏上画面的宽度与高度的比值。标准电视的幅形比为4∶3(1.33∶1),而宽屏幕的电视以及HDTV高清晰度电视的幅形比则为16∶9(1.78∶1)。

ATRAC
指自适应变换声学编码(adaptive transform acoustic coding),系日本索尼公司在其推出的MD磁光盘机中采用的一种低比特率数据压缩编码技术。

音响爱好者(audiophile)
俗称“音响迷”或“发烧友”,指对重放音乐的音质极为看重的一些人。。

音响狂(audiophile nervosa)
指那些总在不停地捣鼓音响器材而不大能尽情去欣赏音乐一味只对音响痴迷的人。

A/V
为Audio(音响)与Video(视频)的缩写,指兼有视听特性的那些影音产品。

A/V输入(A/V input)
指既设置得有音频又设置有视频插座的A/V功放接收机或A/V前置放大器的输入端。

A/V回路(A/V loop)
指所用A/V功放接收机和A/V前置放大器上安装的那些A/V输入与A/V输出对,系用于跟既能录音又能播放音频和视频信号的A/V器材连接的。比如,一台录像机便能跟A/V功放接收机或A/V前置放大器的A/V回路连接。

A/V前置放大器(A/V preamplifier)
也称“A/V控制器”,是用来控制音量,选择节目源和完成环绕声解码功放的一种音响器材。

A/V前置放大器/调谐器(A/V preamplifier/turner)
指在同一机箱内装有AM(调幅)或FM(调频)接收调谐器的A/V前置放大器。

A/V功放接收机(A/V receiver)
为家庭影院系统的心脏部分。负责接收由节目源送来的信号,选择需要观看和聆听的信号,控制重放的音量,完成环绕声解码,收听电台节目,并将选定的信号予以放大,以便能推动家庭影院的成套音箱。也称为“环绕声接收机”。

方位角(azimuth)
在磁带录音机中指录放磁头和磁带行进方向之间的夹角,理想时应为90°;在LP电唱盘中则指针臂同唱片表面之间的角度。

障板(baffle)
指在上边装有一些发音单元的音箱的前面板。

平衡(balance)
指在音频频谱的高段和低段之间在相对响度上所存在的客观关系;也指双声道立体声左声道和右声道之间的信号的相同(平衡)。

平衡连接(balanced connection)
指音响器材间的一种连接方式,在单根电缆中有3根导线,一根用来传送音频信号,另一根用于传送极性相反的音频信号,而另一根则为地线。

香蕉插座(banana jack)
指装于音箱和功率放大器上用于和音箱线的香蕉插头连接的一种小型圆状插座。

香蕉插头(banana plug)
普遍装于音箱线两端的供插入香蕉插座的一种插头。

带宽(band width)
指音响装置能够处理或通过的一段频率范围。比方说,杜比环绕声的环绕声道的带宽便是100Hz-7kHz。环绕声道只通过频率在100Hz(低音)和7kHz(高音的低段)之间的频率。人耳能听到的频率范围为20Hz-20kHz。在谈到电气或声学器材的带宽时,往往指-3dB之间的频率范围。

低音(bass)
指在音频低段的声音,通常低于500Hz(另一说则指低于160Hz)。

低频延伸(bass extension)
指音响器材所能重放的最低频率。系用于测定在重放低音时音响系统或音箱所能下潜到什么程度的尺度。比方说,小型超低音音箱的低频延伸可以到40Hz,而大型超低音音箱则下潜到16Hz。

低音管理(bass management)
指A/V功放接收机或A/V前置放大器中的综合控制电路,系用于确定应该给相应的音箱送去多少低频信号。

倒相式音箱(bass reflex)
也称倒相式开孔箱,系在音箱面板上开有倒相孔(槽)的一类音箱。由于开有孔,箱内的声音便可以辐射到外面来。倒相式音箱比密闭式音箱的低频延伸要好些,但低音往往不那么结实紧凑。比较“无限障板”(infinite baffle)

双路功放推动(bi-amping)
指用两台功率放大器去推动同一音箱的一种特殊连接方式,系用一台功率放大器去推动低音单元;另用一台功率放大器去推动中音和高音单元。

大屏幕(big screen)
指直观式彩电或背投式投影电视中的大屏幕。通常,屏幕的对角线尺寸大都在40英寸以上。

特制立体声录音(binaural recording)
指有意将录音话筒装在仿真人头的耳通道内的一种特殊录音方式。由于仿真人头的物理结构,在录音中将包含有一些特别的空间信息。当用耳机去听这类录音制品时,便会产生不同于真实情况但又甚为奇妙的三维空间感。

接线柱(binding post)
指装于功率放大器和音箱上专供与音箱线连接的接线端子。

双极式音箱(bipolar speaker)
指向前和向后等同时辐射声波的一类音箱。和偶极式音箱不同,双极式音箱向前和向后辐射的声波是同相的。

双极晶体管(bipolar transistor)
指在音频电路中使用得非常普遍的一种晶体管。双极则源于电流系在两种半导体材料中流过的关系。双极晶体管根据工作电压的极性而可分为NPN型或PNP型。

比特(bit)
二进制数字的基本单位。通常取0或1两种状态之一。比特数越多,表达摸拟信号就越为精确,对音频信号的还原也越好。

比特率(bit rate)
指数字音频或数字视频信号每秒所存贮或传送的比特数。例如,CD光盘每一声道的比特率为705600kbs,而杜比数字(DD)的5.1声道的比特率则为384kbs。高些的比特率往往意味着可以获得更好些的音质。

双线分音(bi-wiring)
指对每一支音箱皆用二组音箱线去连接的一种接线方式。用一组(一对)音箱线去跟音箱中的低音单元输入连接;而另一组音箱线则跟音箱的高音单元连接。只有那些专门设有两对输入端子的音箱才能按双线分音连接。

发飘(blanketed)
指高音不足,尤似在音箱前边悬挂了张毛毯之类吸声材料而将声音给吸得空虚了。

黑电平(baack level)
指在经过一定校准的显示装置上,没有一行光亮输出的视频信号电平。

乏力(bleached)
用于表示那些特别注重器乐高次谐波而不大注意低次谐波和基频的那类音响器材的发声特性的声学术语。苍白的声音听来会显得过于明亮,单薄而缺乏温暖感。

空气感(bloom)
用于表示在乐器的声像四周有空气环绕的声学术语。

轰隆声(bloomy)
指在125Hz左右的低音过重,特别是在相当宽的一段频率范围内。系由于对低频或低频谐振的阻尼不够所引起。

冒牌货(boutique brand)
指那些表面上看似乎是high-end的音响,但实际上却只是虚有其表而机箱内皆装以劣质元器件的伪劣产品。

渲染(bloated)
指250Hz一带的低音中段过强。对低频以及低频的谐振阻尼不够。参看“过粗”(tubby)。

含混(blurred)
指瞬态响应差,立体声声像模糊,凝聚欠佳。

闷声(boxy)
指听到的音乐像从封闭的箱子中发出来的而有些共鸣。有时则指在250-500Hz一段有些过强。

煲机(break-in)
指新买回的音响器材得通电一段时间后才会让重放的音质变好。

桥接(bridging)
指为增加输出功率而将功率放大器和音箱作一种特别的连接。桥接便是将双声道的立体声放大器改接为单路的功率放大器。由其中一路放大器去负责放大波形的正半周,而由另一路去放大波形的负半周,音箱则像两路放大器通道之间的“桥”。桥接时需要用二台同样的双声道立体声放大器。

明亮(bright)
指突出4kHz-8kHz的高频段,此时谐波相对强于基波。明亮本身并没什么问题,现场演奏的音乐会皆有明亮的声音,问题是明亮得掌握好分寸,过于明亮(甚至啸叫)便让人讨厌。

辉度(brightness)
对于视频则专指视频显示器画面上所产生的光量。

辉亮信号(brightness signal)
用"Y"表示,视频信号的辉亮信号包含所有的显示信息,彩色视频信号则为亮度和色度信号的综合。

尖剌(brittle)
用于表示使得乐器的音色听来刺耳的中频或高频的声特性的声学术语。

缓冲(buffer)
指用于将音响或电路级加以隔开的电路。前置放大器便是音源和功率放大器之间的缓冲,因为前置放大器为音源减轻了推动功率放大器的负担。

直通试听法(bypass test)
为一种对音响器材进行试听的方法。此时将被测试的音响器材或是接入或是不接入信号的行程中,从而可对其声特性作出评判。

校正(calibration)
指为使音响或A/V影视器材的工作能够正常而进行的精确调整。在音响系统中,校正包括调定各个声道的电平;而在视频装置中,校正便是调好色彩、亮度、色度、对比度及其它参数。

针臂(cantilever)
指由LP电唱盘的唱头端伸出并在其上边装有唱针的细管。

容抗(capacitive reactance)
指电容器所呈现的阻止低频通过但却让高频得以通过的一种特性。容抗使电容器成为一种和频率有依从关系的阻抗。正是利用电容器的容抗才将电容器接在高音单元上,让高音通过而不让低音通过。

电容器(capacitor)
一种存贮电荷的电子元器件。在功率放大器中的存贮电容器系用于存贮能量;而在直流供电电源中的滤波电容器,则是用来滤去交流成分的;在放大器电路中的耦合电容器则是用来通过交流的音频信号和隔断直流的。

俘获比(capture ratio)
为接收调谐器的技术指标。指在调谐器锁定一个信号较强的电台而抑止一个信号弱些的电台之前,所需的两个电台信号强度之差的分贝值。俘获比越低,调谐器的性能便越好。

唱头消磁器(cartridge demagnetizer)
指专门用于消除唱头内的金属部分的杂散磁场的一种器材。

CAV LD激光影碟(CAV laserdisc)
指按恒角速度(CAV)录制的LD影碟。不论激光拾取器在什么位置上读取信号,影碟将始终以恒速旋转。也称为“标准格式”的LD影碟。其每面可以录30分钟的节目。参看“恒线速” (CLV)。

CD激光唱片(compact disc)
指由日本索尼公司和荷兰飞利浦公司联合研制成的一种直径12cm(个别为8cm)可录74分钟音乐的光盘。

CD-R可录光盘
(CD Recordable)
指可以录入数字音频的光盘。CD-R为一次录入的光盘。录入后便无法抹掉。

CD-ROM只读型光盘
指用于存储计算机数据的一种只读型光盘。

CD-RW可录可抹光盘(CD-Rewritable)
一种可录入可抹掉而反复重录的CD光盘。但现有大多数的CD唱机却是无法用于播放CD-RW光盘的。

中心通道(center channel)
在多声道的音响系统中,摆放在观看室的中间,并位于左右前置音箱当中的中置音箱便是用于重放中心通道中的信息的。在中心通道中几乎皆为影片中的对白。

中心通道模式(center-channel mode)
指A/V功放接收机和A/V前置放大器的中心通道的工作设置方式。

中置音箱(center-channel speaker)
指家庭影院系统中装于视频监视器的顶部,下面或后面的一种音箱。是用于重放中心通道送来的人声对白之类信息以及其它同荧屏上的动作有关的一些声音。

消费电子产品大展(CES)
指每年一度于年初在美国拉斯维加斯举办的国际消费电子产品大展。

通道平衡(channel balance)
指音响系统中或个别音响器材中左和右声道的相对电平或音量。也用于表示杜比编码信号中左和右信号的相对差值。为了获得最好的杜比解码效果,有些A/V功放接收机和A/V前置放大器还可以对通道平衡进行调整。

通道隔离(channel separation)
系用于衡量一个声道跟其它声道之间的隔离程度的尺度。在家庭影院系统中,当通道隔离不够时,一个声道中的声音便会“串入”另一个声道。比较典型的例子便是杜比环绕声中,前置主声道中的声音会“串入”环绕声道。声道隔离好时,声像定位便会更为准确。

胸音(chesty)
指音箱的一种声染色,就像歌唱家因胸腔过大而放声洪量的那种声音。系由于在125~250Hz一段的低频响应上有凸起所引起的。

色度(chrominance或chroma)
指视频信号的彩色部分。色度信号中包含有色彩和色调信息,但却没有亮度信息。

噗嗤声(chufing)
指倒相式音箱在以高电平重放低音时所发出的那种噗嗤声。原因是此时有大量的空气在音箱开孔处通过。

甲类放大(class-A)
也称A类放大。为放大器的一种工作状态。此时晶体管或电子管放大器将会对整个的音频信号进行放大。

乙类放大(class-B)
也称B类放大。为放大器的一种工作状态。此时一路晶体管或电子管放大器将会放大音频信号的正半部分,而另一路晶体管或电子管放大器则放大信号的负半部分。

甲乙类放大(class AB)
也称为AB类放大。放大器的一种工作状态。此时放大器的输出级在输出功率为低电平时便按甲类放大状态,而在输出功率为高电平时便转换为乙类放大。

丁类放大(class D)
也称D类放大或数字式放大器。系利用极高频率的转换开关电路来放大音频信号的。具有效率高,体积小的优点。许多功率高达1000W的这类数字式放大器,体积只不过像盒VHS录像带那么大。这类放大器不适宜于用作宽频带的放大器,但在有源超低音音箱中却有较多的应用。

限幅(clipping)
当要求放大器输出超过其所允许的输出功率时,便会使输出的音频波形的顶部和底部变得平坦。就像将峰值给削平了似的。限幅会引入大量的失真。让人在音乐的峰值时听到有嘎吱嘎吱的响声。

封闭(close-in)
指声音的不够开阔,不大柔和和缺少空气感及细节。多因在频率高于10kHz时有了衰减的缘故。

CLV LD激光影碟(CLV laserdisc)
指按恒定线速度录制的LD激光影碟。取决于激光拾取器在碟片上的读取位置,LD碟片的转速将会改变。当激光拾取器在碟片外沿读取时,LD影碟的转速相当对较慢;当拾取器沿碟片内径读取时,转速便会加快。因之,从激光拾取器看来,线速度系保持不变的。也称为“延长播放”影碟,因为碟片的单面便可存贮1个小时的视频节目。

同轴电缆(coaxial Cable)
指一种内部的导体被隔离层的编织体所包围的一种电缆。

同轴数字输出(coaxial digital output)
指在CD机、DVD机等数字录音源设备上安装的用于输出数字音频的RCA插座。可以用同轴数字信号线来跟其它音响器材连接。

同轴发音单元(coaxial driver)
指将一个发音单元(通常为高音单元)装在另一发音单元(通常为中音单元)内部的那类扬声器。

编码正交频分复用(COFDM)
原文为 coded orthogonal frequency division multiplex,系一种信道编码和调制的方法。在欧洲,主要用于DTV数字电视和DAB数字音频广播。用于将相邻的每部分信号尽可能的分离开来,并分别在可多达1536个离散的频率上传送,因而可减少传输差错和多径传波之类干扰。

相参性(coherence)
指对音乐能够有一总体感觉而不是由许多单独部分所组成的那种感受。

声染色(coloration)
指在音响系统中,由某一音响器材所引起的声音的改变。有声染色的音箱便不能精确地重放出加给音箱的声信号。比如,有声染色的音箱可能会重放出过多的低音,而在高音方面则有所欠缺。

梳状滤波(comb filtering)
指在频率响应上出现的一系列相间的深深的峰值和谷值的现象。通常,当直达声和经听音室内音箱两侧的侧墙所反射而稍许有些延迟的反射声合加在一起时,便会产生这种梳状滤波。

共模抑止(common-mode rejection)
当将平衡信号加到差分放大器时,便只将平衡信号之间的相位差给放大了。任何两个相位共同的噪声(共模噪声)皆被差分放大器所抑止.

  音响知识完全手册
音箱是将电信号还原成声音信号的一种装置,还原真实性将作为评价音箱性能的重要标准。有源音箱就是带有功率放大器(即功放)的音箱系统。把功率放大器和扬声器发声系统做成一体,可直接与一般的音源(如随身听、CD机、影碟机、录像机等)搭配,构成一套完整的音响组合。有了有源音箱,就无需另购功率放大器,不再为合理选配功放、音箱而发愁,操作简便,其极高的性能价格比,为工薪阶层所普遍接受。
按照发声原理及内部结构不同,音箱可分为倒相式、密闭式、平板式、号角式、迷宫式等几种类型,其中最主要的形式是密闭式和倒相式。密闭式音箱就是在封闭的箱体上装上扬声器,效率比较低;而倒相式音箱与它的不同之处就是在前面或后面板上装有圆形的倒相孔。它是按照赫姆霍兹共振器的原理工作的,优点是灵敏度高、能承受的功率较大和动态范围广。因为扬声器后背的声波还要从导相孔放出,所以其效率也高于密闭箱。而且同一只扬声器装在合适的倒相箱中会比装在同体积的密闭箱中所得到的低频声压要高出3dB,也就是有益于低频部分的表现,所以这也是倒相箱得以广泛流行的重要原因。
2、功率

音箱音质的好坏和功率没有直接的关系。功率决定的是音箱所能发出的最大声强,感觉上就是音箱发出的声音能有多大的震撼力。根据国际标准,功率有两种标注方法:额定功率(RMS:正弦波均方根)与瞬间峰值功率(PMPO功率)。前者是指在额定范围内驱动一个8Ω扬声器规定了波形持续模拟信号,在有一定间隔并重复一定次数后,扬声器不发生任何损坏的最大电功率;后者是指扬声器短时间所能承受的最大功率。美国联邦贸易委员会于1974年规定了功率的定标标准:以两个声道驱动一个8Ω扬声器负载,在20~20000Hz范围内谐波失真小于1%时测得的有效瓦数,即为放大器的输出功率,其标示功率就是额定输出功率。通常商家为了迎合消费者心理,标出的是瞬间(峰值)功率,一般是额定功率的8倍左右。 试想同是采用PHILIPS的TDA1521功放芯片(最大的额定功率30W,THD=10%时),而某些产品上标称360W,甚至480WP.M.P.O.,这可能吗?有意义吗?所以在选购多媒体音箱时要以额定功率为准。音箱的功率由功率放大器芯片的功率和电源变压器的功率两者主要决定,考虑到其他一些因素,可以算出如果变压器的额定功率是100W的话,它实际能顺利带动的功放芯片的功率要在45W以下,所以通过算音箱变压器与功放的功率关系也可以验证音箱的实际额定功率是否能达到标称值。音箱的功率不是越大越好,适用就是最好的,对于普通家庭用户的20平米左右的房间来说,真正意义上的60W功率(指音箱的有效输出功率30W×2)是足够的了,但功放的储备功率越大越好,最好为实际输出功率的2倍以上。比如音箱输出为30W,则功放的能力最好大于60W,对于HiFi系统,驱动音箱的功放功率都很大。  

3、频率范围与频率响应

前者是指音响系统能够重放的最低有效回放频率与最高有效回放频率之间的范围;后者是指将一个以恒电压输出的音频信号与系统相连接时,音箱产生的声压随频率的变化而发生增大或衰减、相位随频率而发生变化的现象,这种声压和相位与频率的相关联的变化关系(变化量)称为频率响应,单位分贝(Db)。

音响系统的频率特性常用分贝刻度的纵坐标表示功率和用对数刻度的横坐标表示频率的频率响应曲线来描述。当声音功率比正常功率低3dB时,这个功率点称为频率响应的高频截止点和低频截止点。高频截止点与低频截止点之间的频率,即为该设备的频率响应;声压与相位滞后随频率变化的曲线分别叫作“幅频特性”和“相频特性”,合称“频率特性”。这是考察音箱性能优劣的一个重要指标,它与音箱的性能和价位有着直接的关系,其分贝值越小说明音箱的频响曲线越平坦、失真越小、性能越高。如:一音箱频响为60Hz~18kHz +/- 3dB。这两个概念有时并不区分,就叫作频响。

从理论上讲,20~20000Hz的频率响应足够了。低于20Hz的声音,虽听不到但人的其它感觉器官却能觉察,也就是能感觉到所谓的低音力度,因此为了完美地播放各种乐器和语言信号,放大器要实现高保真目标,才能将音调的各次谐波均重放出来。所以应将放大器的频带扩展,下限延伸到20Hz以下,上限应提高到20000Hz以上。对于信号源(收音头、录音座和激光唱机等)频率响应的表示方法有所不同。例如欧洲广播联盟规定的调频立体声广播的频率响应为40~15000Hz时十/—2dB,国际电工委员会对录音座规定的频率响应最低指标:40~12500Hz时十/—2.5十/—4.5dB(普通带),实际能达到的指标都明显高于此数值。CD机的频率响应上限为20000Hz,低频端可做到很低,只有几个赫兹,这是CD机放音质量好的原因之一。

但是,构成声音的谐波成分是非常复杂的,并非频率范围越宽声音就好听,不过这对于中低档的多媒体音箱来讲还是基本正确的。在标注频率响应中我们通常都会看到有“系统频响”和“放大器频响”这两个名词,要知道“系统频响”总是要比“放大器频响”的范围小,所以只标注“放大器频响”则没有任何意义,这只是用来蒙骗一些不知情的消费者的。现在的音箱厂家对系统频响普遍标注的范围过大,高频部分差的还不是很多,但在低音端标注的极为不真实,国外的名牌HiFi(高保真)音箱也不过标注4、50Hz左右,而国内两三百的木质普通音箱居然也敢标注这个数据,真是让人笑掉大牙了!所以敬告大家低频段声音一定要耳听为真,不要轻易相信宣传单上的数值。多媒体音箱中的音乐是以播放MP3或CD的音乐、歌曲、游戏的音效、背景音乐以及影片中的人声与环境音效为主的,这些声音是以中高音为多,所以在挑选多媒体音箱时应该更看中它在中高频段声音的表现能力,而不是低频段。若真的追求影院效果,那么一只够劲的低音炮绝对能够满足你的需求。

4、响度

声音的强弱称为强度,它由气压迅速变化的振幅(声压)大小决定。但人耳对强度的主观感觉与客观的实际强度并不一致,人们把对于强弱的主观感觉称为响度,其计量单位也为分贝(Db),它是根据1000Hz的声音在不同强度下的声压比值,取其常用对数值的 l/10而定的。取对数值的原因是由于强度与响度的增加不是成正比关系,而是真数与对数的关系!例如声音强度大到10倍时,听起来才响了一级(10dB),强度大到100倍时听起来才响了两级(20dB)。对于1000Hz的声音信号,人耳能感觉到的最低声压为2×10E-5Pa,把这一声压级定为0dB,当声压超过130dB时人耳将无法忍受,故人耳听觉的动态范围为0~130dB。

人对强度相等、频率不同声音感觉是不同的;声压级越高,人的听觉频率特性越平直;声压级越低,人的听觉频率范围越小;频率 f<16~20Hz以及 f>18~20KHz的声音,不论声级多高,人耳都是听不到的。故人耳的听觉频率为20Hz~20KHz,这个频带叫音频或声频;不论声压高低,人耳对3KHz~5KHz频率的声音最为敏感。

大多数人对信号声级突变3dB以下时是感觉不出来的,因此对音响系统常以3dB作为允许的频率响应曲线变化范围。

5、失真度

有谐波失真、互调失真和瞬态失真之分。谐波失真是指声音回放中增加了原信号没有的高次谐波成分而导致的失真;互调失真影响到的主要是声音的音调方面;瞬态失真是因为扬声器具有一定的惯性质量存在,盆体的震动无法跟上瞬间变化的电信号的震动而导致的原信号与回放音色之间存在的差异。它在音箱与扬声器系统中则是更为重要的,直接影响到音质音色的还原程度的,所以这项指标与音箱的品质密切相关。这项常以百分数表示,数值越小表示失真度越小。普通多媒体音箱的失真度以小于0.5%为宜,而通常低音炮的失真度普遍较大,小于5%就可以接受了。

6、音箱的灵敏度(单位Db)

音箱的灵敏度每差3dB,输出的声压就相差一倍,一般以87 Db为中灵敏度,84 Db以下为低灵敏度,90 Db以上为高灵敏度。灵敏度的提高是以增加失真度为代价的,所以作为高保真音箱来讲,要保证音色的还原程度与再现能力就必须降低一些对灵敏度的要求。但不能反过来说,灵敏度高的音箱音质一定不好而低灵敏度的音箱一定就好。灵敏度低的音箱功放难以推动(要求功放的贮备功率较大)。所以灵敏度虽然是音箱的一个指标,但是它与音箱的音质音色无关。

7、阻抗

它是指扬声器输入信号的电压与电流的比值。音箱的输入阻抗一般分为高阻抗和低阻抗两类,高于16Ω的是高阻抗,低于8Ω的是低阻抗,音箱的标准阻抗是8Ω。在功放与输出功率相同的情况下,低阻抗的音箱可以获得较大的输出功率,但是阻抗太低了又会造成欠阻尼和低音劣化等现象。所以这项指标虽然与音箱的性能无关,但最好还是不要购买低阻抗的音箱,推荐值是标准的8Ω。耳机的阻抗一般是高阻抗的——32Ω很常见。功放的阻抗一般可标为等值阻抗,比如4Ω下130W的输出,大概相当于等值的80W的输出。有一个容易与之混淆的名词叫做“阻尼系数”,这是指扬声器阻抗除以放大器源的内阻,范围大约是25~1000。扬声器纸盆在电信号已经消失后还要振荡多次才能完全停止摆动,而线圈发出的电压产生电流和磁场可以阻止这种寄生运动,这就是阻尼。电流的幅度也就是阻尼的效果取决于此电流流经放大器输出级的内阻,这一电阻要远低于扬声器的额定阻抗,典型值为0.1Ω,但由于扬声器音圈的串联电阻和分频网络的串联电阻的存在,阻尼系数难以做到50。

8、信噪比

是指音箱回放的正常声音信号与无信号时噪声信号(功率)的比值。也用 Db表示。例如,某磁带录音座的信噪比为50dB,即输出信号功率比噪音功率大50dB。信噪比数值越高,噪音越小。国际电工委员会对信噪比的最低要求是前置放大器大于等于63dB,后级放大器大于等于86dB,合并式放大器大于等于63dB。合并式放大器信噪比的最佳值应大于90dB;收音头:调频立体声之50dB,实际上以达到70dB以上为佳;磁带录音座之56dB(普通带),但经杜比降噪后信噪比有很大提高。如经杜比 B降噪后的信噪比可达65dB,经杜比 C降噪后其信噪比可达72dB(以上均指普通带);CD机的信噪比可达90dB以上,高档的更可达l10dB以上。信噪比低时,小信号输入时噪音严重,整个音域的声音明显感觉是混浊不清,所以信噪比低于80dB的音箱不建议购买!而低音炮70 Db的低音炮同样原因不建议购买。

9、扬声器材质

低档塑料音箱因其箱体单薄、无法克服谐振,无音质可言(笨笨熊注:也不尽然,设计好的塑料音箱要远远好于劣质的木质音箱);木制音箱降低了箱体谐振所造成的音染,音质普遍好于塑料音箱。通常多媒体音箱都是双单元二分频设计,一个较小的扬声器负责中高音的输出,而另一个较大的扬声器负责中低音的输出。挑选音箱应考虑这两个喇叭的材质:多媒体有源音箱的高音单元现以软球顶为主(此外还有用于模拟音源的钛膜球顶等),它与数字音源相配合能减少高频信号的生硬感,给人以温柔、光滑、细腻的感觉。多媒体音箱现以质量较好的丝膜和成本较低的PV膜等软球顶的居多。低音单元它决定了音箱的声音的特点,选择起来相对重要一些,最常见的有以下几种:纸盆,又有敷胶纸盆、纸基羊毛盆、紧压制盆等几种,纸盆音色自然、廉价、较好的刚性、材质较轻灵敏度高,缺点是防潮性差、制造时一致性难以控制,但顶级HiFi系统中用纸盆制造的比比皆是,因为声音输出非常平均,还原性好;防弹布,有较宽的频响与较低的失真,是酷爱强劲低音者之首选,缺点是成本高、制作工艺复杂、灵敏度不高轻音乐效果不甚佳;羊毛编织盆,质地较软,它对柔和音乐与轻音乐的表现十分优异,但是低音效果不佳,缺乏力度与震撼力;PP(聚丙烯)盆,它广泛流行于高档音箱中,一致性好失真低,各方面表现都可圈可点。此外还有像纤维类振膜和复合材料振膜等由于价格高昂极少应用于普及型音箱中,就不谈了。扬声器尺寸自然是越大越好,大口径的低音扬声器能在低频部分有更好的表现,这是在选购之中可以挑选的。用高性能的扬声器制造的音箱意味着有更低的瞬态失真和更好的音质。普通多媒体音箱低音扬声器的喇叭多为3~5英寸之间。用高性能的扬声器制造的音箱也意味着有更低的瞬态失真和更好的音质。

10、音箱的结构与特点

音箱从结构形式上分,可以分为书架式和落地式,前者体积小巧、层次清晰、定位准确,但功率有限,低频段的延伸与量感不足,适于欣赏以高保真音乐为主的音乐爱好者,也是我们多媒体发烧友的首选;后者体积较大、承受功率也较大,低频的量感与弹性较强,善于表现滂沱的气势与强大的震撼力,但做得不好层次感与定位方面会略有欠缺。对于不同音乐的爱好者来讲,这也是在选购以前应该了解的重要内容。由于PC用家很少有具备放置大型落地箱的条件,所以小巧的桌面书架式音箱应该是多媒体有源音箱的首选。总的来说:只要功放模块设计合理,箱体越大,喇叭越大,声音越中听。

11、可扩展性

这是指音箱是否支持多声道同时输入,是否有接无源环绕音箱的输出接口,是否有USB输入功能等。低音炮能外接环绕音箱的个数也是衡量扩展性能的标准之一。普通多媒体音箱的接口主要有模拟接口和USB接口两种,其它如光纤接口还有创新专用的数字接口等不是非常多见,因此不多作介绍。

12、音效技术
硬件3D音效技术现在较为常见的有SRS、APX、 Spatializer 3D、 Q-SOUND、 Virtaul Dolby和 Ymersion等几种,它们虽各自实现的方法不同,但都能使人感觉到明显的三维声场效果,其中又以前三种更为常见。它们所应用的都是扩展立体声(Extended Stereo)理论,这是通过电路对声音信号进行附加处理,使听者感到声像方位扩展到了两音箱的外侧,以此进行声像扩展,使人有空间感和立体感,产生更为宽阔的立体声效果。此外还有两种音效增强技术:有源机电伺服技术(本质上利用了赫姆霍兹共振原理)、BBE高清晰高原音重放系统技术和“相位传真”技术,对改善音质也有一定效果。对于多媒体音箱来说,SRS和BBE两种技术比较容易实现效果很好,能有效提高音箱的表现能力。

13、音调
指具有一特定且通常是稳定音高的信号,通俗的讲是声音听来调子高低的程度。它主要取决于频率,还与声音强度有关。频率高的声音人耳的反应是音调高而频率低的声音人耳的反应是音调低。音调随频率(Hz)的变化基本上呈对数关系。不同的乐器演奏同样频率的音符,音色虽然不同,但它们的音调是相同的,也就是演奏声音的基频是相同的。

14、音色
对声音音质的感觉,也是一种声音区别于另一种声音的特征品质。不同的乐器在发同一音调时,它们的色可以迎然不同。这是由于它们的基频频率虽相同,但谐波成分相差甚大。故音色不但取决于基频,而且与基频成整倍数的谐波密切有关,这就使每种乐器和每个人有不同的音色。

15、动态范围
声音中最强与最弱的比值,用 Db表示。例如一个乐队的动态范围为90dB,这意味着最弱部分的功率比最响部分的低90dB。动态范围是功率之比,与声音的绝对水平无关。如前所述,人耳的动态范围从0到130dB。自然界各种声音的动态范围的变化也是很大的。一般语言信号大约只有20~45dB,有些交响乐的动态范围可达30~130dB或更高。但由于一些因素的限制,音响系统的动态范围很少能达到乐队的动态范围。录音装置的内在噪音决定了可能录制的最弱音,而系统的最大信号容量(失真水平)限制了最强的音。一般把声音信号的动态范围定为100dB,故音响设备的动态范围能做到100dB,就很好了。

16、总谐波失真(THD)
指音频信号源通过功率放大器时,由于非线性元件所引起的输出信号比输入信号多出的额外谐波成分。谐波失真是由于系统不是完全线性造成的,我们用新增加总谐波成份的均方根与原来信号有效值的百分比来表示。例如,一个放大器在输出10V的1000Hz时又加上 Lv的2000Hz,这时就有10%的二次谐波失真。所有附加谐波电平之和称为总谐波失真。一般说来,1000Hz频率处的总谐波失真最小,因此不少产品均以该频率的失真作为它的指标。但总谐波失真与频率有关,因此美国联邦贸易委员会于1974年规定,总谐波失真必须在20~20000Hz的全音频范围内测出,而且放大器的最大功率必须在负载为8欧扬声器、总谐波失真小于1%条件下测定。国际电工委员会规定的总谐波失真的最低要求为:前级放大器为0.5%,合并放大器小于等于0.7%,但实际上都可做到0.1%以下:FM立体声调谐器小于等于1.5%,实际上可做到0.5%以下;激光唱机更可做到0.01%以下。
由于测量失真度的现行方法是单一的正弦波,不能反映出放大器的全貌。实际的音乐信号是各种速率不同的复合波,其中包括速率转换、瞬态响应等动态指标。故高质量的放大器有时还注明互调失真、瞬态失真、瞬态互调失真等参数。(l)互调失真(IMD):将互调失真仪输出的125Hz与lkHz的简谐信号合成波,按4:1的幅值输入到被测量的放大器中,从额定负载上测出互调失真系数。
(2)瞬态失真(TIM):将方波信号输入到放大器后,其输出波形包络的保持能力来表达。如放大器的转换速率不够,则方波信号即会产生变形,而产生瞬态失真。主要反映在快速的音乐突变信号中,如打击乐器、钢琴、木琴等,如瞬态失真大,则清脆的乐音将变得含混不清。
(3)瞬态互调失真:将3.15kHz的方波信号与15kHz的正弦波信号按峰值振幅比4:1混合,经放大器后,新增加全部互调失真的产物有效值与原来正弦振幅的百分比。如放大器采用深度大回环负反馈,瞬态互调失真一般较大,具体反映出声音呆滞、生硬、无临场感;反之,则声音圆滑、细腻、自然。

17、立体声分离度
指双声道之间互相不干扰信号的能力、程度,也即隔离程度,通常用一条通道内的信号电平与泄漏到另一通道中去的电平之差表示。如果立体声分离度差,则立体感将被削弱。国际电工委员会规定的立体声分离度的最低指标, lKHz时大于等于40dB,实际以达到大干60dB为好;欧洲广播联盟规定的调频立体声广播的立体声分离度为>25dB,实际上能做到40dB以上。立体声通道平衡指的是左、右通道增益的差别,一般以左、右通道输出电平之间最大差值来表示。如果不平衡过大,立体声声像位置将产生偏离,该指标应小于1dB。

18、阻尼系数
是指放大器的额定负载(扬声器)阻抗与功率放大器实际阻抗的比值。阻尼系数大表示功率放大器的输出电阻小,阻尼系数是放大器在信号消失后控制扬声器锥体运动的能力。具有高阻尼系数的放大器,对于扬声器更象一个短路,在信号终止时能减小其振动。功率放大器的输出阻抗会直接影响扬声器系统的低频 Q值,从而影响系统的低频特性。扬声器系统的Q值不宜过高,一般在0.5~l范围内较好,功率放大器的输出阻抗是使低频 Q值上升的因素,所以一般希望功率放大器的输出阻抗小、阻尼系数大为好。阻尼系数一般在几十到几百之间,优质专业功率放大器的阻尼系数可高达200以上。

l9、等响度控制
其作用是低音量时提升高频和低频声。由于人耳对高频声、特别是低频声的听觉灵敏度差,要求在低音量时对高频和低频进行听觉补偿,即要求对低频有较大提升,对高频也有一定量的提升。换句话说,当音量减小时,信号中低频部分的减小较高频部分为少。等响度控制即满足此要求,等响度控制一般为8dB或10dB。

20、三维音场处理和环绕声
普通两只音箱为什么会使我们听到并不存在的好像是背后发出的声音呢?大家知道,立体电影就是眼睛产生的错觉而三维音场的产生离不开耳朵的错觉。种种硬件3D音效技术如SRS、虚拟杜比和软件3D技术如EAX、A3D等就是充分研究了人耳接受声响的原理后为降低成本而推出的新技术。本质上讲通过多音箱完成三维音场的效果比两只音箱虚拟出的声场好很多。所以环绕声应该以多音箱配置为主,它们的定位感和空间感强,下面我们来看看有哪几种真正的环绕声:

A 杜比定向逻辑(Dolby Pro-Logic)环绕声系统
4-2-4编码技术将左、中、 右和后侧四方面的音频信息经过编码记录在左右两个声道中; 放音时再通过解码器从左右声道中分解还原出原来这4个声道, 这4个声道通常称为:前置左声道、前置中间声道、前置右声道和后置环绕声道。 科学实验表明, 要获得身临其境的真实音响效果,必须在聆听者周围产生一个四面包围的声场环境,整个放声系统使用的声道数越多,聆听者的声场定位感就越强烈,身临其境的感受就越真实。根据目前一般家庭的视听环境,放声系统使用5个声道已能满足声场定位需要,因此,杜比定向逻辑环绕声系统大多使用5声道。从表面上看,5声道杜比定向逻辑环绕声功率放大器确实有5个功率输出端:前置左声道、中置声道、前置右声道、 环绕左声道(又称后置左声道)和环绕右声道(又称后置右声道),但杜比定向逻辑环绕声系统中解码器输出的环绕声信号其实是单声道的,5声道功率放大器中的左右两个环绕声道在功放内部是相互串联的

功放音箱搭配4要素

    功放与音箱配接四要素 功放与音箱配接讲究冷暖相宜、软硬适中,以实现整套器材还原音色呈中性,这仅是从艺术方面考虑。然而从技术方面考虑的要素有:   
一、功率匹配     
二、功率储备量匹配   
三、阻抗匹配     
四、阻尼系数的匹配   
如果我们在配接时认识到上述四点,可使所用器材的性能得到最大、最充分的发挥。     
功率匹配     为了达到高保真聆听的要求,额定功率应根据最佳聆听声压来确定。我们都有这样的感觉:音量小时、声音无力、单薄、动态出不来,无光泽、低频显著缺少、丰满度差,声音好像缩在里面出不来。音量合适时,声音自然、清晰、圆润、柔和丰满、有力、动态出得来。但音量过大时,声音生硬不柔和、毛糙、有扎耳根的感觉。因此重放声压级与声音质量有较大关系,规定听音区的声压级最好为80~85dB(A计权),我们可以从听音区到音箱的距离与音箱的特性灵敏度来计算音箱的额定功率与功放的额定功率。     
功率储备量匹配     
音箱:为了使其能承受节目信号中的猝发强脉冲的冲击而不至于损坏或失真。这里有一个经验值可参考:所选取的音箱标称额定功率应是经理论计算所得功率的三倍。     
功放:电子管功放和晶体管功放相比,所需的功率储备是不同的。这是因为:电子管功放的过荷曲线较平缓。对过荷的音乐信号巅峰,电子管功放并不明显产生削波现象,只是使颠峰的尖端变圆。这就是我们常说的柔性剪峰。而晶体管功放在过荷点后,非线性畸变迅速增加,对信号产生严重削波,它不是使颠峰变圆而是把它整齐割削平。有人用电阻、电感、电容组成的复合性阻抗模拟扬声器,对几种高品质的晶体管功放进行实际输出能力的测试。结果表明,在负载有相移的情况下,其中有一台标称100W的功放,在失真度1%时实际输出功率仅有5W!由此对于晶体管功放的储备量的选取:     
高保真功放:10倍     
民用高档功放:6~7倍     
民用中档功放:3~4倍     
而电子管功放则可以大大小于上述比值。     
     对于系统的平均声压级与最大声压级应留有多少余量,应视放送节目的内容、工作环境而定。这个冗余量最低10dB,对于现代的流行音乐、蹦迪等音乐,则需要留有20~25dB冗余量,这样就可使得音响系统安全,稳定地工作。     
阻抗匹配   
     它是指功放的额定输出阻抗,应与音箱的额定阻抗相一致。此时,功放处于最佳设计负载线状态,因此可以给出最大不失真功率,如果音箱的额定阻抗大于功放的额定输出阻抗,功放的实际输出功率将会小于额定输出功率。如果音箱的额定阻抗小于功放的额定输出阻抗,音响系统能工作,但功放有过载的危险,要求功放有完善的过流保护措施来解决,对电子管功放来讲阻抗匹配要求更严格。     
阻尼系数的匹配     
阻尼系数KD定义为:KD=功放额定输出阻抗(等于音箱额定阻抗)/功放输出内阻。 由于功放输出内阻实际上已成为音箱的电阻尼器件,KD值便决定了音箱所受的电阻尼量。KD值越大,电阻尼越重,当然功放的KD值并不是越大越好,KD值过大会使音箱电阻尼过重,以至使脉冲前沿建立时间增长,降低瞬态响应指标。因此在选取功放时不应片面追求大的KD值。作为家用高保真功放阻尼系数有一个经验值可供参考,最低要求:晶体管功放KD值大于或等于40,电子管功放KD值大于或等于6。       
      保证放音的稳态特性与瞬态特性良好的基本条件,应注意音箱的等效力学品质因素(Qm)与放大器阻尼系数(KD)的配合,这种配合需将音箱的馈线作音响系统整体的一部分来考虑。应使音箱的馈线等效电阻足够小,小到与音箱的额定阻抗相比可以忽略不计。其实音箱馈线的功率损失应小于0.5dB(约12%)即可达到这种配合。

功率放大器的回顾
     音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。回顾一下功率放大器的发展历程,对我们广大音响爱好者来说也许是一件饶有趣味的事情。
索引:
一、早期的晶体管功放
二、晶体管功放的发展和互调失真
三、功放输入级——差动与共射-共基
四、放大器的电源与甲类放大器
五、其他类型的放大器

一、早期的晶体管功放
   半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。
   早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的 OTL或OCL放大器不易寻到三个指标都满足要求的管于,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。“还是胆机规声”,这种看法的确事出有因。
二、晶体管功放的发展和互调失真
   随着半导体工艺的逐渐成熟,大电流、高耐压的晶体管品种日益增加,越来越多的功率放大器采用了无输出变压器的 OCL电路或 OTL电路(图一)。 最初的大功率 PNP管是锗管,而 NPN管是硅管,两者的特性差别非常显著,电路的 对称性很差,人们更多采用的是图二所示的准互补电路,通过小功率硅管 Q1与一只大功率的 NPN硅管 Q2复合,得到一只极性与PNP管类似的大功率管,降低了电路因对称性差而招至的失真。 到了六十年代末,大功率的 PNP硅管商品化的时候,互补对称电路才得到广泛的应用。元器件的进步使晶体管功率放大器的技术指标产生了质的飞跃,在主观音质评价方面,也改变了过去人们对晶体管功放的看法,无论是在厅堂扩音、电台节目制作还是家庭重放,晶体管功放都被大量地采用,首次在数量上以压倒性的优势超过了电子管功放。在商品化的晶体管扩音机中,相继出现了一些摧琛夺目的名机,如 JBL的 SA600, Marantz互补对称电路MOdel15等等。
   尽管电子管的拥护者仍大量存在,人们毕竟能够比较公正地看待晶体管放大器了,认为晶体管机频响宽阔,层次细腻,与电子管机比较起来有一种独特的舱力,而不是简单的谁取代谁的问题。
   瞬态互调失真的提出是认识上的一次飞跃七十年代,功率放大器的发展史中出现了一件最引人注目的事情,这就是瞬态互调失真 (Transient lntermodulation)及其测量方法的提出。1963年,芬兰 Helvar工厂的一名工程师在制作一台晶体管扩音机时,由于接线失误,使电路的负反馈量减少了,后来却意外地发现负反馈量减少后的音质非常好,客观技术指标较差,而更正错误以后的线路尽管技术指标提高了,音质反而比误接时明显下降。 这一现象引起了当时同一工厂的 Mr.Otala的重视,之后,他对此进行了悉心研究,于1970年首先发表丁关于晶体管功率放大器瞬态互调失真(TIM)的论文。至 1971年,Otala博士及其研究小组就 TIM失真理论发表的论文已经超过20篇,引起了电声界准互补电路人士的广泛反响。
   瞬态互调失真的大意是这样的:
   在直接耦合的晶体管放大电路中,为了得到很小的谐波失真度和宽阔平坦的频率响应,通常对整体电路施加深达40dB一60dB的负反馈,倘若在加负反馈前放大器的开环失真为10%,那么加上40dB的负反馈后,失真即可降低至0.1%,这是电子管功效难以做到的。 晶体管功放由于要施加40dB。60dB的负反馈,所以对一台增益要求为26dB的放大器,它的开环增益就要达到66、86dB。
如此高的增益之下引入深度负反馈,电路势必会产生自激振荡,因而需要进行相位补偿,一般是在推动级晶体管的集电极——基极之间接接一个小电容 C,破坏自激振荡的相位条件,形成所谓“滞后补偿”,
   当放大器输入端输入持续时间非常短的过渡性脉冲时,由于电容 C需要充电时间,所以推动管集电极电压要经过一段时间延迟方能达到最大值,见图四。显然,在电容 C充、放电期间,输出电压 V。将达不到应有的电压值,输入级也不可能得到应有的反馈电压 Vf,因而,在过渡脉冲通过输入级的瞬间,输入级将处于负.反馈失控状态,致使输入级严重过载,输出将严重削波(图三 a点),引起过渡脉冲瞬时失真(图五)。如果过渡脉冲波形上还叠加有正弦信号,输出端还会得到很多输入信号频谱不存在的互调频率成份,这就是 TIM失真。
   TIM失真和音乐信号也有密切关系,音量大、频率高的节目信号容易诱发 TIM失真。严重的 TIM失真反映在听感上类似高频交选失真,而较弱的 TIM失真给人以“金属声”的不快感觉,导致音质劣化。至今,音响界对于 TIM失真都还有争议,但这毕竟是人们认识的深化,它使后来放大器的设计思想发生了根本性的变化,即更加注重放大器的动态性能而不是仅仅满足于静态技术指标的提高。
三、功放输入级——差动与共射-共基
   对称和平衡是电路发展的方向对称和平衡也许是世上事物完美的标志之一。
音乐讲究各声部之间的乎衡与统一,美术以色彩搭配均衡、和谐为美,在服装设计中,常常采取看似不对称的设计,其实质也是为了取得视觉上的均衡。上面所说的都是艺术,对称和平衡给人一种安定、完美的感觉。有意思的是,在功率放大器中,对称和平衡也有类似的效果。
   最初采用对称设计的例子要算互补对称电路了,一上一下的两只异极性晶体管作推挽输出,不仅可以免除笨重的输出变压器,而且电路的偶次谐波失真在推挽的过程中被抵消了,保真度有了很大提高。稍后,人们从运算放大器的设计中得到启迪,将左右对称的差动式电路用于功率放木器的输入级,电路的稳定性和线性都得到改善,这时的电路结构如图六所示,这一结构直至今天都还有人采用。 如果以现代的眼光来审评,这一电路是显得过时了一点。电路的主要缺陷在于电压推动级,因为 Q1承担了提供电压增益的主要任务,必然是开环失真很大,频带狭窄。此图六 典型的 OCL放大器外,单管放大的过载能力也很差,这一系列的缺点是不利于电路的动态性能的。围绕着改进电压推动级的性能,人们相继提出了多种结构,共射——共基电路就是一个典型的例子。
   共射——共基电路又叫“猩尔曼”电路,它原先是高频电路中广为采用的结构,但用于音频电路中同样可以发挥出色的性能。首先是它的宽频响,由于共基放大管 Qs非常低的输入阻抗,使 Q,丧失了电压增益,弥勒效应的影响就非常微弱。 宽频响的推动级拉开了与输入级极点的距离,相位补偿变得很’容易,而且电容 C的容量可以大大减小,这对于改善 TIM失真是很有利的。 第二个优点是电路的高度线性:共基极电路的输出特性也可以清楚地显示出这一点,有人作过测试,共射一共基电路的失真度比单管共射电路要低一个数量级。
   依然是一种不平衡的设计,这一限制来源于输入级。如果把输入级变动一下,从互补推挽的 Q:和Qg的集电极输出信号,那么电压推动级就可以在图七的基础上再增加一组 NPN管构成的共射一共基电路,做到推挽输出,这时电路也就非常对称平衡了,几乎达到了完美的程度。
   当今许多最先进的功率放大器采用的也是这种电路结构。图八是另一种电压推动级的形式,其输入信号来自图六中的 Ql和 Qs,当然此时 Qz必须加上集电极负载电阻。电压推动级也采用对称的差动放大,这不仅可以改善输入级的平衡性,提高放大能力和共模抑制比,而且同样可以降低推动级的失真,因为差动式放大电路当输入在一定的范围内时具有线性的传输特性,有的电路还在 Qn、 Qz的发射极串人负反馈反阻,更加扩大了线性范围。 Q2和Qd构成镜像电流源,把 Q,的集电极电流转移到 Qz上,所以尽管是单端输出,电流推动能力却比原来增大了一倍。 PIONEER的M22K功率放大器就是采用的这种电路结构,取得了非常好的效果。对称和平衡不仅体现在电路的结构上,还表现于元器件的参数上。差动电路是集成运放中广泛采用的结构,其性能是建立在两只差分管 Hrs和 Vss精确匹配的基础之上。同样,推挽电路中,如果两只异极性的晶体管特性不一致时,对波形的两个半周就不能做到一视同仁地放大,这将增力D电路的失真度。
   随着节目源的变化,音乐中包含大量瞬变、高能量的成份,要完美地重现这些细节,就要求放大器具有良好的动态响应,对晶体管配对的要求就不仅是静态的 HrR和 VBE匹配,而且在动态时也要高度匹配,这无疑对元器件参数的平衡提出了更苛刻的要求。 幸运的是,半导体技术的进步为我们提供了这种可能,各种各样的差分对管、晶体管阵列陈出不穷,单个的晶体管一致性也得到较大提高。正是这些优质的元器件,让对称电路设计的优点得以充分体现,今天看到一台全无负反馈的电路也不会觉得惊讶,因为已经有足够好的开环性能了,又何必为了几个仪器上的数据去牺牲放大电路的动态响应呢?
四、放大器的电源与甲类放大器
   极端重视电源的现代放大器“放大器不过是电源的调制器”,这句话道出了放大的实质。
   既然如此,又有什么理由不引起对电源的高度重视呢。电源部份作为推动扬声器发声的源泉,再也不应象过去那样随便找个整流电源接上了事。对电源的要求有两个方面,即纹波噪声小,输出能力强。噪声小比较容易办到,只要加大滤波电容器的容量就可以,但是要做到输出能力强却不简单。
   首先要加大电源变压器的容量,这是过去一些放大器生产厂所不乐意的,因为加大电源变压器容量会使成本大量增加,整机的重量和体积也会加大;但现在听小喇叭的人越来越多,这些小喇叭大多效率很低,有些名牌音箱如 Celestion SI一6O0或 Ro3ers LS3/5a,十分大食难推,再加上现代节目信号中常常出现一些炮弹爆炸,锣鼓敲击的声音,对放大器是一个极为严峻的考验,同样两台100W的放大器,一台可能让你感觉到大炮地动山摇的震撼力,而另一台可能象是破鼓在“咐咐”作响。所以现代优质的功率放大器的电源储备量十分惊人,往往采用巨大的环形变压器,再配合容量达数万甚至数十万徽法的电容器,以提高电源的瞬时供应能力。 KRELI的功率放大器号称“功率发动机”,如 KSA一250功效,在8Ω时输出功率为250W/每声道,4Ω时为5O0W,2Ω时为1000W, lΩ时为2000W,而且任何状态下失真均小于0,1%,真是惊人 ! MarkLevi2zson的产品也是极端重视电源的典范。提高电源 的质量,不仅是量的加大,还有质的提高。滤波电容是一个关键,它除了起平滑滤波和储能的作用以外,还是音频信号的通路,因此优质放大器中常常采用专门为音响用途而生产的电容器,以求获得更好的音质。 KRELLKAS放大器中,电源部份竟然采用稳压电源供电,这台机器可以在纯甲类状态下输出400W的功率,为此,其电源部份也付出了采用60只大功率晶体管的代价。
   重视电源的一个副产物就是甲类放大器再度成为时尚(这并不是贬意)。甲类放大器一直因为耗电多,效率低而未能在大功率的放大器中得到应用,但它天然的优点是无交越失真,无开关失真,并且谐波分量中主要是偶次谐波,在听感上十分讨好听众,故而一些极度发烧的爱好者和厂家仍不惜代价地制作甲类放大器,电源储备量的提高更是为制作甲类放大器提供了有利的条件。
五、其他类型的放大器
   最好的功率放大器还没有出现人们对功率放大器的研究一刻也没有停止过,新的元器件、新的电路形式、新的理论不断出现,放大器的研究也针对这三个方面全面地铺开。不器件上, VMOS管的使用是八十年代以来的一个新动向。
VMOS管频响宽、线性好、无二次击穿以及电压推动等一系列优点吸引了越来越多的使用者,它的音色也与电子管很接近,投合了胆机迷的口味。 现在主要是缺乏品种众多的 P沟道互补管,这个问题相信很快就能解决。
   IGBT也是值得注意的一种新器件,它由 MOS管与双极晶体管复合构成,兼有 VMOS管的电压激励和双极晶体管压降低的优点,很有发展前途。电路的研究以日本的各家公司最为活跃,近年来,一些公司从全新的角度提出了一系列电路,如YAMAHA的 ALA, SONY的电流传输,Technics的 CLASS AA, DENON的双超线性,还有英国 Quad的电流倾注,都试图消除失真的产生,可是人们更欣赏的却是以精良元件和精湛工艺制作的不带这些附加措施的放大器。
   此外,对电路的客观技术指标与主观音质之间的精确关系还有待弄清,这需要有新的理论作为指导。国内外的学者们从不同的角度提出了全新的理论,有的认为人耳的动态听觉上限超过了20kHz,有的提出了计权失真度的概念,认为人耳对不同频率的失真具有不同的感知阂值,从10%到0.01%,并给出了实验得出的阂值曲线。在上述的观点指导下,必然要制作频带更宽,全频带失真都极低的功率放大器,而且节目源也有待改进,当然这些理论的正确性需要通过实践的检验。
   新的技术飞跃往往是新材料、新理论、新方法的出现之后产生的,音频放大器同样也不会例外。在科技日新月异的时代,我们有理由期待更完美的功率放大器的出现。
使用道具 举报 回复
发表于 2013-1-17 14:04:20

我国作为电子管生产大国,生产了大量的、形式用途各异的电子管,为了方便大家的认知,我国的电子管编号方法是根据汉语拼音方案的原则,采用拉丁字母作为型号的代号。按用途分,大体分为以下几种:

(一)、一般电子管的编号(包括接收放大管、小功率整流管、小型振荡管)

第一部分:表示灯丝电压伏特数的整数部分:

0表示冷阴极;1表示灯丝电压为0.7~1.2V;2表示灯丝电压为2.2~2.5V;3表示灯丝电压为2.8V;4表示灯丝电压为4.2V或4.4V;5表示灯丝电压为5V;6表示灯丝电压为6.3V;12表示灯丝电压为12.6V。灯丝电压在20V以上时,用实际电压数值表示,例如35则表示35V。

第二部分:表示电子管类型的字母:

D表示“二极管”

H表示“双二极管”

G表示“双二极三极管”

B表示“双二极五极管”

C表示“三极管”

N表示“双三极管”

F表示“三极五极管”

S表示“四极管”

J表示“锐截止五极管和锐截止束射四极管”

K表示“遥截止五极管”

T表示“双四极管和输出束射四极管”

V表示“二次放射管”

P表示“输出五极管和输出束射四极管”

A表示“变频管”

U表示“三极六极管、三极七极管、三极八极管”

L表示“横向偏转射线管”

E表示“调谐指示管”

Z表示“小功率整流二极管”

第三部分:表示同类型管序号的数字,无特殊意义。

第四部分:表示电子管的外形结构形式的字母

P表示普通玻璃管;K表示陶瓷管;J表示“橡实”管;G表示外径大于11毫米的超小型管;B表示外径为8~11毫米的超小型管;A表示外径大于4,小于8毫米的超小型管;R表示外径为4毫米和4毫米以下的超小型管;S表示销式管;D表示盘封管(灯塔管)。

无代号的,外径为19毫米和22.5毫米的小型管,俗称拇指管,例如6N1、6N2、6N3、6N4、6N6、6N10、6N11。

(二)高压、大功率整流二极管和充气整流管以及闸流管的编号

第一部分:表示电子管类型的字母:

E表示真空高压整流二极管

EM表示真空脉冲整流二极管

EQ表示充气整流二极管

EG表示充汞整流二极管

Z表示冷阴极闸流管

ZQ表示充气闸流管

ZG表示汞气闸流管

ZQM表示脉冲充气闸流管

H表示汞整流管(液体汞阴极)

Y表示引燃管

第二部分:表示同类型管序号的数字。

第三部分:没有代号(用破折号“—”表示)。对收信、放大管结构形状的小功率整流管、小功率闸流管和冷阴极闸流管,它的第三部分为表示结构形式的字母(类同一般电子管中的第四部分)。

第四部分:以分数形式表示,其分子表示该管的电流平均值的安培数(脉冲电子管以脉冲电流的数值表示);分母表示反向电压峰值的千伏数。

举例:

ZQM1—325/16表示该管为“脉冲充气闸流管”,脉冲电流为325 A,反向峰值电压为16 KV。

E1—0.1/30表示该管为真空高压整流二极管,电流平均值为0.1 A,反向峰值电压为30 KV。

(三)稳定管的编号

第一部分:表示类型的字母。

WY表示稳压管

WL表示稳流管

WF表示稳幅管

第三部分:表示外形的字母,与一般电子管的代号相同。

第四部分:没有代号。

举例:WY—3P表示该管为玻璃外壳的稳压管。

(四)发射管、调制管的编号

第一部分:表示类型的字母。

FD表示该型号为25MHz以下的长波、短波发射管

FU表示该型号为25~600MHz的超短波发射管

FC表示该型号为600MHz以上的厘米波发射管

FM表示该型号为脉冲发射管

T表示该型号为调制管

TM表示该型号为脉冲调制管

第二部分:没有代号。

第三部分:表示同类型管顺序号的数字

第四部分:表示冷却方式的字母。

S表示水冷式,F表示风冷式,Z表示蒸发式。

举例:FU—10S表示该管为25~600MHz的超短波发射管,冷却方式为水冷式。

(五)其他电子器件的编号

第一部分:表示类型的字母。

CK表示为磁控管;K表示为速调管;KZ表示振荡速调管;KF表示放大速调管;KB表示倍频速调管;B表示行波管;BB表示返波管;FZ表示噪声发生管;R表示放电管;RM表示谐振放电管;RQ表示高气压放电管;OQ表示十进位计数管;GD表示光电管;GDB表示光电倍增管;GZ表示光电增像管;DC表示静电测量管;LX表示录像管。

第二部分:对噪声发生管为表示同类型管顺序号的数字,对其他管无代号。

第三部分:用数字表示同类型管的顺序号,对噪声发生管没有代号。

第四部分:除变形字母的器件外,其余无代号。

以上编号只能大概了解电子管的基本情况,要知道管子的特性、参量、运用数据,请查阅电子管手册。

使用道具 举报 回复 支持 反对
发表于 2012-4-30 18:17:29
世界上最好的电容
--21款Hi-End电容大对决

电容是高传真度设备里不可或缺的重要组成部分,将能量储存在正负电极之间形成的电场中。两个薄膜状的电极(通常使用金属制成)被一层电介质隔开,并折叠或卷起来,就成了薄膜电容。电极的材料有铝、锡、铜、银或者合金。电介质可以是任何绝缘的材料,例如空气、玻璃、陶瓷、云母、纸、聚脂薄膜、聚苯乙烯、聚丙烯或特氟隆(聚四氟乙烯)。最好的电介质材料是真空,其次是空气,第三是特氟隆,随后才是聚酯,聚丙烯,油等材料。
电容的一个重要用途就是信号耦合――通交流隔直流,它使得音乐信号(交流)可以自由通过而直流电压无法通过。没有电容是完美的,任何电容在传输信号的时候都会有不同程度的信号损耗,特别是非Hi-Fi的电容的信号损耗是很大的。理论上的解决办法是采用直耦电路来取代耦合电容,但是任何有电子知识的人都知道,直耦电路不仅实施起来困难而且应用范围有限,很多情况下无法使用直耦电路取代耦合电容。那么,另一个解决方案就是努力去寻找最好的耦合电容来降低信号损耗,这就是我们组织这次评论的主旨,我们花费了16个月的时间来聚齐了所有最顶级的21款hi-end电容。(自从直耦电路被或多或少的奉为hi-fi设计的“圣杯”,有时一些肆无忌惮的hi-fi厂商会慌称自己的器材是直耦设计。例如价值$350,000的WAVAC SH-833,厂家宣称“无电容设计”。但是著名杂志Stereophile的编辑John Atkinson先生却在在电路板上数到了4个电容,其中有两个明显是在信号通路中。)

评测电容介绍

表格1.列出了所有评测的电容以及参数价格等信息,这些电容中欧洲和美国的电容占了大多数,中国和前苏联各有一个品牌,根据作者的了解,不少欧洲或美国的电容实际上也是在中国生产制造(made in china),而且这一趋势还将继续发扬壮大。
所评测的21款Hi-End电容使用的电介质有油浸纸、聚乙烯、蜂蜡、纸、油、特氟隆或者以上材料的混合物。使用的电极包括锡、铝、铜、银和金银合金。少数电容厂家不愿透露电极使用的金属材料或者合金的成分。电容的结构有将金属箔和电介质薄膜卷在一起滚压成型的,也有采用现代金属工艺直接在电介质上沉淀金属形成电极的。传统的金属箔和电介质薄膜制成的电容有较好的音质,但是价格也相对昂贵。经济型的现代金属沉淀工艺制成的电容品质也在音质上迅速追赶上来。
     所有参评的电容都可以在美国的代理商或网上购买到,我们还收集了各个电容厂商的官方网址,以便感兴趣的人获得信息或者邮购。表格一中的价格是2005年10月份北美的参考价,实际价格可能有所不同。
此次评测的有效性同其它科学试验一样,评测的结果是和评测的方法以及环境相关的。

首先,关于所评测电容的任何结论都仅限于发烧器材信号偶合的应用。不能把此次评测的结论扩展到分频器,电源,收音调谐电路和高频滤波等应用。例如,在收音调谐电路中使用的电容最关键的参数是温度稳定性,以防止频率漂移。因此广泛使用银云母电容和陶瓷电容,虽然这两种电容用做信号偶合的效果是声名狼藉的。

其次,虽然我尽力使此次评测涵盖尽可能多的Hi-End电容,但我不可能对所有的电容进行评测,请谅解有可能你最爱的电容并不在此次评测之列。所谓,鱼与熊掌不可兼得。像Solen和Xicon这样的电容虽然非常经济,但却算不上真正的发烧。作者予以评价是由于它们在音响界的广泛使用。

第三,出于评测完全透明的精神,此次参评的电容都是在美国或者欧洲的零售店购买的。除了V-cap电容是从厂家打折购买,因为没有其它的购买途径。Mundorf cap(M-cap)电容是一家厂商朋友送的,这家厂商在自己的产品中大量使用该电容。从零售店购买电容可以防止电容厂家刻意的提供精选的样品,同时作者也可以保证完全公正的对待电容,而不必考虑照顾厂商的面子。这也是汽车工业已成型的评测标准。
不幸的是,发烧音响杂志没有足够的财政来源以此行事。但作者非常幸运的得到了一位有强大财政后盾的发烧友的资助,他也一直在寻找最终极的信号偶合电容。

第四,任何对音质的主管评价都是来自于作者个人的口味和听觉,并且和整个音响系统相关。可能和你听到的声音有差别。因此,非常有必要简单介绍一下我整套系统和我聆听的软件。

评测的平台和方法
所有的电容都连接在作者仿制的Audio Note M7前级的信号输出偶合位置。为了对整套**系统提供和资助的发烧友的身份保密,我不能透露这套**设备的具体细节。但是,我可以向你保证,这套**系统是我曾经听过的三个最好的**系统之一,整个系统价值远超出25万美金。这套系统原来使用的前级,是Audio Note原厂的M10,用来推动同厂最顶级的后级单声道模块:乐音211。我认为这套极度解析,极度发烧的**系统是一个非常理想的平台,可以完全忠实的反应出每一个电容的优缺点。

我的聆听曲目是60%的大规模交响乐和30%的小型室内乐,例如小提琴协奏曲,还有10%的古典爵士。评测曲目来自于一个可观的LP收藏,包括经典音乐 45 再版, RCA Living Stereo (许多第一版), Mercury Living Presence, 以及operatic London pressings的全集。

通常,在器材评论中,不可避免的会提及播放某些具体唱片的效果。但这样评论会使这篇文章过于乏味冗长。因此我会避免谈论具体某张LP在某个电容上的声音。尽管没有统一的声音评价标准,作者会从普遍认可的角度来评价声音,着重在动态,音色,细节,和声场等。
      所有的电容都采用0.1uF/600VDC,如果没有600V的型号,会选用最相近的电压型号。21款电容都经过至少500小时的白噪声煲过。然后所有的电容被顺序安装在M7前级中,进行聆听。我们进行了两轮比较,第一轮从最便宜的电容开始听到最昂贵的电容;第二轮则用来确定第一轮的结论,并特别在特点相似的电容间进行对比。

电容等级

我们将电容分为不同的几组分别评论,首先评测最低等级的电容,等级仅仅根据声音划分,和价格无关。不要对D级别的电容不屑一顾,对于大多数的人和系统来说,D级的电容已经远远好过他们系统中曾经和正在使用的电容。C级为少数几个特别的电容保留的。B级电容则已经非常优秀,但是昂贵到没有器材厂家愿意使用它们。我们仅仅有两个电容被划分入A级,我保证他们的声音比B级的电容好的高过一头还要再多一个肩膀。

无级

太好了,以至于划入任何等级都会被谴责,没有任何突出的短处(作者此处是反语,没有突出的缺点,就是缺点都很突出),这一组包括Solens,Xicon和Jupiter,他们用在Hi-End器材中都有不可原谅的缺点。

Xicon

这一组中最便宜的电容,使用现代金属沉淀工艺处理的聚丙烯制成。我们无法得到进一步的详细资料,厂家也没有自己的网站。

声音明亮,动态,还算中性。它因为过度提升高频而造成的明亮的音色在亚洲地区被称为“快”(为了不造成混淆,需要明确指出在美国所说的“快”通常是指动态好)。我曾经非常疑惑为什么Xicon在古董器材维修方面这么流行,它的声音特色正好用来调教某些太慢太暗的老器材。此外,大多数的古董器材维修商在更换零件的时候是非常在意他们的钱包的,再考虑到古董器材通常需要更换一大批的电容,因此Xicon成为了他们的第一选择也不奇怪。

Solen/PPE 和Solen/SM

在Hi-End厂商中Solen电容毋庸置疑是被最广泛使用的,你很难在打开一个Hi-Fi器材的机壳的时候看不到Solen电容。我们评测的两个Solen电容虽然结构不同,但是有着相近的声音。

依照厂家的说法,此电容拥有超高频特性,损耗率低于0.01%;介电吸收常数小于0.01%;绝缘阻抗大于100 k MΩ/mfd;电介质使用的是聚丙烯薄膜。

Solen电容相对Xicon电容是一个进步,但仍不尽人意,声音比较缓慢。声音总体来说,中频稍有突出。很明显,这不是一款动态电容,其它就没有什么特别的缺点,也没有什么优秀的地方。因为价格低廉,而且有非常可观的批发折扣,因此也就不奇怪应用的这么广泛了。

Jupiter Beewax(蜂蜡)

这是一款自诞生以来就颇具争议的古老电容。蜂蜡浸纸在1940年以前被广泛的用做电介质,然后就渐渐销声匿迹,一直到21世纪,Jupiter才让蜂蜡浸纸电容重见光明。蜂蜡在技术上有很多不足之处,首先蜂蜡很容易融化,流失了蜂蜡之后电容就会失效。其次蜂蜡电介质从现代的标准来看有太大的失真和漏电。但还是有一部分人始终认为蜂蜡电容具有音乐味,Jupiter发现了这一小部分市场的需求,因此又把这个史前恐龙带了回来。

这里有一些我从官方网站摘录的描述:“我们相信电介质是电容最重要的部分”“纸的成分和处理方法是关键,使用蜂蜡浸制是很好的方法”“蜂蜡含有的天然蜂胶是非常好的抗氧化剂,同时也是抗真菌剂,抗细菌剂和抗病毒剂”嗯,具有超强“保健效益”的蜂蜡是否也确实可以带给我们好听的声音吗?不是。事实上,在我们的天价**系统上,蜂蜡电容失真太大而且匮乏动态。对于厂商来说有利的结论是,蜂蜡电容的失真会使初级发烧友感觉声音非常温暖,并且可以很好的改善数字味。和前面两款电容不同,蜂蜡电容相当昂贵,大概要17美元。如果从此次评测的性价比上来说,这款电容无疑是在21款中最差的,我强烈的反对任何人使用这款电容,这个史前恐龙的时代已经过去,它不应该属于这个世纪。

REL/PPMT

REL(Reliable)是电容界的另一个巨人。它也同样给发烧厂商非常优惠的批发价格,同Solen一样,REL的电容也是随处可见。PPMT是REL令人眼花缭乱的产品线中相对便宜的型号。

淡而无趣的声音,其它方面,它算是一款是比较中性的电容,没有太大的缺陷也没有什么另人兴奋的地方。这款电容算是接近E级的底线。

E级

俄**用特氟隆电容

我为电容划分等级是非常小心和严格的,如果不是因为如下的两个缺点,这款精工打造的电容完全可以得到C级的评价:1、不管使用白噪音煲多久,仍然有些呆板的音色。2、低频的重量感和冲击力稍有欠缺,这对于大多数发烧友来说都是个大问题。除此以外,这款电容拥有另人无法相信的解析力,仅仅有三款贵很多的电容在解析力上和它在一个档次。这款电容也非常的中性,有极好的动态。对于现有器材低音过重,并且追求高解析力,中性音色和大动态范围的人,这颗电容无疑是一粒仙丹。作为前苏联的军用过剩品,这款电容可以经常以2~3美元的价格在eBay上购得。同时要明白这款电容的个头是非常大,而且引线也和传统电容不同,请确认你有足够的空间安装它。

这款电容是E级电容中的老大,同时也是性价比最好的几款电容之一。

North Creek Music/Crescendo

使用电介质薄膜和金属箔卷制。引用厂家的话“1995年开发的,专为旁路(bypass)大容量电容设计,特殊金属的薄膜电容。Crescendo旁路电容拥有丰满流畅的中频和中高频,它最独特的地方是音色甜美和令人回味。”
非常中肯的评价,特别是另人回味的特点,但它仍然不够完善,和更高级的电容比起来动态差了很多。不过它的音色的确不错。特别值得一提的是Crescendo原本是为了音箱分频器设计的。一些我信任的Hi-Fi高手看起来非常赞赏这种用法,特别是用做旁路电容的时候,我把这个评测的机会留给读者。

D级

Mundor/Supreme

就是众所周知的M-cap Supreme,这款德国的电容使用金属沉淀工艺处理的聚丙烯薄膜,拥有极好的低损耗特性。根据厂家的声明,所有的M-cap电容都拥有以下特性:
1、 特别的无电感缠绕技术:每一颗电容都有两个独立电容采用隔行的方式缠绕而成,恰好使两个电容的电感相互抵消。两个电容采用串联的方式,这意味着,要生产一颗1uF的电容,则需要两颗2uF的电容隔行缠绕在一起――而在传统工艺则可以生产出4uF的电容了。
2、 使用了可用到的最好的原料:M-cap Supreme电容所使用的聚丙烯薄膜拥有超低的损耗特性。
3、 坚固的塑料和铝容器:防止麦克风效应,保护重要的小信号细节。

M-cap Supreme是实至名归的High-End电容,在测试的这段时间里,它靠实力赢得了荣誉。它被划分在D级只是因为竞争太残酷了。它还原了一个巨大开阔声音现场,拥有极好的深度。细节和音色都非常出色,唯一在解析力上比刚高档的电容差了一点。我们评选它为高性价比电容之一。

Mundorf/Supreme 金银合金

M-cap的顶极电容,却有些另人失望,价格非常昂贵,因为“导电材质使用了99.99%的纯银,并掺入了1%的高纯度金。金的加盟改变了银的晶体结构,使得导电率达到了最高点”

它保持了Supreme电容的所有优点,并且在各方面都有所改进:更好的解析力,更好的动态,更好的音乐味,更好的声场,等等。不幸的是,它的声音并不比它的弟弟M-cap油浸银膜电容好。因此它没有被划为C级电容,虽然它在D级电容当中是最好的。

Audience Auricap电容

这款现代金属工艺制成的电容自从被Jenna Labs的Jennifer标称其音质超过260美金的特制特氟隆电容之后,就拥有一大批狂热的追随者。有一位工业巨匠同时也是LP发烧的领军人物Walker Audio的Walker先生却持有完全相反的意见。不幸的是我们无法得到这款真空密封的特氟隆电容。否则我可以作出自己的比较评价。无论如何,这款电容拥有世界级的中性声音,唯独欠缺的是顶级的解析力和动态。另外两款特氟隆电容V-cap和俄罗斯军用电容都可以在这两个方面轻易的把它打败。这款电容拥有极好的平衡度,它什么都好除了不能使人兴奋无比。概要的说,他是一款Hi-Fi厂商梦幻级的电容。
Auricap电容过去的价格非常诱人,在得到了很多评测人的肯定之后,供货商开始渐渐的提升价格,在过去的三年中,它的价格涨的惊人。虽然如此,它仍然是非常值得购买。

Hovland Musicap电容

这款金属箔和电介质薄膜电容席卷了全球的超高档音箱分频器市场。官方网站声称:“Musicap拥有非常好的动态,速度,正确的音色和深远的声场,引人入胜”
所有这些都在信号偶合的测试当中得到了证实。“目前为止可以买到起最有音乐味的电容”,就象它的名字那样,这款电容真的是非常有音乐味。但音乐感无法比及一些名次在它之上的电容。听过Audio Note的银电容之后再听这款电容就明显的很痛苦了。在音乐性一组的对比中,它被天下无敌昂贵的Audio Note银电容在各个方面一一击溃。作为一款卓越的电容,它稳固地在D级占有一席之地。

卡达丝黄金比例电容

它的特点是“两个黄金比例的电介质层被金属层隔开,造成了‘能量按比例释放’。能量释放的总数和比率被按照恒定的黄金比例分配到两个电介质中。这种合成的电介质消除了单层电介质的共振,并提供了很好的层间阻尼。”使用黄金比例是非常闪亮的主意,可是不管理论上如何天花乱坠,它到底是一个宣传的噱头还是真正的校声手段呢?结论是:这个电容有非常顺滑的音色,好的解析力,很好的音乐味。黄金比例绕法的确有效。我很赞赏这家公司的官方网站,他们显然没有说大话。

TRT Dynamicap

有两个版本的Dynamicap电容,一种专为电路设计,另一种专为分频器设计。我们评测的是专为电路设计的版本,厂家的官方网站有大量的吹嘘文字,其中一个网页上写到他们的比“所有其它电容”有更多的动态,更好的音乐味,更中性的音色,更高的透明度,另一个网页上专门说明为什么其它电容都不如他们的电容。如此大量的“豪言壮语”使我不得不对这款电容心存戒备。幸运的是,Dynamicap的确实现了大多数的“豪言壮语”。那是一种醇厚的另人喜爱的声音。鉴于它的名字的含义,首先值得赞赏的就是动态。从它的标价来说,这是一款值得购买的电容。但是,不管官方网站说的如何动听“纯净,透明,空气感,开阔,速度超过任何电容”,它始终在各个方面都远远落后于,举例来说,V-cap电容。

C级

因为5款C级电容中其余4款全是油浸,因此我们先来评测这款非油浸的电容。

REL/Exotica PCU

REL电容家族中的Exotica线产品,使用金属箔和电介质薄膜的结构。PCU电容使用铜箔作为电极,拥有一个非常有音乐味的声音,一流的解析力和动态,流畅的音色。不幸的是,它的声音不如油浸电容那样自然,泛音丰富,虽然只差了那么一点。否则,我可以自信地宣称这款电容在C级是最好的。另外,虽然它的价格比Jensens高出很多,但是你可以得到更多的动态和可靠性。我会对后一点做出详细评论。

油浸电容

C级剩余的四个电容都是利用油作为电介质,具体以油纸或者油浸聚丙烯的型式。读者请注意我们只有三款电容超过了这些油浸电容的声音,只有最苛刻的发烧友才能感觉它们的不足。因为这些油浸电容都表现出类似的声音特性,因此我将先介绍相似之处。油浸,特别是油浸纸膜是最古老的电介质材料之一,在现代电容器出世之初就被广泛采用。另一个古董级的电介质材料――蜂蜡在这次评测中并不理想。油浸是否能逃过同样的命运呢?自从蜂蜡电容让我大失所望之后这个问题就一直困扰着我。但另一方面,油浸电容自从它诞生之日起就一直保持量产,从来没有被淘汰,是否达尔文的进化论预示着它拥有超凡的音色呢?
这四款油浸电容在此给予了进化论彻底地肯定。使用古老的油电介质并不会使油浸电容像某些人想像的那样混浊和染色。它们全部都是非常中性而且自然的声音,虽然他们的解析力不能和三颗最顶级的电容相比,但不亚于上面几乎所有评测过的电容。
通常人都误解油浸的声音应该温暖的。如果有人想要使用油浸电容来校正过于干瘦,太数字味的系统,结果是会非常失望得。我们测试的所有四款油浸电容都没有温暖特点。“它们只是听起来十分正确,拥有现场音乐丰富的泛音。”这段Jensen官方网站上的描述真实的反映了油浸电容的特点。

一些人认为油浸电容声音昏暗模糊,我完全不同意这样的说法,至少我测试的这四款油浸电容不是这样。另外一些人主张油浸电容有油滑的感觉,这可能听起来太搞笑了,我却真真切切的体验过这一点。那时我还是20多岁,耳朵听力超出两万赫兹。

几年前我还能够通过声音是否有油滑的味道,而轻易的判断出信号通路中是否使用了油浸电容。但是现在不行了。年华似水,残忍的机体衰老逐渐侵蚀我的听力,现在的我几乎听不到19.5k以上的任何声音。我仍然记得在新泽西音响协会在Anna Logg家中的会议上,人们都非常惊讶我居然可以听出来一台新开发的BAT VK-75SE中使用了油浸电容,后来确认是使用了Jensen的油浸。
下面单独的介绍每一款油浸电容。

Audio Consulting油浸电容

生产这款电容的是家瑞士公司。它还生产“声名狼藉”的纯银电阻买到了几百美元一个。官方网站对他们的油浸电容有如下声明:

名表故乡瑞士本土的机器加工和装配工艺,误差低于10%。
用油填充金属容器的结构带来了高的电介系数并可以有效阻尼震动(特别是在喇叭分频器中)。
在高温的环境,例如电子管功放中,不会引起容量衰减或容量波动。(测试条件:56天工作于70度高温。)
使用天然油。
仅仅使用了纸电介质。(没有混合高分子材料,例如聚丙烯。)
特别的防水油漆,防止潮湿环境。(专为热带条件设计)

显而易见,厂家在为电容校声的时候也在努力让电容保持高稳定性。对于大家来说这是一件十分重要的事。不幸的是,我没有条件亲自测试这款电容长时间工作的可靠性。众所周知,油浸电容,像蜂蜡电容一样,可靠性往往声名狼藉。在讨论Jensen的时候我们会继续讨论这个问题。

这款Audio Consulting油浸电容是这次测试的四款油浸电容中最好的一个,最好的解析力,最多的空气感,最高的动态,最迷人的音乐味….数不胜数。另外它可以支持非常高的电压。它的个头可真说不上小,如果你打算购买它,请先确认你有足够的空间可以安装它。可是千好万好,它还是有一个致命的缺点,就是它的价格。65美金一支,只有Audio Note的银电容的价格超过了它。而且更不幸的是,它比天音级的V-cap特氟隆电容49.99美元的价格还要贵。在自由经济市场里,我想不明白为什么有人会买它而不是V-cap。

Jensen油浸铝箔和油浸铜箔电容

伟大的Jensen帝国自从1917年成立以来,就从未停止生产油浸电容,甚至在70年代晶体管和电解电容组成的日本“高档”器材充斥市场的时候。随着80年代电子管浪潮的再度兴起,Jensen对油浸电容的信心再度被充分地认可。Jensen公司曾经有过辉煌的历史,现在依然是全球最大的高档油浸电容制造商。

我们测试的两款Jensen电容,一款使用铝箔电极,另一款使用铜箔电极。它们有一些共同的特性(来自Jensen):
引线采用纯银,轴线设计,直接密封焊接到电极终点上。电极终点连接于外层的金属箔,最靠近外壳的金属箔端有垂直线标记。
电容密采用酚醛朔料密封入铝管中。
最小误差:容量等于和小于0.1uF的电容在-20~30%,容量大于0.1uF的电容在-10~20%

我们测试的两个电容中,铜箔的声音在各个方面都要远远好于铝箔,特别是解析力和音乐感。因此,只要你负担的起,买你能够买的起的最好的金属箔。你可能觉得我对Jensen电容声音的评价太简单了,因为我就是以Jensen为蓝本来描述这整个一组油浸电容的。其实,铝箔Jensen应该排在D级,列在这里是特别表彰它多年持续地生产。

Jensen还有一款使用银箔的电容,我非常希望可以评测它,不幸的是这个愿望没有实现。

Jensen油浸电容在这一组中是比较便宜的,我在强烈推荐它的同时,也提出以下警告。
首先,Jensen是一打电容里误差最大的,在现代工艺下,这是非常糟糕的。好在偶合应用时对于声音来说影响不大。

真正的问题是可靠性,根据Jensen的官方网站,它们的油浸电容在85度的高温下仅仅有250小时的寿命。对于Jensen的解释你可能要跳起来,“实际电器中的温度要比85度低的多,因此寿命一定可以成指数延长。”因此而吃到苦头的厂商不在少数,我不会泄漏这些厂商的名字,免得它们被关于Jensen可靠性的询问而打扰。如果你真的对这些厂商的恶梦体验感兴趣,只要去Google或者audioasylum.com的博客搜索一下就知道了。基本上,如果你要使用Jensen,一定要确认你的机箱温度保持凉爽,并且在使用半年之后就应该每季度检查一次,如果看到任何变形,污点,漏油等现象,立刻更换它们。

Mundorf Supreme(M-cap)银膜油浸电容

M-cap银膜油浸电容是2004年的新产品。 引用厂家的描述:“Supreme油浸银箔电容是现代金属工艺处理的油浸聚丙烯电介质电容,使用无感缠绕技术,高纯度的银作为电极层,绕组中充满了特制的油。油的选取经过了最完备最详尽的实验和聆听比较。最终我们恰好得到了一个全面,顺滑富饶和多姿多彩的声音。”“这个电容可以反应最好的细节,表现最细微的差别,因此可以使音乐更鲜活多汁,而且没有刻意强调任何东西。”

这是一个卓越的电容,拥有非常流畅的声音和世界级的声场。

尽管它不是Mundorf产品线中最昂贵的电容,但它却是这家德国厂商的最好听的电容。它使得M-cap的其它电容,包括Supreme和金银箔都甘拜下风。“这也是第一次油浸电容的设计被成功的同世界知名的高稳定性的现代金属工艺薄膜电容以及无感缠绕法相结合的结果”。我相信其它高档器材厂商也许将会很快的选择M-cap电容取代Jensen,以取其可靠性。

B级

REL/Exotica TFT电容

这款B级唯一的电容是REL电容家族中的Exotica线产品中最昂贵的特氟隆电容。厂家的官方网站声明:“我们制造世界最好电容”。这便是他们所指的电容。虽然它远远好于我们已经评价过的电容,但还是毫无疑问地逊于V-cap和Audio Note银电容。

当三年以前第一次遇到这款电容时,我立刻被它中性动态的声音以及其它所有的优点给震翻在地。在当时,那是一种惊人的体验,如果这篇文章写在当时,我一定会立刻宣称这是这个世界上最好的电容,确认厂家网站上的说法,并大肆宣传这款电容的神奇。

现在我不会再这样作了,因为今年听过了两款难以置信的电容。虽然Exotic TFT是一款非常出色的电容,但是我推荐多花不到20%的钱去买有相似的风格但是在每个方面都好了太多的V-cap。

坦白的说,除非只有8美元的价格差异能够让买家的会计师大皱眉头,我无法想象任何人会舍弃V-cap而去买REL。当然厂商总是会首先考虑批发折扣和成本。事实上我知道一家非常卓越的厂商Atma-sphere因为Reliable Capacitors给它非常优惠的价格而使用他们的电容。
A级

V-cap TFTF特氟隆电容和Audio Note银电容是两个当今世界上最顶极的电容。我对于他们的热爱和赞美永远都不会显得过分。事实上当我写到这一章节时,我的心都开始剧烈的跳动,还伴随着口干舌燥,手心出汗,瞳孔放大等症状。就在今年我第一次听到他们的声音的时候,两次我都几乎不能把我的下巴从地板上收回来。这种体验相当于在Hi-Fi王国中的宗教信仰转变。我希望我能够在我的发烧生涯中更早遇到他们,真是相逢恨晚。无缘早遇的原因其一是V-cap特氟隆电容是一个崭新的2004年底才被一个非常小的公司开发出来电容;其二是Audio Note银电容过于昂贵,虽然它在市场上已经存在将近20年。以后我决不会在顶尖器材信号偶合的应用上使用除了V-cap和Audio Note银电容以外的任何任何一款电容了,他们就是这么好。(V-cap 和Audio note都有油浸电容,我不评测他们是因为V-cap的最小容量是1uf,而Audio Note的油浸电容直到6年前还由Jensen代工)

V-cap TFTF

这是一款相当新的产品,由Chris VenHaus先生开发。Chris先生因为在自己的网站和博客上发表各种线材制作配方而闻名于发烧界。

我曾按照他的建议使用非常细的银线(0.125毫米)制作信号线,直到今天,除了Omega Mikro以外,市场里再也找不到其它信号线能够比我这根家庭自制的线更好。当我今年早些时候知道V-cap电容的存在时,我就对自己说一定要评测这款电容。

引用Chris的网址,这款V-cap TFTF特氟隆膜锡箔高保真电容是经过广泛的研究,由电子、化学、材料科学等各个领域的世界最著名的顶尖专家以及音响界的顶尖耳朵组成的开发小组研发出来的。虽然特氟隆是仅次于空气和真空之后最好的电介质,但它并不是很一个容易使用的材料。使用特氟隆薄膜一个最大的问题就是微孔渗透,它形成于制作薄膜的过程,当薄膜在缠绕电容的过程中被积压之后。微孔渗透可能造成相邻电极层之间的微放电。微放电的积累效应是电容的退化和性能的降低,特别是信噪比。V-cap设计团队解决这个问题用上了瑞士制造的缠绕机器和自己独有的工程学绕线筒。这样在绕制电容的时候可以在特殊的特氟隆薄膜上保持轻而稳定的张力,就这样就极大的解决了特氟隆薄膜上微渗透的形成,减少麦克风效应,提供一个难以凌驾的坚固度和质量控制。

为了取得进一步的提升,V-cap的工程师还发明了一种新的绕制方法,叫做:Variable Stage Quadrant Dielectric (V.S.Q.D.).。这种独特的绕制方法是电容技术的一个重大进步,因为它从三维方面降低了微渗透,确保超低噪声,长寿命,并且作为其它低品质电容的校正电容并联时高频延伸自然,没有高频疲劳。

Chris一定是用尽了所有的投资为最苛刻的发烧友打造了这款不计成本的电容。现在用户可以即拥有油浸电容的滑顺,流畅和音乐味。又可以有很好的精确度,透明感和细节。听到和感觉到真正的低频下展,同时不损失一点控制力。使你陷入天鹅绒般黑暗背景下的全息声场,同时,还能享受到油浸电容才可以拥有的流畅中频和自然的音色。V-cap TFTF可以重放出一件乐器的另人无法相信的质感和准确度。在这个电容的设计过程,没有任何细节被忽略。甚至包括18AWG的实心铜引脚和环氧树脂都从音乐味和细节两个角度精心挑选。

虽然我事先已经对厂家的大肆宣传心怀戒心,但是当我终于装上这个电容之后,我立刻被震住了。在我的一生里,从来没有体验过或者期待过体验这样一个伟大的电容。

然而我感到很伤悲,作为一个器材评论员,我总是想要第一个报告另人激动的产品。可惜我被Arthur Salvatore先生抢了先机。Arthur Salvatore先生是一个著名音响作者,他恰恰在几个月前在他的网站上报告了V-cap特氟隆电容。

让我感到安慰的是,我仍然是第一个在中国音响杂志上介绍这款伟大的V-cap电容的人,但对于时机一從即逝的遗憾不会那么轻易消散。

V-cap TFTF的声音到底有多好?除了引用厂家观点,我还要借用Salvatore先生的12定律来证明你必须信赖V-cap。

1. 它是我听过的最中性的声音。
2. 它我听过的是最快速和最富有细节的电容。
3. 它提供最自然的质感,空间感和小信号细节。
4. 它是最纯净的声音。
5. 它是我听过最直接和最透明的电容。
6. 它是我听过的最激烈动态的电容。
7. 它提供最大的分离度和最小的同化。
8. 它是我听过电容中有最机智的电容。
9. 它的声场是最聚焦的。
10. 它有我听过的最紧凑最干净最自然最有力的低频。
11. 它拥有我听过的最高的频率延伸。
12. 它拥有我听过的最低的背静噪音。

读者可能注意到一些句子和词语是斜体,那意味着我有不同的结论。记住Salvatore先生从来没有机会评测昂贵无比的Audio Note银电容。后者则是V-cap在争夺电容之王时的最大竞争对手。

虽然12定律减少为10定律,这仍然足够使Chris先生,V-cap电容之父,成为音响王国的上帝。这就是V-cap电容应得的荣誉!

除了非常好的声音,Chris先生还指出,V-cap TFTF电容要比其它电容都更耐高温,在电子管机器中常见的高温环境下仍然可以保证信号传输的准确性和稳定性。事实上,Chris先生对自己电容的可靠性如此有信心,干脆提供了终身质保。

关于V-cap TFTF电容需要补充的一点是,要褒开一个V-cap特氟隆电容,需要难以置信的400-500小时。而没有褒开的V-cap电容的声音是不可理喻的难听。它可以把你带入声音的地狱之旅。一定要注意。

正当我要宣布V-cap电容是世界上最好的电容的时候,Audio Note银电容出现了。

Audio Note银电容

根据厂家的声明,这款银电容使用99.99%的纯银箔,20根银编织线引出,坚固的无磁铜管。他们使用了高质的聚酯薄膜取代油浸纸电介质,并且发现这是在声音和稳定性间最好的平衡点。

然而,每个人首先会注意到的关于Audio Note银电容的事情是它飘在云尖的价格。因此,虽然这款电容已经上市10年多了,仍然很少有人购买,或者认真的评测它。

让事情变得混乱的是,日本有一个Audio Note,英国也有一个Audio note。

我们评测的这款Audio Note 银电容是来之英国的Audio Note,而不是日本的Audio Note。这里有一些2005年12月份北美市场上的银电容价格信息。
0.10 μf $155.80
0.22 μf $202.95
0.47 μf $332.10
1.00 μf $481.75
2.20 μf $902.00
3.30 μf $1,389.90

觉得太昂贵了?再来看看日本Audio Note的价格,这是1992年日本Audio Note银电容的价格。
0.05 μf £270.00 ($475,2005年12月的汇率)
0.10 μf £540.00 ($950)
0.15 μf £845.45 ($1,488)

还想问其它容量的价格吗?是不是太惊世骇俗了。而且上面表格中的价格还是1992年,距今有13年的通货膨胀。为什么日本和英国的产的电容价格差异如此巨大?显然有强迫症倾向和顽强性格的日本人一直坚持在显微镜下用纯手工打造电容,甚至电容用的银箔都是手工拉制的。那么日本版的声音就真的比英国版的声音好吗?这个问题的答案我一直没有找到,而且我可能永远也不想找到。记得我朋友天价的Audio Note 乐音211单声道后级上有最原始的日本版银电容。我们没有把它拆下来比较,因为:

1. 拆焊和重焊的过程不可避免的会降低Audio Note乐音 211出厂时的校声,甚至可能因此失去机器原本的品质。
2. 就算我们发现日本版的银电容好过英国版的银电容,设想一下,声音的提升能有价格的差异这么大吗?

英国Audio Note的Peter Qvotrup先生一直在为降低银电容的价格而非常努力地工作,可目前0.1uF电容155.8美金的价格还是很难让人接受。它比所有其它的电容要贵出一大节。在美国你要为它缴纳的购物税都要比我们评测的大概一半电容的价格都要高。

但是,在顶极系统中,你为它花费的每一分都是值得的。

简单的说,这一款电容具有最多细节,最自然的质感,空间感和小信号细节。这些细节包含难以置信的复杂丰富的泛音,连V-cap都无法相提并论。而且,这个电容拥有难以形容的音乐味,远远超过现有的任何电容。有人指出因为评测环境是一台仿制的Audio Note M7,那么肯定和它自己的电容搭配的非常好。为此,我特意把这款银电容放入另外一个高档前级中试听。结果,这些魔法般的品质依然存在。

对于我来说,鉴别出一个世界级的音响产品最可靠的方法就是情感反应。如果我的情感被声音打动,那么它一定是一款伟大的产品,而相反的情况并不能说明什么,因为不能排除我可能当时情绪不好或者有别的因素。在我刚开始评测Audio Note银电容的时候,所经历的情感风暴几乎使我窒息了。

V-cap在10定律闪烁光芒,就像Salvatore先生说的,拥有最高的清晰度。那么Audio Note银电容,无庸置疑拥有最感性的音色。

对于大多数人,这就足以让他们认为这是世界上最好的电容。我正是我朋友的结论。他认为没有任何必要把银电容从Audio Note机器中换下来。如果说V-cap是电容世界的法拉利,那么Audio Note银电容就是劳斯莱斯。一个另人兴奋,一个奢华无比。一个征服了我的理智,一个抓住了我的心。做你自己的选择吧。


结论

评测21款电容真是一次奇妙的旅行。对于预算有限的消费者,俄罗斯特氟隆电容是最好的选择;如果追求合理价格和卓越的性能,选择Jensen和M-cap油浸决不会有错。对于毫不妥协的终极发烧友,Audio Note 银电容和V-cap TFTF电容应该是你唯一的选择。

可以想像,读者一定非常想要我在这两个最好的电容间确定一个优胜者。这真是一件困难的事情,因为最后的选择取决于你的系统,一个可靠的做法是在你的双声道系统中至少使用两个Audio Note电容来获取它魔法般的品质,然后其它的部位全部都要使用V-cap电容。最终我把电容之王的桂冠授予给V-cap电容,因为它是最平衡最百搭的电容。
使用道具 举报 回复 支持 反对
发表于 2012-4-30 18:16:24
音箱技术指标的解读与应用。
下面以法国劲浪907Be书架箱为例:
1、承受功率:90W
2、频率响应:50-37KHZ-3dB
3、称称阻抗:8欧
4、灵敏度:89dB
5、净重:12kg
6、体积:H×W×D  420×231×348
①承受功率90W,指谈箱非线性失真不超过规定值(一般为1—5%),可连续工作馈入的平均功率,也称额定功率,它是动态指标。在实际使用中,尽量不要长时间工作在90W以上,但短时间是容许的,也是不可避免的,因音频信号中含有大量的焠发信号。特别有些CD试音碟,瞬间动态极大,往往超过正常信号N倍。有不少初哥们,用<阿姐鼓>来试低频,往往将功放音量旋至接近或超过12点位置,常造成打底、拍边现象,甚至烧毁喇叭,要特别注意,尤其对进口书架箱,它们一般过载能力不是很强。(主要出于商业考虑,承受功率越大,价格相对就越高)。国产的相对要好一些,由于长期受计划经济影响的延续和国人较诚实的态度,留有的功率余量要大一些。如“飞乐……南鲸等”。不过也不要怕,音箱必竟是来用的,不是看的,短时间2倍于额定功率没有问题,最高可达到4倍(极短时间内)。
一般平时欣赏音乐音量控制在3-10W就可以,10W是什么概念,你可用万用表,测一下功 放输出红黑二端,交流摆幅至9-10V(指8欧音箱时),那时的输出功率就在10W左右,计算方法:交流电压(V)的平方除以音箱阻抗(欧)等于功率(W),此时响度已经能感觉到低频的震撼了。
②频率响应:(50-37KH2-3dB)也称有效频率范围,是指给扬声器加以恒定的信号。由低频到高频所辐射的声压随频率而变化的特征曲线,国际电工委(IEC)规定,平均声压级降低10dB作为扬声器的有效频率范围,现在看来这一标准太低了,现在的厂家标准大大高于此标准。
如果音箱频响中不注明负多少dB,那么频响指标就毫无意义,劲浪所标出的很清楚是-3dB,反映出该箱有着一条极为平坦的频响曲线,就单项指标而言,它的重 放音质一定不错。反之,有些进口箱也可标准-6dB,低档货标-10dB,有的干脆不标故意来迷感人。同一音箱所标注的频响,因下降分贝值不同,数值也将不同,
如劲浪箱:50-37KHZ-3dB
也可以标:45-40KHZ-6dB
更甚者标:38-42KHZ-10dB
干脆不标:32-37KHZ
所以看频响指标,一定要注意下降分贝值,才有参考意义(前面50HZ数代表低音频率越低越好,后面37KHZ代表高频率,越高越好。此款劲浪907Be音箱,标准严谨,指标颇高,性能肯定不错。
③阻抗8欧,扬声器实际阻抗是具有随频率变化的特征,称为扬声器阻抗特征,它在低频共振频率f0时呈最大值。待过了共振频率f0频率逐渐升高时,阻抗会出现一个最小值这时的阻抗就称为额定阻抗,这句话可能不好懂,说通俗一点就是在低频共振频率上升拐弯处时的对应阻抗,就为额定阻抗。它一般是音圈直流阻抗的1.05-1.1倍,如8欧额定阻抗,实测音圈直流电阻在7.2左右。阻抗多少欧并不影响音质,只是给配功放时作为参考值。一般家用音箱在4-16欧之间,选择8欧较好,尤其是作中环音箱,将来升级主箱时容易匹配一些,因为AV功放大都不建议你用低于4欧的音箱。
④灵敏度89dB,是表示扬声器电一声换能效率的量化指标,通常用分贝数表示。特征灵敏度就是给扬声器输入IW粉红色噪声电功率时,在距扬声器轴线IM测得的声压级(在消音室里测量)。
灵敏度指标的高低,对选配功放有一定的意义。因行业上习惯定义:每相差3dB,响度也就相差一倍,也就是说在给音箱馈入同等功率时,如90dB的音箱,就要比87dB音箱,所体现出声音响度要大一倍,以此类推,93dB就大2倍……。
市面上常见家用音箱大都在84-94dB之间,我把它们分为三个等级:①低灵敏度的,84-86dB
                    ①中灵敏度的,87-89dB
                    ①高灵敏度的,90dB以上
在选购音箱时尽量选用中,高灵敏的(87dB以上)尤其是玩AV,一般AV功放功输出功率有限。反之,则必须配大功率AV功放,不然的话推动低灵敏度音箱对(如丹拿,AAD等),为取得某些音响效果,不得不人为加大AV功放的输出,对功放是不利的。当然如真正玩Hi-Fi则另当别论。
⑤净重12kg,好理解,一般音箱越重越好,箱体结实有利于消除共振现象,国际标准重量单位为kg,我国常用公斤来表示。
⑥体积,一般以毫米或厘米计,国际上已有按英寸计,1英寸=2.54厘米,大家换算一下就行了。H代表高,W代表宽,D代表深。
⑦另音箱还有一个重要的失真度指标,一般厂家不愿标出。失真度包括谐波失真,互调失真,相位失真等,常用百分数表示失真度的大小。音箱的失真度一般在2-5%,进口名牌较好的型号可控制在1%左右,厂家不愿标出的原因是与其它音响器材相比,如功放,CD机等,失真度都在万分之几至十万分之几,唯独音箱在百分之几太丢人了。为什么我们常说音箱是音响器材中最博弱的环节,主要是指它的失真度。在电声转换过程中,很难消除一些机械的、几何的、电磁等方面的影响。所以厂家干脆不标出此项指标。
使用道具 举报 回复 支持 反对
发表于 2012-4-30 18:16:13
功放技术指标的解读与应用。

以清华大学TW-2008X世纪版为例
1、输入灵敏度:200mv
2、谐波失真度:0.01%
3、输出功率:2×100W(RMS.8欧)
4、信噪比:96dB(不计权)
5、频率响应:3-156KH2(-3dB)
6、阻尼系数:280
①输入灵敏度200mv,是指功放输出额定功率时所需最小输入信号电压,其要求输入≥200MV即可,如小于此输入值,功放将达不到额定输出功率。CD、VCD、DVD一般输出为2V,大大高于200mv,使用决无问题(一般国际标准在150-220mv之间),此项可忽略不计。
②谐波失真度:这是功放一项极重要的指标,谐波失真是非线性失真的一种,它是放大器在工作时的非线性特征所引起的,失真结果是产生了新的谐波分量,使声音失去原有的音色,严重时声音发破、刺耳。谐波失真还有奇次和偶次之分,奇次谐波会使人烦噪、反感,容易被人感知。为何有些功放听起来让人感到烦噪,感觉疲劳,就是失真较大所引起的。对功放影响最大的就是失真度,一般高保真要求谐波失真在0.05%以下,越低越好。TX-2008能做到0.01%, 应该说是不错的, 进口高档功放可做到0.002左右,令人玩味无穷、久听不厌,就是因为做到了极小的失真度的原因。
除了谐波失真外,还有互调失真,交叉失真,削波失真,瞬态失真,相位失真等,由于篇幅关系暂免叙述。总之,诸多失真是影响功放质量的罪魁祸首。考核功效的优劣,首先要看它的失真度。
③输出功率,功率问题最令初哥们迷惑,其各厂家标识也很混乱,下面逐一讲解:
A、额定输出功率,称为(RMS),指放大器输出的音频信号在总谐波失真范围内,所能输出的最大功率,是最常见的,也是比较实在的标注。
B、削波功率,指放大器输出正弦波信号刚刚开始削波时的功率,它比额定功率要大1.6-2倍。
C、音乐输出功率,指输出失真不超过规定值的条件下,功率放大器对音乐信号瞬间最大输出功率。简称(MPO)。
D、峰值输出功率:功放所能输出的最大音乐功率称为峰值输出功率,简称(PMPO),它不考虑失真,通常为(RMS)功率的8倍左右,它的出现是厂家出于商业目的,并无实际意义。早期双卡录音机大都用此功率来标注。那么(RMS,8欧)又是什么意思呢?是指8欧情况下可输出额定100W功率,如在4欧情况下,还可增加1.5-2倍的输出功率(这要看机器内部变压器的容量和用管数量了)高档功放甚至可以工作在2欧,主要是功放内部        用料的功率富裕量因素决定的。一般甲乙类功放最低只能工作在4欧以上。
通常功放标注以(RMS)具多,用它来选配音箱与之配合是比较妥当的。
如何来验证功放的(RMS)功率呢,业余情况下有二种简便的方法:①用功放输出电压有效值的平方与负载的比值来表示,即P=V2/R,P为有效功率,V为功率输出端交流电压,R音箱标称阻抗。如测得交流摆幅为20V,音箱阻抗为8欧20×20÷8=50W,音箱4欧时=100W,所得结果为近似值。②直观估算法:一般甲乙类功放,如采用300VA电源变压器,按效率70%计,即300×0.7=210W÷2=105W(每声道)也就是这台功放输出功率最大不会超过2×105W,反过来计算,如果2×100W的功放,按要求那么它所采用电源变压器的容量一定不会小于300VA。TW-2008完全符合这一要求,还留有不少的余量。
一些进口AV功放,5-7个声道、每声道总标百余W,总功率上千W,但电源变压器就那么大,天晓得他们是用什么功率标准算出来的,日系AV最明显,总以6欧来唬人,真正按8欧算出来有实足的100W(每声道就不错了)用过AV功放的人都知道,大动态时往往显得脚软。故我常推荐购AV功放,最好选择中档以上,否则形同鸡肋。
④信噪比:数值越大越好,一般用(S/N)表示,用信号功率Ps与噪声功率Pn的比值的分贝数表示,S/N=10lgPs/Pn=20lgVs/Vn(db)(公式不好打,只好改为左视)
式中Vs、Vn分别为信号电压与噪声电压。信噪比与输入信号电平的增加,信噪比也逐渐加大,但当输入信号电平达到某一数值后,信噪比基本保持不变,按目前高保真要求。信噪比应达95dB以上为好,进口高档机往往可达110-124dB,其性能可想而知了。再说计权问题,有的信噪比后面有A计权字样,A计权是指将噪声信号通过(附图)所示计取曲张加权网络后测得的结果,由于人们对于高、低频段的噪声相对来说不太灵敏,所以出现了(附图)所示形状的曲线,计权噪声更加直观地代表人们实际感受到的噪声信号状况(图打不出来,请见谅)。总之,信噪比越大,表明混在信号里的噪声越小,放音质量越好,便重放音乐清晰,干净而有层次。
⑤频率响应,早期俗称功率带宽,指谐波失真不超过规定值时,功放的1/2额定功率频带宽度,即有高低端下跌一半(-3dB)的两个频率点之间所包括的频带,称之为功率带宽,它很有实用价格。如日本安桥AV功放早期频响为20-30KHz(±0.5dB)现采用(WRAT)宽频技术后,频响达50-100KHz(+1-3dB)。高级进口功放,低频可从0Hz开始(直流化),因为功放在满额定功率工作是很少见的,如果放大器工作正常,频率响应一定非常好,几乎是一条直线,通常可远远超出可听音范围(20-20KHz)。TW-2008x功放频响达到(3-156KHz-3dB)确实是不错指标了。几乎可以完美再现各种音乐的细节,实属国产之精品。
⑥阻尼系数,(主要是对低频而言,是直接影响低音音质的极重要的技术参数),敢标这个技术指标,说明该功放设计达到了一定的水平,一般功放不给出这个指标,众所周知,喇叭的口径越大,低音相对就越好,但音盆越大其运动惯性也随之加大,此惯性使它很难与音频信号同步运动,往往表现出的声音混浊不清,尤其在低频欧100-400Hz,容易造成声染色,使人听起来模糊不清,很不自然。为什么有些烧友家中的音箱中喇叭,低频信号强时颤振不止,低音老感觉不干净,这就是音盆惯性所引起的。
音响工程师们注意到这一点,对功放采取一些技术措施,如选择多管并联,低内阻(毫欧级)大功率管,提高±工作电压,选择优质线材等,极力提高阻尼系数,使它能够针对喇叭惯性运动,产生“电阻尼”作用,使音盆的运动与音频信号同步运动,尽可能使音盆在驱动信号结束后很快恢复到零位(即中心位置),这种阻止效果就是阻尼系数(D来量),D=Rs/Ri,Rs=喇叭音卷阻抗,Ri=功放输出内阻,D越大,音盆与信号同步效果就越好,低音就越纯越干净,重放效果就越好。早期功放阻尼系数要求10-50,现在的功放可以做几百甚至上千。TW-2008能做到280也确实不易了。
转换速率:功放的转换速率(Siew rate),它极大地影响着高音重放质量与性能(一般厂家不给出此项指标)转换速率越快,高音音质就越佳。越能准确地捕捉到稍纵即逝的高频信息,(选用运放的烧友都知道,尽量选用宽频响,高速率型的,如AD847转换速率达300V/us.就是考虑转换速率问题)。高档功放可做到十几至几十V/us,低中档功放都根本不敢标出,这种转换速率的数值高低,与设计,用料有密切关系,但也不宜太高,太高会产生人耳听不见的超音信号,指20KHz以上,不但对改善音质无作用,反而容易烧坏高音喇叭,不过正规厂家设计时都会考虑这个问题,高级功放往往会采取可调转换速率技术。一般控制在12V/ms左右为佳。一句话,较高的转换速率,可以保证较优秀的高 频重放特征。
使用道具 举报 回复 支持 反对
发表于 2012-4-30 18:15:57
DECCA 唱头最经得起时间考验

    玩音响、听音乐已十几年,使用过的音响器材也可算不少,现在回想起来,的确有不少令人难忘的经验,例如说,第一次从电晶体机换到真空管机所受到的震撼,第一次听到静电型耳筒之清晰,第一次经验到超低音之浑厚等,但是音响器材似乎不管当时有多好,不久之后就被后起之秀所取代了,可谓“人上有人,天上有天”。尽管不知换了多少扬声器、扩音机、前置、唱臂,十几年来,在我心目中,有一件器材迄今仍占有崇高地位,不知多少次想将它换下来,但是终究不成功,弄来弄去,它又回到设置之内,因为纵使它在某些方面不能和它的挑战者相比,但是总括而言,它仍然比较优秀,这件器材的名字是DECCA唱头。

十多年前亮相貌不惊人
    我第一次听见Decca唱头之名字是在一九七O年左右,当时,一家在纽约东城的高级音响店老板对我说,他认为Decca唱头是世界上最好的唱头,但是他说,Decca马上就要出新唱头,叫我稍微等等,因为新头要比旧头好得多,我左等右等了不知道多久,新头仍然没有上市,不过当时我已经有了几个极有声望的磁头,所以并不急,心想,Decca即使好,也不可能好到那里去,这时,这家店刚得到Audio Research在纽约市之总经销权,生意相当兴隆,但是为了要更进一步的推销Audio Research器材,他们特别整修了一间聆听室,专门置放ARC之器材,整个房间之内只有一对Magneplanar扬声器,但是我总觉得声音不对劲,不知是喇叭不好还是房间有问题,由于经常到这家店到泡,所以逐渐对ARC设置之音响效果变得熟悉,有一天,走进了这聆听室,第一件使我感到惊讶的事是,音响效果好极了,我连忙问店主他们改换了什么地方,回答是,一点都没有变动,他们当时正在试听一个顾客送来修理的唱盘,我凑过去一瞧,只见一个精美无比的唱盘,唱片是由五个金色的樁子予托住的,唱臂的设计亦非常奇特,像个中国古式的打油杓,沿着唱臂看到唱头壳处,只见一个黑漆漆的方块,哪像是个唱头?再仔细一看,方块前头印了二个白色的小圆圈,小圆圈下赫然有ffss SC4E之字样,一问之下,才知道这原来就是Decca唱头,看起来真貌不惊人,但是声音却是如此之美,当时下决心“就是它”,新的Decca 5号也不等了,但是竟然全纽约没有任何店有得卖的!市场上充满了Shure,Stanton,ADC,但是就是没有Decca,不过皇天不负有心人,几个月后,终于被我找到了一个来源,于是一口气买到好几个,还顺便买了一支Decca International 唱臂,回家花了一个周末的工夫将它装妥,音效简直美极,又甜、又透而且还带有权威性,好像在对听者说:“只有我的声音是正确的。”,原来好几张唱片我一直认为录音很差劲,但是用Decca都变得很像样了,许多从来没有注意到的音乐细节也都一一呈现在眼前(的确像是可以看到演奏的乐器一般),所有的唱片好像都是第一次听到一般,这种感受实在新奇,因为当时做梦也没意料到一个小小的唱头会造成如此大的分别。

一听钟情
从四到六成为忠实信徒
    可以说从那时候开始,我就变成了一个Decca的忠实信徒,迄今十几年,Decca从4号升到6号,我对它的热衷一直未减,在这段期中,不少MC唱头及Stax CPX静电唱头曾经使我有点“移情别恋”,但是总是听了不久就开始怀念Decca,最后不得不又将它装回去。终于不得已只得多添唱盘,因为Decca唱头调整不易,不适于经常换上换下,同时,如果唱盘不止一个,那么可以使用不同的唱头,我的理想是一个MC,一个MM,静电或其他的设计,另外一个为Decca,但是这个安排并不太成功,因为经常我的三个唱盘上所装的都是Decca唱头(Decca有各种不同的型号的)。

因爱慕作深入研究资料寸厚
    自从我使用Decca以来,我即开放收集有关Decca之资料。现在档案约有一寸厚,其中包括所有我读过有关Decca之文章及测验报导以及与友人或Decca厂讨论Decca唱头之信件等。有些资料是在产品规格单上所找不到的,例如,一位住在英国Leicester的老先生来信告诉我说,Decca唱头之设计者,原先是位妇女士,后来开刀转才变为男性,听说这位先生在唱头设计方面相当有权威性,他的论文经常被专门讨论唱头设计的文章所提及。   

设计者由女变男富传奇遭遇
    为了要写这篇文,我曾经多次写信到Decca总公司去请求他们供给我资料,不幸由于Decca改组,当事人均改换,所获得的资料并不多,尤其Decca唱头的历史更是没有任何线索,但是Decca ffss Stereo头在1958年伦敦的无线电展览会上即已展出,据当时报章之报导,Decca唱头很显然比其他的唱头优秀得多,Decca厂所以在当时即能开发如此高水准的唱头与它多年制造唱片,刻片系统以及唱头的累积经验很有关系。

经过十年改进达到完美阶段
    随后十年,Decca唱头多经改善,到了Decca 4号时,能够改善的地方似乎均已达到完善地步,唯一的缺点是所有的Decca头必须与Decca唱臂合并使用,但是许多玩音响的人士却希望能够将Decca头装在他们自己喜欢的唱臂上,Decca应了这个要求而推出了至今尚极受推崇的4RC及C4E唱头,但是由于它们的重量很高(约14克左右),逐渐不合当时玩家的要求,Decca在1970年左右终于完全改变了唱头的外形以及内部构造,虽然唱头设计原理一成未变,Decca 5号因此诞生,Decca唱头的外形以及内部构造迄今未变,目前在市场上的六号头与五号的外形完全一样,不同之处完全在内部。最近Decca厂非正式的透露他们准备推出七号,不过看Decca厂目前情况,七号可能在一时半刻内不会实现。
    Decca唱头严格说起来是MI型的,因为发电方式是以一铁片在磁隙中活动而导致电流,但是Decca却与一般的MI唱头有天地之别。实际上,Decca与市面上所有的唱头均不同,一般唱头钻石针尖上的振动均得传至针杆的尾端然后才被检拾出来,Decca工程师认为不论针杆之材料为何,均无法将很细软的振波不受影响地传到针杆后端,如果针杆中间再加上一个橡皮悬挂系统,那么振波被改变的可能性更大,因此,普通一般唱头都多少有层雾,Decca工程师称之为“针杆雾”Cantilever haze。而Decca解决这困难的方法是将检拾线圈置于针尖四周及上端,非常直接,因此,Decca唱头的声音很显然地要比其他唱头明朗而通透。Decca唱头的另外一个特点是在于它的针杆,普通针杆是圆筒型的,而Decca却形如锅铲,而且还有一条向后拉线绑在针杆尖端处,针杆从唱头腹部垂直向外伸出,形状极为与众不同,五号头以前的各种型号更是将整个唱头的活动部分,线圈,磁极以及出端等都建造在一块磁铁上,唱头的身体即是这块磁铁,因此才会重达14克,随后由于磁铁制造技术大增,Decca乃能将原先的大块磁铁之体积缩小了百分之九十还不止。

设计自成一格有三个线圈 只用三条线“和差式”接驳
    Decca唱头中有三个线圈,其连接方式是所谓“和差式”(Sum and difference),因此向外的出端只有三条一左、右以及中线,与普通的四条线稍有不同。
    Decca唱头另外尚有一个特点,唱头本身阻尼之使用得非常少,针杆片后端是被紧紧夹在唱头身上的,加上那条拉线,整个振动系统非常坚实,唱片转动时向前的拉力对它完全没有影响,这也是Decca头清晰之原因之一。六号头针杆上的阻尼较五号大有增加,但是其阻尼物质仍然不是悬挂系统的一部分,所以并不影响工作效能。
    Decca目前在市场上的六号头约4.5克重,唱头本身分为两部分,一部分为唱头的发电部位,另外一部分仅是一个唱头座,座上有三支出端,安装时可以将唱头座先装在唱头壳内,然后才将唱头的另一部分插上去,由于唱头插入拔下很容易,所以切换两只不同的Decca唱头是最简单不过。这个特色给使用者带来了很大的便利,但是也遭受到许多玩家的攻击,这个问题下面再详谈。

文章刊出引起共鸣甚感快慰
    在四月份的音乐与音响杂志,我曾经写了一篇有关Decca唱头的文章,这篇文很显然地引起了一些读者对Decca唱头的好奇心,有些同好更基于我的推荐而去买了Decca头,我在纽约也收到了几封读者,写来讨论Decca头的信,我非常高兴能够得到一些读者的共鸣,前几天尚接到一个读者从克里夫兰州来的长途电话,告诉我他对Decca唱头之热衷,据他说,自从换上了Decca头(约在一两星期前),他每天都请朋友到家去听音乐,他说,他从来不知Jazz at the Pacon Shop (Proprius 7778-79)这张唱片之录音会有如此高的水准。几个星期前,有人送给了他一个五号头,但是他无法将它调整适当,于是打电话来问我,我给了他几个建议,结果效果大增,使得他忍不住要打电话来告诉我。

一经比较优点出众不能抗拒
    对于使用者说来,一个调整适当,搭档不离谱的Decca头,不论是那一型号(1号到6号),它的特点与其他唱头比较之下很快就会显露出来:
1、Decca头的中音部分非常充沛而有实质,但是绝不侵人,无论乐声或人声均有使人觉得有浮凸玲珑感,其他唱头与其相形之下,立刻会显得没有body。Decca的声音并具有权威性,不像一般唱头之中气不足,这种权威性非常能够令人注意,使人不得不仔细听。以Decca头播放录音良好的歌剧唱片,例如Pavarotti及 Sutherland之杜兰多公主(梅塔指挥),卡拉扬新灌的Parsifal(DGG),拉汶指挥的魔笛(RCA),甚至于已经有二十年历史由休提指挥的尼布龙指环(Decca-London)等,保证会使听者欲罢不能。
2、Decca低音低沉而有劲,绝不含混膨胀,有人说Decca最大的优点就是在低音,Decca低音会很显然地比其他唱头的低音较有轮廓感,很可能是因为其低音之瞬间反应极佳之故,钢琴之低音键声绝不会像海棉一般地松驰,或像敲橡皮轮胎一样死沉沉的感觉,大提琴及低音提琴的拉弓声亦非常显着,不会有“一团低音”的情况,经常,换上了Decca反而会使人觉得低音变少了,但是仔细听会发现低音并没有少,所少的是其他唱头低音部分之混浊声。
3、Decca头的高音部分所受到的议论分歧,主要是因为有些Decca头(尤其是五号头)在18KHz处有峰值,有些头因为品管不良,峰值超出范围而造成刺耳的现象,使人无法接受,但是如果峰值不超出设计规格,Decca之高音美如柔丝细水,Decca六号头之峰值已被推出20KHz以外,所以高音之表现一般非常良好,但是仍然有人喜欢MM或MC高音之飘然感而认为Decca之高音有点过分实心。
4、Decca唱头的立体感较普通唱头来得明显,主要是因为它少了一层雾的关系,而台面之纵深,横宽以及高度不论在任何情况之下都能保持一定的尺度,这个能力对于音乐之再生非常重要,影象稳定,乐器人声在**时不会有扩散的现象,空间与实体分隔清楚是Decca头最大的几个优点。
    如果使用Decca而无法感受到以上数点,那么不是唱头本身有毛病就是调整设置不理想,为了要 达到发挥Decca优点,使用者必须得花一点时间去做一些实验研究,但如何去实行?本期由于篇幅的关系,无法向各位报去。下一期,我会继续与各位讨论Decca唱头,包括1、如何调配Decca唱头,2、Decca头之特性以及它们再生音乐的影响,专家们眼中的Decca唱头,4、Decca唱头经过特殊改善了后之音响效果,其中包括Decca Van peu Hul等商业性之产品。
使用道具 举报 回复 支持 反对
发表于 2012-4-30 18:14:47
清洁唱片 !

    工具多箩箩没有一种绝对理想,用得不得其法心爱唱片会损毁,本文提供几种有效而可行之方法     凡是玩音响的人或者是唱片收集者对于他们心爱的唱片之维护可谓无微不至:置放时不能斜着,不能平着,也不能压着,室温太高了不合适,太潮湿了也不行,使用时更是小心翼翼,生怕将手指上的油垢弄到了唱片上,钻石唱针更是每隔一些时候就得检视一下,免得针尖磨损了后会刮坏了宝贵的唱片。由于唱片可能是多半听音乐的人最大的投资,更加上近年来唱片价格飞涨,许多专门供人维护唱片的产品应运而生。 最普遍的唱片清洁器可推唱片刷子,早年的刷子多半是由绒布制成,但是由于绒布的纤维太粗,除尘之效率不高,同时反而亦有将尘粒压入唱片沟纹中之危险,所以目前高级唱片刷多半不是绒布型的。绒布型的刷子尚有制造静电之可能,如果不与除静电液同时使用,唱片上之静电会大大增加,而吸引了更多的灰尘。若干年前,市面上出现了一种纤维往一面倒的唱片刷,可将灰尘从唱片沟纹中被掏出来,不幸这种唱片刷之纤维仍然太粗,并且仍得与除却静电的液体合用,否则效果不彰。
    唱片清洁液或除却静电液之使用与否是多来被争论的话题,有人不愿意用液体,因为他们认为凡是液体一定会留下渣子,产生杂音,并且如果有化学成分,塑胶会变质而使声音变劣,制造这些液体之厂商却引用了各种实验室之报导,保证他们的药水不会留下任何痕迹,即使有也少得不会引起任何不良后果。实际上,药水本身中之滓渣的确非常少,但是如果使用不当,液体经常会将唱片上的油垢溶入沟纹中而产生更多的杂音,并且溶解了的污垢,会粘附在唱针上而形成泥球,如果不经常清除针尖,不得再生音质会受到影响,而且严重时更会使得唱头无法循轨。如果你每隔几张唱片就得清除针尖,否则会产生泥球,那么唯一的方法是将所有唱片彻底地用洗唱片机一一清洗过。

碳纤维刷兼有导电作用
    几年前有人发明了碳纤维的唱片刷,碳纤维不但非常纤细并且有导电的作用,所以使用时不必依靠除静电液之帮助,而可以达到减少静电之效果:当静电被消除后,唱片失去了吸引灰尘的能力,而可以很容易地被清除干净,须注意的是,使用时的压力不能太大,轻轻地让刷子与唱片接触即可,唱片转二、三圈后,才将刷子徐徐向外或者向唱片中心处横向移出,移动时刷子得与唱片保持接触,一直等整支刷子脱离唱片沟纹部分为止,如果硬将刷子向上提起,唱片上会留下一道灰尘。
    目前市面上碳纤维唱片刷之厂牌不少,其中比较著名的包括Decca,Goldring,Zeepa, Hunt等等。
    除了唱片刷子外,有人喜欢在放唱片时便同时使用所谓唱片清洁臂,早期的Dust Bug曾经风行一时,有人坚决不赞成它们的使用,因为据称,由于它们与唱杆同时使用在唱片上,而清洁臂之纤维实际上是在“唱”唱片,这些音波虽然能量不大,但是会从唱片之塑胶中传至唱针处而被拾检出来,而减低了再生音乐之清晰度,这说法似乎很有道理,如果不信,可以将Dust Bug 之类的清洁臂放在转动的唱盘上,你实际上能够听见它们“唱”唱片的声音。
    英国曾经有人做过如下的实验,一张特制的唱片之一部分沟纹是没有声音的,如果将唱片清洁臂放在有声音沟纹部分,而将唱头放在没有声音的部分,则从唱头中可以传出刷子在唱片上所造出的声音,这表示,如果不必要,最好不要在放唱片时同时使用唱片清洁臂。
    与Dust Bug相似的唱片清洁臂之种类繁多,有尼龙纤维制的,有松鼠毛的,亦有碳纤维式的,有些很轻,但有些却重得会使皮带传动式的唱盘转速减慢,所以使用时得留意,这些不同的式样中,碳纤维式的可能又占了点优势,因为其除尘效果特佳之故,不过碳纤维之刷头会常脱毛或变得纠结在一起而失去效用,所以得必须经常换新。

灰尘粘附唱片乃静电作怪 除静电枪有效但不受欢迎
    大家都知道,灰尘之所以粘附在唱片上,其最大的原因是因为静电的关系,上面提过,如果使用除静电液则可减少静电,但是液体许多人不爱使用,因此,有人发明了粘性的滚筒以及去尘之化学薄膜,前者使用起来非常方便,似乎很有效用,但是到底这些粘性的物质会不会留在唱片上?这些问题仍没有完美的答复,因此有些人不愿意冒险使用,后者亦非常有效,但是使用时极为不便,要在唱片上涂上一层化学液体,等它干成一片薄膜时,再将其揭下,手续复杂并且费时,所以使用的人并不多。      能够除却静电的静电枪最近似乎越来越少见了,可能是因为它有伤人的危险性,同时亦可能是因为它的功能可以以静电刷来取代的关系。许多人有了静电刷以后,静电枪懒得用了。实际上,静电枪使用在底片或幻灯片上特别有效,喜欢自己冲洗照片的人不妨一试,另外,许多年来一直使用在摄影界的一种刷子也因为它能够消除静电的功能而流行于音响圈,但是由于它的纤维太粗,所以没有碳纤维刷子来得适合。

洗唱片液种类多 湿洗法不用为妙
    使用在唱片上的化学药水原先仅为除静电,后来逐渐发展成多种功用的药剂,有些有滑润的作用,有些有保护塑胶的作用,有些更声称会使再生的音响效果更加提高,许多有名的音响专家试用以后表示这些药剂的确有功效,但是亦有些人反对这种作法,他们认为药剂多半会使声音变劣,其中最常被提出之缺点为再生音乐之细节会由于药剂之敷用而减少。
    用来维护唱片的器材之中最积极的可算是洗唱片机了,洗唱片机不是新玩意,英制的Keith Monks在市场上已经多年,但是由于价格昂贵,所以一直不能普遍,使用者多半为电台或者是贩卖音响器材的商号,后者用它来代客清洗唱片。

洗唱片机昂贵 不过最为有效
    年来,一两家工厂曾经企图推销比较价廉唱片清洗机,但是并没有成功,最近两家美国厂推出了几型清洗机,一家名为VPI,亦一家为Nitty Gritty,价钱非常合理,约在美金两三百元之谱。这些清洗机之效果极佳,一张唱片在一两分钟之内即可清洗完毕,没有任何其他方法可以更彻底的去清洗唱片。经过处理的唱片可以说是一尘不染,许多原本已经脏得不能使用的唱片经过清洗之后和全新的版本差不多。
    由于脏是造成唱片杂音之主要原因之一,所以唱片经过清洗之后之杂音量会显著地减少,地下杂志Absolute Sound之主持人Harry Pearson甚至于宣称,全新的唱片经过清洗之后声音亦会改善。
    唱片清洗机之缺点有二:第二,使用之清洁剂可能会伤害到塑胶而导致声音之劣化,许多专家警告使用者不得多次清洗同样的一张唱片,否则有害,他们相信清洁剂会破坏塑胶中的稳定原素而使塑胶变质,但是不少实际上使用唱片清洗机的人却无法印证这种说法,纽约有一家专门播放古典音乐的24小时电台之节目部主任曾经对我说,他们每张唱片在播放之前均一定经过唱片清洗器之清洗,他并不相信频繁的清洗会伤害到唱片,我认为,也许化学作用需要长时期才能显露出来,所以最好还是不做不必要的清洗。唱片清洗机的第二个缺点是它在工作时所发出的振耳欲聋的吼声,尤其当穿插在美妙的音乐之间,更是使人无法忍受,如果读者没有听过,那么家庭使用的真空吸尘器也许可以使你体会到它们的威力。相信不久的将来一定会有非常安静的机器上市。
综合上面之讨论所得到的结论是:
1、凡是化学剂均最好少用在唱片上。
2、唱片清洁臂如果会“唱”唱片,那么最好不要用。
3、唱片刷中以碳纤维式的效果最好,但是它们不能与任何液体直接接触。
4、唱片清洗机是凡是唱片收集家均应具备的一项器材,但是清洗唱片得节制。
多年来的经验使我认为最简单,最省时,最省钱,而且最安全的维护唱片的方法是:
1、绝对不让手指碰到唱片之沟纹部分。
2、绝对不局部使用清洁剂。清洁剂仅限于唱片清洗机使用。
3、唱片在播放之前后一定用碳纤维刷将灰尘清除过(费时约10分钟)。 当然,由于我住的地方气候并不潮湿,所以没有唱片上霉的危险,同时唱片几乎从不会与烧菜时的油烟接触,所以积集在唱片上的灰尘多半是干性的,如果以上两种情况无可避免,那么唱片柜内不但要保持干燥,而且在烧菜之油烟未散之前不得听唱片。万一唱片受到霉及油烟的侵害,那么唱片清洗机是必需的。

清洗唱片贴士
    水质一定要纯在未停笔之前,要向各位提醒一件事是,如果没有唱片清洗机,那么使用温和的清洁剂及温水来清洗唱片亦未尝不可,但唱片在以清水冲净了之后必须要彻底风干。另外得注意的是,由于自来水之品质随地而变,如果自来水中之矿物质或者其他杂质成分高则不宜用来洗唱片。最容易决定水质的方法是一茶匙自来水倒在一块干净透明的玻璃上,待风干之后,检视是否有过分的沉澱成份遗留在玻璃上。如果自来水不适用,那么蒸馏水则为最理想不过了。
使用道具 举报 回复 支持 反对
发表于 2012-4-30 18:14:15
因“头”而痛的原因

    唱头是Hi-Fi的起点,它的质量及设计关系到整套音响系统的重播效果,不少发烧友也因“头”而痛。让我们看看原因的所在。
唱针的有效质量
    唱头中,由唱针、针杆,以及动子(动磁、动圈等)所有随唱针而振动的部分,它们的总质量,称为唱针的有效质量( Effective Tip Mass)。有效质量,并不能以每一个组件单独计算,因为它们的相关位置和总质量有极大的关系。唱针与动子等所组成的振动部分,多半都是由一个支点支撑,以杠杆式的作用,将唱针的振动传到后方。所以要减少动子对有效质量的影响,方法之一是加长支点与唱针之间的距离。但是针杆增长之后,本身的重量也增加,同样会影响到有效质量。至于唱针本身对有效质量的影响,并不因针杆的长短而有所不同。  
    这些因素之间的关系,如图一所示,当针杆加长时,动子对有效质量的影响减小,针杆对有效质量的影响增加,而唱针的影响则保持不变。由图中可以看出,三者所合成的总有效质量,只有当针杆在某一长度之下,才会达到最小,这一点称之为针杆的最佳长度,而并不是针杆越短就越好。因此,我们在选择唱头时,针杆的长短,并不代表性能优劣。同时针杆的长度还要考虑到使唱头与唱片之间能保持适当的距离。
    此外,动子的振动必须使唱头能产生适当的电压输出。而电压输出的高低,与动子的大小,以及振动的幅度有关。动子增大固然可以增强输出电压,但连带使质量也增加。如果增长唱针与支点间距离,动子的振动幅度又将减小。所以二者之间,也有严格的条件限制。对唱头设计人而言,上面这些因素,有任何一项不妥,就必须全部重新设计。有时设计点上所求得的最佳结果,还会发生制造上的困难,又得全部推翻,重新开始。
    唱针的有效质量必须轻,是因为针尖要追随唱片的音槽作快速的移动。根据力学的定理:力=质量X加速度。由于唱片所造成的针尖加速度,有时会非常高,要想减轻它所受的力量,唯一的办法只有减少质量。   

垂直循迹力
    垂直循迹力(Vertical Tracking Force),又称针压。是唱臂施加在唱头上的压力,使唱针能与音槽壁保持适当的接触。但是唱片所用的塑胶,并不是一种坚硬的物质,而是稍具柔软性,在受压的情形下会变形。图二是受压变形的特性曲线,当压力低于某一限度时,塑胶的变形处于它的弹性变形范围内,当压力消失后仍然可以回复到原来的情形。当压力超出此一范围时,就进入了塑胶变形范围,压力消失后也不会再回复到原来的形状,而成为永久性的变形。成为失真与杂音之源。
    音槽壁因受压而变形的情形,因音槽的形状而有所不同。如果是平滑,没声音调变的音槽,针压大约要高到三公克左右才会产生永久变形。但在有调变的音槽中,针压将随调变的情形而改变。当调变强烈、针尖加速度高的部位,音槽壁上所受的压力也会急剧增高,一旦超过弹性变形范围,就会造成唱片的永久伤害。这一点也正说明了为什么唱片上频率高而声音强的部位,特别容易受损。此外,它和唱针的有效质量也有密切关系,根据前面所提到的力学公式,如果唱针的质量大,音槽调变所造成的加速度高,则音槽壁所受的力也大。
    我们常会有一种错误的观念,认为音槽壁的磨损完全是由于垂直循轨压力的关系。实际上,磨损是由于唱针与音槽之间的摩擦力而造成的。只要唱针的形状正确,加工磨光良好,磨损几乎近于零。但是如果唱针的形状不良,磨光欠佳,则唱片被磨损将是无法避免的事。所以,在音响器材中,任何钱都可省,唯有唱针的花费决不可省,更不可贪便宜去买不是原厂的唱针。

顺应性
    顺应性(Compliance),又称为灵活性,顺服度。是唱针推动动子所需要的力量,其强弱由动子支撑物的 柔软程度,以及针杆的长度而定。支撑较硬,所需力量也较大。但支撑物的硬度并不是固定的,而是随频 率的增高而增加,也就是当频率增加时,顺应性会变差。因此,制造商所发表的顺应性,并不能代表唱头 的性能。真正有意义的,应当是与频率相关的动态顺应性Dynamic Compliance),但是由于目前还没有订出标准的测试法,所以厂家也无法公布数字。
    不过静态的顺应性,也并非全无价值,它可以表示出垂直循轨压力的最大限度。当垂直循轨压力增加时, 由于动子支撑物的柔软性,唱头与唱片之间的距离会减小,在适当的压力之下,针杆及动子恰好处于最适 宜的动作位置上。垂直循轨压力不当,将会影响到针杆与动子的振动情形,造成失直。
    如果垂直循轨压力过轻,唱针将无法保持与音槽壁的良好接触,有时会被弹离音槽,当它落下再度与音槽 接触时,冲击力足以使音槽壁受损,留下永久性的伤害(图三)。所以,只有顺应性极高的唱头,才可以用极轻的循轨压力。但是当顺应性较低,而必须用较高的循轨压力时,压力以及加速度施于音槽壁上的力 极易超过唱片的弹性限度,造成音槽的永久变形。
    受顺应性影响而施于音槽壁上的力量,只有当唱针作大幅度摆动时才会大量增强。在唱片上,只有强大的 低频段,才会有这种情形。所以顺应性只会影响到唱头的低频循轨性,而顺应性低时,也只会使强大的低 音段受到损伤。

谐振与唱臂
    任何物体,都会有一个它本身的自然振动频率。如果外来的力量使物体产生振动,它的频率恰与物体的自 然振动频率相同时,物体将会产生强烈的振动,称之为谐振(Resonance)。
    唱头装置在唱臂上,它们会有一个合成的谐振频率,如果这个频率是在唱头的工作范围以内,则每当唱片上出现此一频率时,就会引起唱臂产生谐振(图四)。轻者造成失真,严重时将使唱针跳出音槽、损毁唱 片。因此唱头与唱臂的合成谐振频率,必须低于唱片上的最低频率。但是如果太低,又会接近于唱片弯曲不平,或中心孔不正,所引起的极低频率振动。因此,唱头臂的谐振频率应当在15Hz左右,低于唱片上所录下的音频,高于唱片不平,心孔不正所产生的极低频。
    唱臂各部分的重量,它们的分布情形,以及唱头的重量,合在一起称之为唱臂的有效质量。有效质量与唱 针的顺应性,就是影响谐振频率的两个因素。如果唱头本身非常轻,顺应性也高,就应当配用轻质的唱臂 ,反之则应配用重质唱臂。不如此正配,很可能会因为谐振频率的产生,而使唱头的特性变坏,甚至无法 使用。在唱臂的尾部加装阻尼物,可以改善这种情形,但并不能根除谐振频率的产生,所以最好的方法还 是从基本上使谐振频率保持在十余Hz左右。

谐振与失真
    唱头本身还有另外一个谐振频率,也就是唱针有效质量与唱片材质的柔性所造成的谐振,它的频率多在15 Hz-50Hz之间。由于唱片所用材质的柔性,几乎都非常接近,可以视为是一个一定值。所以唱头的谐振频 率可以完全由唱针的有效质量而决定。质量越轻,谐振频率越高,但是我们并不希望频率太高,以免接近 唱片上的低频,而致造成失真,严重时也会使唱针跳槽,伤及唱片。但是,我们也不希望唱针有效质量太重,影响到顺应性与垂直循轨压力。因此在设计唱头时,就不得不用适当的阻尼物以改善这种情形了。
    最后还有一个谐振,就是唱针的针杆,它会使动子产生不应有的振动,造成谐波、以及互调失真。针杆还会产生一种不应有的水平振动,使动子的位置超出正常的工作范围、产生额外的信号,成为谐波与互调失真。
    顺应性过高,并不一定有益,因为动子的位置非常容易偏移,同样会造成失真。
    上面所谈的,都是机械性的困扰,而在磁与电两方面,也有很多问题存在。如果磁力线的变化不能与动子 的振动保持完全一致,就会产生失真。动子受外力的影响,不能保持在正中的位置上,或者是因为制造不 良、位置稍有偏斜,都会造成失真。这种非线性的失真,受唱针制造的精密度影响极大,因为不论是动磁 式、或动圈式,那一片诱发信号的小小动子,是装在唱针的针杆上,而不是在唱头内部。不是原厂制造的 廉价唱针,往往难以达到高度精密的要求,装到唱头上,位置稍有偏差,失真就在所难免了。
    磁滞现象,也会引起少量的失真。好在由于动子的振动幅度不大,由磁滞所引起的失真并不严重,只要在设计上予以改善,将不会影响到唱头的特性。
    唱头中的线圈,是真正产生信号电压的原件。由于磁力线变化,而在线圈中诱发出的电压,是否能精确无 误的传输到扩音器中,主要取决于线圈的阻抗,以及扩音器上的负载。而阻抗的大小,视线圈的圈数,以及铁心的特性而定。阻抗越高,输出的信号受扩音器负载的影响也越大。唱头所接续的负载,除前级扩音 器的的输入电阻之外,还有由唱头到前级输入间信号线的电容,以及前级本身的电容。这些电容与线圈的 电感,也会形成电的谐振,影响到声音的品质。至于动圈式唱头,因为阻抗非常低,信号线的容量反而影 响不大。如果加用升压变压器,则变压器及扩音器间的信号线就应当注意电容量的大小。

串音
    在立体唱头中,由于设计及制造的影响,某一声道的振动,无法做到完全不影响另一声道的要求。因此, 二声道之间无可避免的会有串音产生。不过正常的串音,并不会影响到音质,只会使左右声道的分离度减 弱而已。但是如果唱头本身有失真产生,则加上串音的影响,将使音质低劣。针杆的谐振,动子位置偏移 ,顺应性过高,都会使串音增强、失真增大。此外若唱头在唱臂上的安装位置不当,以及唱臂本身的谐振等,也会增加串音。
    唱头,虽是一个小配件,但是因为在制造上对精密度的要求非常高,再加上在设计上有许多相互抵触的限制,造成鱼与熊掌不可得兼的困扰,欲求达到完美境界,确非易事。
使用道具 举报 回复 支持 反对
发表于 2012-4-30 18:11:56
唱头讯号连接

SME Series V(下)唱臂及其姊妹之作Series IV(上)     现在常用的唱头大多数都是磁性设计,输出很低,传输这种微弱的讯号必须尽量减少阻力,以免造成讯号损失和影响音质,近年来设计唱头唱臂以及讯号线与插头都特别注意到这一点,但是单靠良好的设计还不够,我们平时在使用和保养上也不能忽略这种问题。
    重播唱片有时会出现音质不良的情形,假如不是因为唱片本身录音低劣或唱针循迹不良,那么多数是由于讯号传输中间有了阻滞,轻者形成输出减弱或音质变劣,重者可失声,通常往往在一边声道发生,检查故障必须从唱头开始,最容易发生毛病的地方有以下几处;动磁唱头的唱针可以拔下来,但这个设计主要是为了换针简便,可是有些人却养成一个坏习惯,在清洁唱针时经常把针拔下来,虽然操作比较方便,但这样做可能引起唱头插入后位置不准确或松驰,有时发现声音变劣,只要把唱针往里面推一下就能回复正常。许多唱头上连着一个唱针的保护罩,因为要避免谐振,所以做得很紧,掀起或放下时也可能影响到唱针插入的位置,导致声音不正常,值得留意。为了避免以上问题,尽可以不拔出唱针和经常放下再掀起针罩,有人甚至主张除掉它来减少重量和消除谐振。
唱头壳接线插 很容易会出毛病
    在唱头后边的输出插头和唱头壳连接线也是容易出毛病的地方,由于传统式连接方法用小插座,假如套在唱头输出插头上不够紧密就会形成讯号传导不良,甚至慢慢松脱下来,也有些插头与插座大小不配合,假如插头太紧的话,应该换适合的连接,若想用镊子强迫套进去,一不小心会折曲了插座与焊线部分,再弄直后表面上虽然似乎没有不妥,但却可能已经弄断接线或呈半连接状态,所以安装唱头时应该特别注意。此外如果插座或唱头输出插头表面起氧化膜也会影响音质,需要清洁干净再连接。  
接点镀金有理 抗氧化接触佳
    再往后边应检查唱头与唱臂的连接部分,一般唱臂与唱头壳用EIA式四点连接,目前多数产品在接触点部分镀金,但仍需要保持清洁,因为四点接触面不大,连接后注意锁紧。最后再检查唱盘与前级放大器的连接部分,如果采用普通镀镍的莲花插座和插头,要勤于清理勿使表面生锈,镀银和镀金插头插座受氧化腐蚀较少,但表面的镀膜也会影响讯号传导,所以不要以为用金银插头可以置之不理,有一个办法值得推荐,就是用清洁的插头和插座连接外,我面用绝缘胶布包裹,一来可以隔离空气,二来也可以防止插头松脱。
金插头价虽昂 实用物有所值
    金插头的价钱较普通插头贵很多,但不易受氧化腐蚀是最大优点,表面虽然也会起锈膜,但一经揩抹又恢复光泽,容易清理,银插头的讯号传导特性最理想,但抗氧化能力不及金插头,最容易生锈的是镀镍插头,如果暴露在潮湿空气中半个月已面目全非,而且受腐蚀的表面不能再回复光泽,不过这三种价钱不同的插头在全新状态下实际上对讯号传输的阻力都十分低,只要能保持清洁,都适合作微弱讯号的传导。
连壳设计唱头 方便兼且合理
    这两年来有不少唱头与唱头壳作整体式设计,不单止减少了重量,同时也避免唱头与唱头壳连接部分发生毛病,目前这种产品多数采用EIA式插头,只要用这种标准的唱臂就可以直接连接,使用相当方便。  
   在另一方面,今日很多新设计唱臂与唱头壳用长针式插头连接,四支针与插座连接之后,上面再用螺丝扭紧,由于接触面积增加了很多,讯号传导的阻力更小,而且稳定性高,和唱臂与唱头壳固定式连接的效果接近。
   唱臂内的讯号导线质素也要求愈来愈高,为了减少电阻、电容和电感,现在的高级唱臂内部已采用制作非常精密的李兹线,每条线用许多支极细的细缘纯铜丝合成,获得优异的特性,有些更将左右声道的导线作相反方向扭铜线,消除磁场对频应的影响。
唱盘至扩音机神经接线影响重大
    由唱盘至扩音机这段连接线应该尽量采用高质素产品,它们的电气特性对音质很有关系,质素好的讯号线因减少讯号传输损失,使重播音质更清晰,虽然价钱较普通讯号线贵些,但物有所值。
应用清洁**,善后工作重要
    有些人喜欢用市面上可以买到的电气接触点清洁剂喷在插头和插座上,初时似乎可以改善讯号的接触,但由于这类清洁剂多数为四氯化碳的混合液体,本身带有粘性,如果喷在插头和插座上之后暴露在空气中很容易附着尘埃,结果形成一层油泥,更会影响讯号传输,假如使用这种清洁剂的话,记着喷完之后用布揩抹干净。其实电气接触点清洁剂主要是改善大电流开关挚的接触而用,对于低电流讯号的接触点并不太适合,不过表面生锈的莲花插头和插座可以用这种液体揩抹。
    现在大多数唱盘与扩音机之间都采用莲花插头的讯号线连接,我们必须要注意插头与插座是否配合良好,太松或太紧都不理想,太松固然会接触不良和容易脱离,太紧不能插到底也可能形成传输讯号的故障,不宜马虎了事。DIN插的质素一般逊于莲花插,接触面积较小,除了使用方便之外别无优点,不值得推荐,最好的当然是专业用之RNC接驳器,互相锁紧特别稳定可靠,现在只有少数极品扩音机上才使用。
纯铜高级讯号线Monster设计精
   连接唱盘的讯号线在中心导线部分的质素高低固然对讯号传输形成不同的阻力,隔离网部分担任回路,它的质素也同样重要,所以讲究的设计将内导线用纯银制造,隔离网用镀银的纯铜丝编织,最近MONSTER CABLE公司制造了一种高级讯号线,在内导线部分采用105支超精细的李兹线,每支线均用纯铜制,表面绝缘,这种设计达成了最大的讯号传输面积和最低阻力,同时不会衰减超高频响应,而隔离网部分则用百分之95的纯铜丝紧密编织屏蔽交流哼声与无线电高频率干扰。
绝缘体质地重要,新材料减少损耗
    讯号线的绝缘胶皮质素对讯号的传输也有影响,这点可能很多人都不知道,一般塑胶绝缘层有吸收微弱电流作用,用于讯号线上并不适合,现在高级讯号线已采用聚丙稀原料作绝缘层,使讯号的损失减至最少。
使用道具 举报 回复 支持 反对
发表于 2012-4-30 18:08:34
唱头的种类与阻抗

LINN Ekos唱臂及K18唱头    唱头是一套音响系统的“源”,如果“源”有问题,后面的机件也发挥不了作用。唱头有压电式、半导体式、电磁式、动圈式(动圈其实也是电磁式的一种,但是因为它的输出低,特别将它分出来)。压电式很少会用在真正的Hi-Fi系统上,如果你一定要用这种唱头,则在选扩大器时,前级部分必须要有高输出唱头插口,而不能用一般的电磁唱头插口;如果没有高输出唱头插口,可以用Aux插口替代,但要加一个简单的等化电路(电阻、电容各一而已)。半导体唱头,有很好的高频响应,很可惜没有能打出天下,主要因为它必需要配一套特殊的等化及扩大电路,相当复杂,前级扩大器上都没有这种设备,所以,当你在购买半导体唱头时,不能只顾“头”还得将这套特殊的电路设备一同买下,否则将无法匹配。
    电磁唱头,有动磁式、动铁式二种,是目前使用最广的唱头。这种唱头的负荷阻抗绝大部分都是47KΩ,所以前级扩大的唱头输入也绝大部分设计为47KΩ。在选配时,要注意,二者的阻抗是否相同,或者相近。有些专为四声道用的唱头,它们的阻抗是100KΩ。有人觉得四声道用的唱头的高频响应更好,又是Shibata唱针,用在立体唱片上岂不是更好,但是要注意100KΩ和47KΩ相差了一倍,如果要用,就得找输入阻抗为100KΩ的前级,或者将普通前级上的两个47KΩ电阻换成100KΩ,否则由于二者的匹配不当,高频不会好。
    动圈式唱头,是目前“头”中极品,大部分的动圈唱头输出电压都非常低,如果直接接到前级上,将无法得到正常的输出,所以必须要用升压器或动圈唱头专用前——前级扩大线路的前级扩大器经扩大后再输至前级扩大器。二者的效果以前——前级扩大器较佳,但也非常昂贵。另外一法是选用附有前——前级扩大线路的前级扩大器,可以直接接动圈扩大器,方便得多。有极少数动圈式唱头是高输出型,可以直接接电磁唱头输入,用这种唱头可以方便不少。
    另外还有一种唱头,不大为人注意的,是静电式唱头,或者称之为电容式唱头,其作用和电容式麦克风相似,将两块极板并靠在一起,唱头使极板振动,板间的电容量改变,成为信号输出。这类唱头由于极板的数量非常轻高频响应极佳,水准不在动圈唱头以下。而它的阻抗,经唱头内自附线路的处理后可以和5KΩ和100KΩ的阻抗都能配合,非常方便。
灵敏度及过荷值宜重视,唱头特性须与前级吻合
    唱头和前级的搭配,除去负荷阻抗之外,还要注意前级扩大器的唱头输入电压范围。在前级扩大器的规范上,有两个数值:一个称作灵敏度(Sensitily)以mV为单位,它代表在那样大的信号输入下,将音量控制器开到最大,扩大器可以达到额定的输出功率,或者是前级放大器可以达到额定的输出电压。第二个数值称之为唱头输入过负荷电压(Phono Overload),也是以mV为单位,代表唱头的输出电压如果超过该值,扩大器就将过负荷。由于这两个数值的限值,选配唱头时就必须在其范围之内。
    唱头的输出电压,是以1000Hz的信号,以3.54cm/sec的速度录在唱片上,作为测试的标准信号,唱头的负荷阻抗为47KΩ。在这种条件下测得的唱头输出电压,就是它的标准输出电压,它的值应当与扩大器的唱头输入相近。唱片上的最高信号速度,常会达到30至40cm/sec,偶尔高频率的锋值更可能达到80cm/sec。一般的唱头,在1cm/sec的信号之下,多半都会产生1mV左右的电压。因此前级扩大的唱头过负荷电压,理论上至少也应当有40mV,否则将因削锋而产生失真。当然过负荷电压能更高就更好,如果这个数值在100mV以下,就要注意了。
唱头唱臂配搭关系重大,轻臂宜配高顺服度唱头
    唱头和前级的配搭如上所述,读者已可略有概念,至于唱头和唱机的关系,有些地方也得注意。唱机用何种驱动方式,和唱头的关系不大,重要的是所用的唱臂。灵活性极高级唱头,必须配用灵活性高的唱臂,如果二者不能匹配,会引起失真、共振、唱针跳槽等现象。因为唱头与唱臂配合之后,必然会有一个二者合成的谐振频率,如果谐振频率太高,会影响低音的清晰,造成失真;如果太低,又会因唱片的不平,中心孔不正等,而产生谐振,影响到唱头的循轨。这一类的谐振频率,多在2Hz至10Hz之间。所以唱头与唱臂的合成谐振频率必须要高于此一范围。由于上下二者的限制,唱头唱臂的合成谐振频率,就只有在7Hz至15Hz之间,才是最好的情形。
    但是唱臂制造者从不公布它们的唱臂与唱头的合成的质量有多少,而且唱头规格中所标示的顺服度,并且不标准,会有很大的出入。余下来的唯一办法,只有靠粗略的估计了。因此,一只顺服度极高的唱头,必须配用质量极轻的唱臂,才能避免接近于4Hz左右的谐振频率。如果唱臂并不是很好,冒然配用这种高级的唱头,不但不能改善音质,还可能更糟。当你觉得音色不佳,而音响店的推销员又向你推荐换唱头时,首需留意唱臂的品质能否和所推荐的唱头相配合。不然的话当你觉得声音更不满意时,下一步他就要劝你换喇叭了;原因也许是他不知道是唱头太好,也许是想籍此向你推销一对比唱头贵上几十倍的喇叭;买支唱臂或唱机,究竟还是小数目,比不上买一对喇叭。
    反之,如果唱臂质量极轻,但却用了一支顺服度差的唱头,则谐振频率会升高,进入音频范围,使低音模糊,低频响应不佳,甚或引起声音回授。好在这种情形不多见,因为低质量的唱臂非常贵,很少人会用这种高贵的唱臂去配一支廉价、顺服差的唱头。
使用道具 举报 回复 支持 反对
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则